逐点比较法——直线插补

合集下载

实验一 逐点比较法圆弧和直线插补实验

实验一 逐点比较法圆弧和直线插补实验

Y B(xe,ye)
M(xm,ym)
Rm R
A(x0,y0)
O 图3 圆弧插补原理图 X
圆弧插补原理参见上图,对于第一象限逆圆,设圆弧的起点为 A(x0,y0),终点为 B(xe,ye), 圆弧半径为 R。加工点为 M(xm,ym),它与圆心的距离为 Rm,则
(1)偏差计算
Fm
=
Rm2
− R2
=
xm2
p102=p102-p104 p101=p101+1 x-0.1 else p102=p102+p103 p101=p101+1 y0.1
;计算新的偏差值(Fi+1=Fi-ya) ;步数计数器加一 ;X方向进分别是(-0.1 -0.5 -1.0) ;偏差判别(若P102小于0表示刀具在直线下方) ;计算新的偏差值(Fi+1=Fi+xa) ;步数计数器加一 ;Y方向进给分别是(0.1 0.5 1.0)
endif
endwhile
close
(3)根据直线插补编成格式,编写所给圆弧插补程序。 各组的圆弧的插补任务是: u 第一组:圆弧半径 50,第二象限顺圆;
第二组:圆弧半径 50,第二象限逆圆; 第三组:圆弧半径 60,第三象限顺圆; 第四组:圆弧半径 60,第三象限逆圆; 第五组:圆弧半径 70,第四象限顺圆; 第六组:圆弧半径 70,第四象限逆圆; open prog7 clear linear inc p101=0 p102=0 p103=0 p104=50 while(p101!>100) if(p102!<0) y0.5 p101=p101+1 p102=p102-2*p104+1 p104=p104-1 else -x0.5 p101=p101+1 p102=p102-2*p103+1 p103=103-1 endif endwhile close

直线逐点比较插补原理的实现

直线逐点比较插补原理的实现

逐点比较插补原理的实现1 数字程序控制基础数字程序控制,就是计算机根据输入的指令和信息,控制生产机械按规定的工作程序、运动轨迹、运动距离和运动速度等规律自动地完成工作的自动控制。

世界上第一台数控机床是1992年由MIT伺服机构实验室开发出来的,主要的目的是为了满足高精度和高效率加工复杂零件的需要一般来说,三维轮廓零件,即使二维轮廓零件的的加工也是很困难的,而数控机床则很容易实现早期的数控(NC)以数字电路技术为基础,现在的数控(CNC)以计算机技术为基础。

数控系统由输入装置、输出装置、控制器、插补器等四部分组成。

随着计算机技术的发展,开环数字程序控制得到了广泛的应用,如各类数控机床、线切割机低速小型数字绘图仪等,它们都是利用开环数字程序控制原理实现控制的设备。

开环数字程序控制的结构如图1.1所示。

图1.1 开环数字程序控制的结构图这种结构没有反馈检测元件,工作台由步进电机驱动。

步进电机接收驱动电路发来的指令作相应的运动,把刀具移动到与指令脉冲相当的位置,至于刀具是否到达了指令脉冲规定的位置,它不作任何检查,因此这种控制的可靠性和精度基本上由步进电机和传动装置来决定。

