微弱信号检测技术练习思考题DOC

合集下载

光电系统微弱信号检测技术及其改进思考

光电系统微弱信号检测技术及其改进思考

光电系统微弱信号检测技术及其改进思考
光电系统微弱信号检测技术是利用光学和电子技术相结合,对微弱信号进行精确测量和分析的一种技术。

它广泛应用于光电通信、光谱分析、光学成像等领域。

在光电系统微弱信号检测技术中,主要涉及以下几个方面的改进思考:
1. 提高光敏元件的灵敏度:可以通过改进光敏元件的结构设计,优化电荷转移效率、增加光电流增益等手段,使光敏元件对微弱信号的检测能力得到提升。

2. 降低噪声干扰:噪声是检测微弱信号时的主要干扰源。

可以通过优化光电系统的电路设计、选择低噪声元件、采用滤波技术等方法,降低噪声对微弱信号的影响。

3. 加强光学系统的效率:光学系统的效率直接影响到微弱信号的传输和接收。

可以通过改进光源的亮度、提高光学器件的透过率和反射率等手段,提高光学系统的效率,从而提升微弱信号的检测灵敏度。

4. 开发新的信号处理算法:传统的信号处理算法可能无法有效处理微弱信号的特点,可以考虑开发新的信号处理算法,针对微弱信号的特点进行优化,提高检测的准确性和可靠性。

总而言之,光电系统微弱信号检测技术的改进思考包括提高光敏元件的灵敏度、降低噪声干扰、加强光学系统的效率以及开发新的信号处理算法等方面。

这些改进措施的综合应用有助于提升微弱信号检测技术的性能和可靠性。

微弱信号检测作业

微弱信号检测作业

H( j)
R1C1
1 R1C1 2 1 R2C2 2
当ω=0 时,电路的增益 A0=1
2

等效噪声带宽 Be 0 1
R1C1
R1C12 1
R2C2 2
d
1

1
C2 R2 C1R1
2

1 4C2 R2
1
1 (RC)2
当ω=0 时,电路的直流增益 A0=1 等效噪声带宽

Be
0

1
2 d

(rad / s )
1 (RC)2
2RC
令幅频响应函数 H ()
1 2
计算出电路的-3dB
带宽
B0

1 RC
(rad
/
s)
(5)求二阶带通滤波器的噪声带宽,其中 R1C1>R2C2。
RY
( )

N0 4RC

e
RC
由式
Px

1 2

Sx
( )d

y
的功率
PY

1 2

SY
( )d

N0 4

1

1 ( RC)
2
d



RC
N0 4 RC

1
1
2
d


N0 4 RC
已知电路的幅频响应函数为
H ( j)
T0
T0
E( A2 ) 1
T0
T0 2 cos 2 t
T0 2
T0

微弱信号检测作业

微弱信号检测作业

Vs1
2 sin 2 480t ,
V2
Vs 2 0.5 2 sin 2 500t ,
Vs 3 0.8 2 sin 2 510t
Vi
二、反相放大电路
这是一个实现2倍 放大的反相放大电路, 对其进行理论分析可 知:
R2 2kΩ VEE R1
5 7
VO 1 2 VI 10 2 sin 2 50t
所能描述的波形,而是峰值电压大约为18V,主要频 率为50Hz,并且含有其他频率成分。从波形曲线来看, 可以考虑这一信号含有频率大于50Hz的噪声信号,要想 知道噪声的频谱范围,可以用虚拟频谱分析仪对其进行 观察。
VO1频谱分析结果
一、输入信号
Vi 5 2 sin 2 50t ; 在软件电路中人为的加入 以下噪声信号(实际是未知 信号):
假设输入信号为
VI V3 0.8 Vrms 510 Hz 0° 1 Vrms 480 Hz 0° 0.5 Vrms 500 Hz 0° 5 Vrms 50 Hz 0°
V1
从频谱图上可以看出,VO1除了含有中心频率 为50Hz的信号外,还含有频率为500Hz左右 的高频信号。
三、滤波电路设计
随着电子技术的飞速发展,现在已经出现 了许多滤波器设计软件,这里采用了Filter Solutions 10.0滤波设计软件。 由于有效信号的中心频率为50Hz,噪声信号 的频率在500Hz左右,因此可以用低通滤波器加 以滤波。为了了解一阶滤波器和二阶滤波器的滤 波效果,这里对其加以了验证,滤波器的通带截 止频率均设置为80Hz,采用高斯型低通滤波器, 图像显示的最大频率为600Hz,电阻大小为1K欧 姆。
一阶滤波器的实现
一阶滤波器的实现