开环控制结构简单、可靠性高、成本低、易于调整和维护等,应用最为广泛。

2 步进电机控制技术步进电机又叫脉冲电机,它是一种将电脉冲信号转换为角位移的机电式数模转换器。

在开环数字程序控制系统中,输出部分常采用它作为驱动元件。

步进电机接收计算机发来的指令脉冲,控制步进电机作相应的转动,步进电机驱动数控系统的工作台或刀具。

显然,指令脉冲的总数就决定了数控系统的工作台或刀具的总移动量,指令脉冲的频率就决定了移动的速度。

因此,指令脉冲能否被可靠地执行,基本上取决于步进电机的性能。

2.1 步进电机的工作原理步进电机的工作就是步进转动。

在一般的步进电机工作中,电源都是采用单极性的直流电源。

要使步进电机转动,就必须对步进电机定子的各相绕组以适当的时序进行通电。

直线及圆弧插补程序--逐点比较法

直线及圆弧插补程序--逐点比较法
else
{if(XOY==1||XOY==2)
{
ZF=3;
strcpy(e,c);
}
else
{ZF=4;strcpy(e,d);}
FM=FM+fabs(NX);
printf(" %d %s FM=%d NXY=%d\n\n",BS-NXY,e, FM,NXY);}}}
图一:插补计算过程
第一象限直线OA,起点为(0,0),终点坐标为A(6,4)
图二:插补计算过程
第二象限直线OA,起点为(0,0),终点坐标为A(-3,2)
图三:插补计算过程
第三象限直线OA,起点为(0,0),终点坐标为A(-2,-3)
图四:插补计算过程
第四象限直线OA,起点为(0,0),终点坐标为A(3,-2)
二.四象限逐点比较法圆弧插补
加工逆圆弧(或顺圆弧)A⌒B,圆弧的圆心在坐标原点,已知起点坐标为(X0,Y0)终点坐标(NX,NY)。
XM=X0;
YM=Y0;
for(NXY= fabs(NX-X0) + fabs(NY-Y0)-1;NXY>=0;NXY--)
{
if(RNS==1||RNS==3||RNS==6||RNS==8)
{
if(FM>=0)
{
if(RNS==1||RNS==8)
{ZF=1;
strcpy(e,a);
}
else
{ZF=2;
此程序是根据《微型计算机控制技术》(第二版)清华大学出版社
第三章数字控制技术——3.2插补原理中的3.2.1逐点比较法的直线插补,3.2.2逐点比较法圆弧插补编写的。其中的变量定义,原理依据均来源于此,如有疑问,请参考书中的讲解。尤其是例子,以下两个程序的第一个运行图均与例题中的一致。

逐点比较法

逐点比较法


Fi1 Fi X e
6
在插补计算、进给的同时还要进行终点判别。常用终点判 别方法是:
设置一个长度计数器,从直线的起点走到终点,刀具沿
X 轴应走的步数为X e,沿Y 轴走的步数为Ye,计数器中存入 X和Y两坐标进给步数总和∑=∣Xe∣+∣Ye∣,当X 或Y
坐标进给时,计数长度减一,当计数长度减到零时,即∑= 0时,停止插补,到达终点。
终点判别:判断是否到达终点,若到 达x ,结束插补;否则,继续以上四个
步骤(如图3-3所示)。
图3-3 逐点比较法工作循环图
3
2. 直线插补
图3-4所示第一象限直线OE为给定轨迹,其方程为
XeY-XYe=0
(3-1)
P(X,Y)为动点坐标,与直线的关系有三种情况:
(1)若P1点在直线上方,则有XeY-XYe>0 E (2) 若P点在直线上,则有 XeY-XYe=0
2.由偏差方程确定加工动点引起的偏 差符号(若要计算偏差量,则偏差方程系数不能简 化)。
3.下一步插补方向确定原则:向使加 工偏差减小、并趋向轨迹终点的方向插补
.(将偏差等于零的情况并入偏差大于零的情况)。
4.关于插补量:每次插补一个脉冲当 量的位移
12
3. 圆弧插补
在圆弧加工过程中,可用动点到圆心的距离来描述刀具位置与 被加工圆弧之间关系。
b) 逆圆弧
图3-9 第一象限顺、逆圆弧
14
偏差递推简化:对第一象限顺圆,Fi≥0,动点Pi(Xi,Yi)应 向-Y向进给,新的动点坐标为(Xi+1,Yi+1),且Xi+1=Xi,Yi +1=Yi-1,则新点的偏差值为:
15
若Fi<0时,沿+X向前进一步,到达(Xi+1,Yi)点,新点

例题:逐点比较法

例题:逐点比较法

-、逐点比较法1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)插补总步数:M=x e+y e=4+6=103)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f. .+1= f.. + x e(2)列表计算(3)2、直线L2:起点坐标O (0, 0),终点坐标A (-6, 3)(1)分析1)直线L2为第二象限内直线2)插补总步数:M=l x e l+y e=6+3=93)若偏差任0,则刀具向-A x方向进给一步,偏差f i+1j = f.. - y e4)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1= f.. +lx e\ (2)(3)3、直线L3:起点坐标O (0, 0),终点坐标A (-5, -8)(1)分析1)直线L3为第三象限内直线2)插补总步数:M=l x e l+l y e l=5+8=133)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1. = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f,,+1 = f.. +\x\(2)列表计算(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)插补总步数:M=x+\y\=7+4=113)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. -\y\4)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1= f.. + x e(2)(3)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差任0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)6、圆弧NR2:起点坐标A (0, 5),终点坐标E (-5, 0)(1)分析1)圆弧NR2为第二象限逆圆2)插补总步数:M=l(x0-x e)l+l(j0-j e)l=5+5=103)若偏差任0,则刀具向-颂方向进给一步,偏差f.,+1 = f.. - 2y.+ 14)若偏差f<0,则刀具向-A x方向进给一步,偏差f,+1 . = f.. ~2x. + 1 (2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1)圆弧NR3为第三象限逆圆2)插补总步数:M=l(x0-x g)l+l(y0-y g)l=6+6=123)若偏差任0,则刀具向+A x方向进给一步,偏差f i+1j = f.. + 2x. + 14)若偏差f<0,则刀具向-A y方向进给一步,偏差f. .+1 = f.. - 2y. + 1 (2)列表计算(3)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)1)圆弧NR4为第四象限逆圆2)插补总步数:M=\(x Q-x e)\+\(y Q-y e)\=7+7=143)若偏差任0,则刀具向+A y方向进给一步,偏差f.,+1 =f.. + 2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f i+1j =加+ 2x. + 1(2)(3)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1)圆弧SR1为第一象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=4+4=83)若偏差f N0,则刀具向-A y方向进给一步,偏差f, .+1 = f.. ~2y.+ 14)若偏差f<0,则刀具向+A x方向进给一步,偏差f.+1. = f.. + 2x. + 1(2)(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5,0),终点坐标E (0,5)(1)分析1)圆弧SR2为第二象限顺圆2)插补总步数:M=\(x0-x e)\+\(y0-y e)\=5+5=103)若偏差f N0,则刀具向+A x方向进给一步,偏差f,+1. = f.. + 2x. + 14)若偏差f<0,则刀具向+A y方向进给一步,偏差f, .+1 = f.. + 2y.+ 1 (2)列表计算(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=6+6=123)若偏差任0,则刀具向+颂方向进给一步,偏差f i+1j = f,. + 2y.+ 14)+1= "j - 2x.+ 1 (2)列表计算(3)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)插补总步数:M=l(x0-x e)l+l(y0-y e)l=7+7=143)若偏差任0,则刀具向-A x方向进给一步,偏差f. .+1 = f.j - 2x. + 14)+1.