微弱信号检测试卷

微弱信号检测试卷

山东科技大学2012—2013学年第二学期
研究生课程《微弱信号检测》考试试卷
班级姓名学号
1、试述微弱信号检测技术的特点。

(10分)
2、试述放大器的噪声源有哪些?(10分)
3、用三个放大器串级联接来放大微小信号,其功率增益和噪声系数如下表:
如何联接才能使总的噪声系数最小?(10分)
4、如果放大器输入信号回路有多个接地点,则接地点之间的电位差就有可能耦合到信号回路,形成噪声,试举出一种消除这种噪声的方法,并简述其消噪原理。

(10分)
5、试述锁定放大器的工作原理。

(10分)
6、试述取样积分的基本原理。

(10分)
7、试举一个相关检测的应用实例,并简述其采取的方法。

(20分)
8、试述自适应噪声抵消的原理,除了维纳滤波、卡尔曼滤波之外,你还知道哪一些自适应滤波,试举出其中的一种,并简述之。

(20分)
第1页/共1页。

微弱信号检测第1章

微弱信号检测第1章

被测低频信号:Vs(t)=cosωst
ωc/ωs > 20
Vm(t)=Vs(t).×Vc(t)= cos ωst cos ωct
=0.5cos(ωc+ωs)t+0.5cos(ωc-ωs)t
解调过程:Vd(t)= A Vm(t) × Vc(t) 经 LPF,得放大了的被测信号:
A为交流放大倍数
= 0.25 A [cos(2ωc+ωs)t+ cos(2ωc-ωs)t+2 cos ωst]
1. 自功率谱密度函数
x(t)的功率为Px,在角频率ω与ω+Uω之间的功率为UPx,功率谱密度函数定义为
S x (ω ) = Lim
∆ω → 0
∆Px ∆ω
它反映的是噪声功率在不同频率点上分布的情况。
清华大学自动化系 6
《微弱信号检测》第 1 章
根据维纳-辛钦(Wiener-Khinchin)定理: Sx(ω)特点:
+3σx
(二)泊松分布 (三)均匀分布
-3σx
t (ms)
1.3.2 随机噪声的均值、方差和均方值
1. 均值µx
µx = E[x(t)] = ∫ x(t) p(x)dx
−∞

(1-15)
对于各态遍历的平稳随机噪声,其统计平均可以用时间平均来计算,即
µx = Lim
T →∞
1 T x(t )dt 2T ∫−T
p(x,y)= p(x) p(y)
而当上式成立时,x 与 y 必定相互独立,而且 3.归一化相关函数 (1)归一化自相关函数: 根据Rx(0)≥Rx(τ),可知–1 ≤ ρx(τ) ≤ +1。 (2)归一化互相关函数:
E[xy]= E[x] E[y]。

CH15微弱信号检测含答案传感器与检测技术第2版习题及解答

CH15微弱信号检测含答案传感器与检测技术第2版习题及解答

第15章微弱信号检测一、单项选择题1、噪声是一种()A、离散型随机变量B、连续型随机变量C、离散型确定变量D、连续型确定变量2、锁相放大器具有极强的抑制噪声的能力。

锁相放大器是一种利用( )设计的同步相干检测仪A、互相关原理B、自相关原理C、弱相关原理D、强相关原理二、多项选择题1、微弱信号检测的目的是()A、从噪声中提取出有用信号B、提取小信号C、用一些新技术和新方法来提高检测系统输入输出信号的信噪比D、发现噪声2、以下说法正确的是()A、电子线路的噪声大都是一种平稳随机过程;B、互相关与几个噪声同时形成干扰有关;C、自相关是随机平稳过程的一个重要特征;D、绝大多数噪声是相互独立的。