(3二、数值积分法(DDA)1、直线L1:起点坐标O (0, 0),终点坐标A (4, 6)(1)分析1)直线L1为第一象限内直线2)x e=4=100B;y e=6=110B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+颂(2)列表计算:(3)绘制进给脉冲图(略)2、直线L2:起点坐标O(0,0),终点坐标A(-6,3)(1)分析1)直线L2为第二象限内直线2)x e=l-6l=110B;y e=3=011B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y (2)列表计算二进制累加:累加N3):累加(3)绘制进给脉冲图(略)3、直线L3:起点坐标O(0,0),终点坐标A(-5,-8)(1)分析1)直线L3为第三象限内直线2)x e=|-5|=101B;y e=|-8|=1000B3)取积分累加器容量N=4位4)x被积函数寄存器J vx= x e;y被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过4位溢出时,则在x方向分配一进给脉冲-A x 7)当J Ry累加超过4位溢出时,则在y方向分配一进给脉冲-A y (2)列表计算二进制累加:(3)绘制进给脉冲图(略)4、直线L4:起点坐标O (0, 0),终点坐标A (7, -4)(1)分析1)直线L4为第四象限内直线2)x e=7=111B;y e=l-4l=100B3)取积分累加器容量N=3位4)x被积函数寄存器J vx= x e;j被积函数寄存器J vy= y e5)初始时:x累加器J Rx= 0;j累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲+A x 7)当J Ry累加超过3位溢出时,则在j方向分配一进给脉冲-颂(2)列表计算二进制累加:N3):(3)绘制进给脉冲图(略)5、圆弧NR1:起点坐标A (4, 0),终点坐标E (0, 4)(1)分析1)圆弧NR1为第一象限逆圆2)x0=4=100B;y0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲+A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)7、圆弧NR3:起点坐标A (-6, 0),终点坐标E (0, -6)(1)分析1) 圆弧NR3为第三象限逆圆 2) 扁=I-6I=110B ; y 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为加一(2)列表计算_8_ 9 10 11 12 1314(-44) (-4,4) (-5,3) (-5,3)(-3+4=7 7+4=11 (3)停止累加2+4=6 6+4=10(2) 2+5=7 7+5=12(4) 4+6=10(2) 2+6=8(0)停止累加0 1 0 1 1 1 0(3) 绘制进给脉冲图(略)8、圆弧NR4:起点坐标A (0, -7),终点坐标E (7, 0)(1)分析1) 圆弧NR4为第四象限逆圆 8) x 0=0=000B ; j 0=|-7l=111B 9) 取积分累加器容量N=3位10) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 11) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 012) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对 x 坐标的修正为加一2) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算10 11 12 13 14 15(-4,-6) (-3,-6) (-2,-6) (-1,-7+6=13(5) 5+6=11(3) 3+6=9 (1) 1+6=7 7+6=13 (5)停止累加1 1 1 0 1 0停止累加(3)绘制进给脉冲图(略)9、圆弧SR1:起点坐标A (0, 4),终点坐标E (4, 0)(1)分析1) 圆弧SR1为第一象限顺圆 2) x 0=0=000B ; j 0=4=100B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲-颂,相应在J vx 中对y坐标的修正为减一(2)列表计算11 12 13 1415(7, -4) (7, - 3) (7, - 2)-6+5=11⑶3+7=10(2) 2+7=9(1) 1+7=8(0) 0+7=7 7+7=14(6)停止累加1 1 0 1 0(3)绘制进给脉冲图(略)10、圆弧SR2:起点坐标A (-5, 0),终点坐标E (0, 5)(1)分析1)圆弧SR2为第二象限顺圆 2) x 0=l-5l=101B ; j 0=0=000B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲+A x ,相应在J vy 中对x 坐标的修正为减一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为加一(2)列表计算12 13 1415(4,2)g (41) (4,1) (4,0)3+4=7 7+4=11(3) 3+4=7 7+4=11(3)停止累加1 0 1 0(3)绘制进给脉冲图(略)11、圆弧SR3:起点坐标A (0, -6),终点坐标E (-6, 0)(1)分析1)圆弧SR3为第三象限顺圆 2) x 0=0=000B ; y 0=l-6l=110B 3) 取积分累加器容量N=3位4) 初始时:x 被积函数寄存器J vx = y 0; y 被积函数寄存器J vy = x 0 5) 初始时:x 累加器J Rx = 0; y 累加器J Ry = 06) 当J Rx 累加超过3位溢出时,则在x 方向分配一进给脉冲-A x ,相应在J vy 中对x 坐标的修正为加一7) 当J Ry 累加超过3位溢出时,则在y 方向分配一进给脉冲+A y ,相应在J vx 中对y 坐标的修正为减一(2)列表计算141514(-6,-1)15(-6,0)停止累加0(3)绘制进给脉冲图(略)12、圆弧SR4:起点坐标A (7, 0),终点坐标E (0, -7)(1)分析1)圆弧SR4为第四象限顺圆2)x0=7=111B;j0=0=000B3)取积分累加器容量N=3位4)初始时:x被积函数寄存器J vx= y0;y被积函数寄存器J vy= x05)初始时:x累加器J Rx= 0;y累加器J Ry= 06)当J Rx累加超过3位溢出时,则在x方向分配一进给脉冲-A x,相应在J vy中对x 坐标的修正为减一7)当J Ry累加超过3位溢出时,则在y方向分配一进给脉冲-A y,相应在J vx中对y 坐标的修正为加一(2)列表计算(3)绘制进给脉冲图(略)。

逐点比较法直线插补

逐点比较法直线插补

§2—1 逐点比较法逐点比较法是我国数控机床中广泛采用的一种插补方法,它能实现直线、圆弧和非圆二次曲线的插补,插补精度较高。

逐点比较法,顾名思义,就是每走一步都要将加工点的瞬时坐标同规定的图形轨迹相比较,判断其偏差,然后决定下一步的走向,如果加工点走到图形外面去了,那么下一步就要向图形里面走;如果加工点在图形里面,那么下一步就要向图形外面走,以缩小偏差。

这样就能得出一个非常接近规定图形的轨迹,最大偏差不超过一个脉冲当量。

在逐点比较法中,每进给一步都须要进行偏差判别、坐标进给、新偏差计算和终点比较四个节拍。

下面分别介绍逐点比较法直线插补和圆弧插补的原理。

一、 逐点比较法直线插补如上所述,偏差计算是逐点比较法关键的一步。

下面以第Ⅰ象限直线为例导出其偏差计算公式。

图 2-1 直 线 差 补 过 程e )OY图2-1 直线插补过程点击进入动画观看逐点比较法直线插补如图2—1所示,假定直线 OA 的起点为坐标原点,终点A 的坐标为e e i j A(x ,y ),P(x ,y )为加工点,若P 点正好处在直线OA 上,那么下式成立:e j i e x y - x y 0若任意点i j P(x ,y )在直线 OA 的上方(严格地说,在直线OA 与y 轴所成夹角区域内),那么有下述关系成立:jei ey y x x >亦即:e j i e x y - x y 0>由此可以取偏差判别函数ij F 为:ij e j i e F x y - x y =由 ij F 的数值(称为“偏差”)就可以判别出P 点与直线的相对位置。

即: 当 ij F =0时,点i j P(x ,y )正好落在直线上;当 ij F >0时,点i j P(x ,y )落在直线的上方;当ij F <0时,点i j P(x ,y )落在直线的下方。

从图2—1看出,对于起点在原点,终点为A ( e e x ,y )的第Ⅰ象限直线OA 来说,当点P 在直线上方(即ij F >0)时,应该向+x 方向发一个脉冲,使机床刀具向+x 方向前进一步,以接近该直线;当点P 在直线下方(即ij F <0)时,应该向+y 方向发一个脉冲,使机床刀具向+y 方向前进一步,趋向该直线;当点P 正好在直线上(即 ij F =0)时,既可向+x 方向发一脉冲,也可向+y 方向发一脉冲。

§1.4--逐点比较法——直线插补

§1.4--逐点比较法——直线插补

电子教案教学程序教学内容及教学双边活动与教学方法导入新课讲授探究总结在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的进给方向,使刀具向减小误差的方向进给。

其算法最大偏差不会超过一个脉冲当量δ。

§1.4 逐点比较法——直线插补一、概述初称区域判别法,又称代数运算法或醉步式近似法。

这种方法应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。

每进给一步需要四个节拍:(1)偏差判别:判别加工点对规定图形的偏离位置,决定拖板进给的走向。

(2)坐标进给:控制某个坐标工作台进给一步,向规定的图形靠拢,缩小偏差。

(3)偏差计算:计算新的加工点对规定图形的偏差,作为下一步判别的依据。

(4)终点判断:判断是否到达终点。

若到达则停止插补,若没,再回到第一节拍。

介绍讲授图示分析讲授法理解记忆教学程序教学内容及教学双边活动与教学方法新课讲授探究总结二、直线插补1.偏差计算公式如图所示第一象限直线OA,起点O为坐标原点,编程时,给出直线的终点坐标A ,直线方程为:●偏差判别:(1)动点m在直线上:(2)动点m在直线上方:(3)动点m在直线下方:偏差判别函数●坐标进给(1)动点m在直线上:,可沿+⊿x轴方向,也可沿+⊿y方向;(2)动点m在直线上方:,沿+⊿x方向;(3)动点m在直线下方:,沿+⊿y方向。