3、相关检测分为()两种情形A、自相关检测B、互相关检测C、弱相关检测D、强相关检测4、以下利用了同步积累法制作的是()A、同步积分器B、取样积分器C、数字多点平均器D、锁相放大器三、填空题1、微弱信号是相对背景噪声而言,其的一类信号。

2、微弱信号检测的任务是采用电子学、信息论、计算机及物理学、数学的方法,分析,研究被测信号的特点与相关性,对被噪声淹没的微弱有用信号进行。

3、所谓相关检测就是利用的特点,通过的计算,达到从噪声中检测出微弱信号目的的一种技术。

4、同步积累法利用了信号的和噪声的。

四、简答题1、简述自相关检测的原理。

2、简述互相关检测的原理。

3、简述相干检测的原理。

4、什么是微弱信号检测?5、微弱信号检测的目的是什么?6、什么是噪声?7、简述锁相放大器的组成与工作原理。

8、同步积分器、取样积分器、数字多点平均器各自适用的条件是什么?第15章 微弱信号检测一、单项选择题二、多项选择题三、填空题四、简答题1、答:实现自相关检测的原理如图A.8所示。

图A.8 自相关检测原理框图设输入信号()x t 由被测信号()s t 和噪声()n t 组成,即:()()()x t s t n t =+。

()x t 同时输入到相关接收机的两个通道,其中一个通过延时器使其延迟一段时间τ。

第5章 微弱光信号检测技术

第5章 微弱光信号检测技术

Rxy(τ)=Rsy(τ)
(5.5 - 12)
第5章 微弱光信号检测技术
上式表明, 最后输出的信号只保留与参考信号y(t-τ) 相关的信号部分, 噪声却被完全抑制掉了。 但在实际测 量中, 由于测量时间有限, 对短时间的互相关函数
Rxy()
1 T
T
x(t)y(t )dt
0
Rsy()Rny()
(5.5 - 13)
SNRo max
2E No
(5.2 - 12)
第5章 微弱光信号检测技术
5.3 最大后验估值
利用概率论的贝叶斯公式, 条件概率密度可表示成
P(|y)P(y|)P()
P(y)
(5.3 - 1)
logP (y|)logP ()0 (5.3 - 2)
第5章 微弱光信号检测技术
工程上常提出近似的估值器形式, 一旦找到适当 的估值器形式, 就可由它的偏差和方差对估值器的性 质做出评价。 设估值器输出为H(y), 则偏差
n
P(y/)P(yi /)
i1
(5.4 - 1)
第5章 微弱光信号检测技术
P(y|)|ˆm ax
(5.4 - 2)
为了找到最大似然估值 ˆ , 应当求解方程
P( y |) 0
或求解它的对数似然方程
(5.4 - 3)
[logP(y|)]0
(5.4 - 4)
第5章 微弱光信号检测技术
5.5 相关检测原理
5.5.1 相关函数 相关函数分为自相关函数和互相关函数。
1. 自相关函数 自相关函数Rxx(τ)是度量一个变化量或随机过程在t 和t-τ两个时刻线性相关的统计参量, 它是t和t-τ两点间 的时间间隔τ的函数, 其定义为

微弱信号检测装置(国科大电子电路大作业)要点

微弱信号检测装置(国科大电子电路大作业)要点

目录摘要 (1)Abstract (1)第一章绪论 (2)1.1 微弱信号检测技术概述 (2)1.2 信号检测的方法及微弱信号的特点 (2)1.2.1 常规小信号的检测方法 (2)1.2.2 微弱信号的检测方法 (4)1.2.3 微弱信号的特点 (4)1.3 本文的主要工作 (5)第二章微弱信号检测装置设计方案选择与论证 (6)2.1 方案选择与论证 (6)2.1.1 系统方案的确定 (6)2.1.2移相网络设计 (9)2.2总体方案论述 (9)第三章基于锁相放大的微弱信号检测装置设计 (10)3.1 锁相放大器原理 (10)3.2 移相网络 (10)3.3 相敏检波器原理分析 (11)3.4 电路设计 (12)3.4.1加法器 (12)3.4.2纯电阻分压网络 (12)3.4.3前级放大电路模块 (13)3.4.4带通滤波器 (13)3.4.5相敏检波器 (13)第四章仿真分析与程序设计 (16)4.1 仿真分析 (16)4.1.1 输入信号波形(前置两级放大电路输入波形) (16)4.1.2 经过前置放大电路和带通滤波器后输出波形 (16)4.1.3 参考信号输入输出波形 (17)4.1.4 LM311过零比较器输出波形 (18)4.1.5 开关乘法器输出波形 (18)4.1.6 低通滤波输出波形 (19)4.2 程序设计 (20)第五章实物展示与测试方案及结果 (21)5.1 实物展示 (21)5.2 测试方案与测试结果 (21)5.2.1 测试仪器 (21)5.2.2 测试方案 (21)5.3测试结果及分析 (23)5.4 总结 (23)微弱信号检测装置摘要本系统是基于锁相放大器的微弱信号检测装置,用来检测在强噪声背景下已知频率的微弱正弦波信号的幅度值。

该系统由加法器、纯电阻分压网络、微弱信号检测电路和显示电路组成。

其中加法器和纯电阻分压网络生成微小信号,微弱信号检测电路和显示电路完成微小信号的检测和显示在液晶屏上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《微弱信号检测技术》练习题1、证明下列式子:(1)R xx(τ)=R xx(-τ)(2)∣ R xx(τ)∣≤R xx(0)(3)R xy(-τ)=R yx(τ)(4)| R xy(τ)|≤[R xx(0)R yy(0)]2、设x(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αx(t-τo),其中α«1,τo是信号返回的时间。

但实际接收机接收的全信号为y(t)= αx(t-τo)+n(t)。

(1)若x(t)和y(t)是联合平稳随机过程,求Rxy(τ);(2)在(1)条件下,假设噪声分量n(t)的均值为零且与x(t)独立,求Rxy(τ)。

3、已知某一放大器的噪声模型如图所示,工作频率f o=10KHz,其中E n=1μV,I n=2nA,γ=0,源通过电容C与之耦合。

请问:(1)作为低噪声放大器,对源有何要求?(2)为达到低噪声目的,C为多少?4、如图所示,其中F1=2dB,K p1=12dB,F2=6dB,K p2=10dB,且K p1、K p2与频率无关,B=3KHz,工作在To=290K,求总噪声系数和总输出噪声功率。

5、已知某一LIA的FS=10nV,满刻度指示为1V,每小时的直流输出电平漂移为5⨯10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。

若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds、Do和Di。

6、下图是差分放大器的噪声等效模型,试分析总的输出噪声功率。

7、下图是结型场效应管的噪声等效电路,试分析它的En-In模型。

8、R1和R2为导线电阻,R s为信号源内阻,R G为地线电阻,R i为放大器输入电阻,试分析干扰电压u G在放大器的输入端产生的噪声。

9、如图所示窄带测试系统,工作频率f o=10KHz,放大器噪声模型中的E n=μV,I n=2nA,γ=0,源阻抗中R s=50Ω,C s=5μF。

请设法进行噪声匹配。

(有多种答案)10、如图所示为电子开关形式的PSD,当后接RC低通滤波器时,构成了锁定放大器的相关器。

K为电子开关,由参考通道输出Vr的方波脉冲控制:若Vr正半周时,K接向A;若Vr 负半周时,K接向B。

请说明其相敏检波的工作原理,并画出下列图(b)、(c)和(d)所示的已知Vs和Vr波形条件下的Vo和V d的波形图。

11、某信号处理系统的灵敏度(即最小可检测电压)∆V min=2μV,等效输入噪声电压方差E2=4mV,求:(1)当要求SNIR=1000时,最小的输出信噪比(S/N)out;(2)当要求(S/N)out ≥20dB时,对应的输入信号电压V min。

12 写出对晶体三极管无噪声化过程的步骤。

13 GaAs−MESFET 主要有下列噪声源:(1)沟道热噪声;(2)栅极散粒噪声;(3)1/f噪声;(4)极间感应噪声。

画出“无噪声化”的GaAs−MESFET噪声模型。

14 一低噪声放大器,在工作频段的噪声为:E n=10-8V/√Hz,I n=10-13A/√Hz,信号源的内阻Rs=10Ω,如果采用变压器匹配,匝变比n=100,试说明匹配后放大器的噪声性能改善程度。