举例板图分析总结e e(,)x ym e m ey x x y-=m e m ey x x y-=m e m ey x x y->m e m ey x x y-<m m e m eF y x x y=-mF<mF≥mF=教学程序教学内容及教学双边活动与教学方法探究总结例题讲授●新偏差计算+⊿x轴方向进给+⊿y轴方向进给●终点比较用Xe +Ye 作为计数器,每走一步对计数器进行减1计算,直到计数器为零为止。

2.终点判别法分别计数法双向计数法单向计数法3.插补运算过程插补计算时,每走一步,都要进行以下4个步骤(又称4个节拍)的算术运算或逻辑判断:方向判定:根据偏差值判定进给方向。

逐点比较法直线插补程序

逐点比较法直线插补程序

逐点比较法直线插补程序
一、实验目的
1、进一步理解逐点比较法直线插补的原理
2、掌握在计算机环境中完成直线逐点比较法插补的软件实现方法。

二、实验设备
1、计算机及其操作系统
2、VB 6.0软件
三、实验原理
机床数控系统依据一定方法确定刀具运动轨迹,进而产生基本廓形曲线,如直线、圆弧等。

其它需要加工的复杂曲线由基本廓形逼近,这种拟合方式称为“插补”(Interpolation)。

“插补”实质是数控系统根据零件轮廓线型的有限信息(如直线的起点、终点,圆弧的起点、终点和圆心等),在轮廓的已知点之间确定一些中间点,完成所谓的“数据密化”工作。

四、实验方法
本次实验是在VB6.0环境下完成了直线逐点比较法插补的软件实现。

软件中实现,主要分为两部分,一是人际交互,用户采集数据和演示其插补过程;二是插补的计算过程,此为这次实验的核心。

逐点比较法的插补有四个工作节拍:偏差判别、进给、偏差计算和终点判别,第一象限直线插补的偏差判别公式如下:
Fi = Xe Yi -Y e Xi
Fi≥0时,偏差判别公式为Fi+1= Fi-Y e,向X正方向进给
Fi< 0时,偏差判别公式为Fi+1= Fi+Xe,向Y正方向进给
其工作流程图如下所示:
根据流程编写合理的界面和控制主程序代码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电 子 教 案
§ 逐点比较法——直线插补
一、概述 二 、直线插补
偏差判别:
(1)动点m 在直线上:
(2)动点m 在直线上方: (3)动点m 在直线下方: 偏差判别函数 坐标进给
动点m 在直线上:
,可沿+⊿x 轴方向,也可沿+⊿y 方向; 动点m 在直线上方: ,沿+⊿x 方向;
动点m 在直线下方:
,沿+⊿y 方向。

m e m e 0
y x x y -=m e m e 0
y x x y ->m e m e 0
y x x y -<m m e m e
F y x x y =-m 0F <m 0F ≥m 0F =
新偏差计算 +⊿x 轴方向进给
+⊿y 轴方向进给 终点比较:用Xe +Ye 作为计数器,每走一步对计数器进行减 1计算,直到计数器为零为止。

m 1m 1e m 1e m e
F y x x y F y +++=-=-m 1m e
F F x +=+
教学程序教学内容及教学双边活动与
教学方法
导入
新课讲授
探究总结
在刀具按要求轨迹运动加工零件轮廓的过程中,不断比较刀具
与被加工零件轮廓之间的相对位置,并根据比较结果决定下一步的
进给方向,使刀具向减小误差的方向进给。

其算法最大偏差不会超
过一个脉冲当量δ。

§逐点比较法——直线插补
一、概述
初称区域判别法,又称代数运算法或醉步式近似法。

这种方法
应用广泛,能实现平面直线、圆弧、二次曲线插补,精度高。

每进给一步需要四个节拍:
(1)偏差判别:判别加工点对规定图形的偏离位置,决定拖
板进给的走向。

(2)坐标进给:控制某个坐标工作台进给一步,向规定的图
形靠拢,缩小偏差。

(3)偏差计算:计算新的加工点对规定图形的偏差,作为下
一步判别的依据。

(4)终点判断:判断是否到达终点。

若到达则停止插补,若
介绍
讲授
图示
分析
讲授法
理解
记忆
教学程序教学内容及教学双边活动与
教学方法
新课讲授
探究总结没,再回到第一节拍。

二、直线插补
1.偏差计算公式
如图所示第一象限直线OA,起点O为坐标原点,编程时,给出
直线的终点坐标A ,直线方程为:
偏差判别:
(1)动点m在直线上:
(2)动点m在直线上方:
(3)动点m在直线下方:
偏差判别函数
坐标进给
(1)动点m在直线上:,可沿+⊿x轴方向,也可沿+
⊿y方向;
(2)动点m在直线上方:,沿+⊿x方向;
(3)动点m在直线下方:,沿+⊿y方向。

举例
板图
分析
总结
e e
(,)
x y
m e m e
y x x y
-=
m e m e
y x x y
-=
m e m e
y x x y
->
m e m e
y x x y
-<
m m e m e
F y x x y
=-
m
F<
m
F≥
m
F=
教学程序教学内容及教学双边活动与
教学方法
探究总结
例题讲授
新偏差计算
+⊿x轴方向进给
+⊿y轴方向进给
终点比较
用Xe +Ye 作为计数器,每走一步对计数器进行减 1计算,直
到计数器为零为止。

2.终点判别法
分别计数法
双向计数法
单向计数法
3.插补运算过程
插补计算时,每走一步,都要进行以下4个步骤(又称4个节
拍)的算术运算或逻辑判断:
方向判定:根据偏差值判定进给方向。

坐标进给:根据判定的方向,向该坐标方向发一进给脉冲。

偏差计算:每走一步到达新的坐标点,按偏差公式计算新的偏差。

终点判别:判别是否到达终点,若到达终点就结束该插补运算;
如未到达再重复上述的循环步骤。

例1:插补如图所示的直线,脉冲当量为1,采用双向计数方
法。

解:,定计数长度∑=16,
分析
总结
师生互动
m1m1e m1e m e
F y x x y F y
+++
=-=-
m1m e
F F x
+
=+
e e
10616
X Y
∑=+=+=
教学程序教学内容及教学双边活动与
教学方法
例题讲授
思考交流
,插补从原点开始,插补过程如表1
所示。

表1 第一象限直线插补过程
4.不同象限的直线插补计算
假设有第三象限直线OE′(图2-4),起点坐标在原点O,终点
坐标为E′(-Xe,-Ye),在第一象限有一条和它对称于原点的直线,
其终点坐标为E(Xe,Ye),按第一象限直线进行插补时,从O点开
始把沿X轴正向进给改为X轴负向进给,沿Y轴正向改为Y轴负向
思考交流
师生互动
思考交流m m e m e
F Y X X Y
=-=
教学程序教学内容及教学双边活动与
教学方法
课堂练习进给,这时实际插补出的就是第三象限直线,其偏差计算公式与第
一象限直线的偏差计算公式相同,仅仅是进给方向不同,输出驱动,
应使X和Y轴电机反向旋转。

表2 四象限直线插补进给方向判定和偏差计算公式
例2:试用逐点比较法插补第二象限直线OA,如图2-5所示,
起点O在坐标原点,终点坐标(-3,5),写出插补运算过程,并画出
插补轨迹。

解:定计数长度∑=8刀具在起点O,F0=0,x e=-3,运算时按绝
对值计算。

第二象限直线插补运算过程如表3所示。

练习
讲解
Y
X
E(X e,Y e)
)
O
E′(-X e,-Y e)
教学程序教学内容及教学双边活动与
教学方法
教学后记。

相关文档
最新文档