15 利用扫描型Boxcar平均器的Ts表达式,证明对于数字迭加系统的测量时间为Ts=nT,其中T为信号周期,n为信号的测量次数。

16 思考题(1)取样积分与锁定放大有何区别?(2)Boxcar定点型和扫描型的参数有何区别?(3)白噪声是一种什么噪声?(4)1/f噪声、散粒噪声和热噪声是怎样产生的?如何表示?(5)噪声系数如何定义?与SNIR成倒数关系吗?(6)放大器的噪声模型如何表示?等效输入噪声是什么?(7)什么叫最佳源电阻?什么叫噪声匹配?(8)噪声系数与最小噪声系数有何关系?(9)放大器的窄带噪声与宽带噪声有何区别和联系?(10)什么是等效噪声带宽?几何意义是什么?(11)求E n—I n模型及计算R sopt,F min时,一般可采用哪几种方法?(简要说明每一种方法的思路)(12)什么是电磁干扰的三要素。

17 对于下图,R IN的值要有什么样的限制,才能使感应到放大器的噪声小于信号电压Vs的0.1%。

题17图18、如下图,信号源到地端有200pF的分布电容,如果两接地点间的噪声电压为:(1)60Hz,100mV;(2)6000Hz,100mV;试求出放大器感应到的噪声电压。

题18图19、下图为一典型的电磁滤波器,请指出滤波器的哪些元器件的功能属于共模滤波器,哪些元器件的功能属于差模滤波器?题19图典型电磁干扰滤波器20、如下图,若导体1与导体2的分布电容为50pF,而各导体对地的分布电容为150pF,导体有200kHz,10V的交流信号,如果R T为(1)无限大阻抗;(2)1000欧姆的阻抗;(3)100欧姆的阻抗;试求导体2感应到的噪声为多少?题20图21、如下图,导体2外面有一接地的屏蔽体。

导体2与屏蔽体间的电容为100pF。

导体2与导体1间的容量为1 pF,而导体2与接地的电容为5pF。

导体1上有100kHz,10V的交流信号,若RT为(1)无限大阻抗;(2)1000欧姆的阻抗;(3)50欧姆的阻抗;试求导体2感应到的噪声为多少?题21图微弱信号检测技术习题(2006.3)1 某信号处理系统的灵敏度(即最小可检测电压)∆V min=2μv,等效输入噪声电压均方差E=4mv,求:(1)当要求SNIR=1000时,最小的输出信噪比(S/N)out;(2)当要求(S/N)out≥20dB时,对应的输入信号电压V min。

2 随机过程X(t)和Y(t)单独和联合平稳,并且m x=E{X(t)},m y=E{Y(t)},求:(1) Z(t)=X(t)+Y(t)的自相关函数;(2) 当X (t )与Y(t)不相关时,Z(t)的自相关函数;(3) 当X (t )与Y(t)不相关且均为零均值时,Z(t)的自相关函数。

3 设平稳随机过程X(t)是周期为T 的周期函数,即:X(t)=X(t+T),证明R xx (τ)=R xx (τ+T)。

4 设X(t)是雷达的发射信号,遇目标后返回接收机的微弱信号是αX(t-τo ),其中α«1,τo 是信号返回的时间。

但实际接收机接收的全信号为Y(t)= αX(t-τo )+N(t)。

(3) 若X(t)和Y(t)是联合平稳随机过程,求Rxy(τ);(4) 在(1)条件下,假设噪声分量N(t)的均值为零且与X(t)独立,求Rxy(τ)。

(这是利用互相关函数从全信号中检测小信号的相关接收法。

)5 广义平稳随机过程的条件是什么?如果过程是各态历经的,能否满足上述条件?6 证明下列式子: (5) R xx (τ)=R xx (-τ) (6) ∣ R xx (τ)∣≤R xx (0) (7) R xy (-τ)=R yx (τ) (8) | R xy (τ)|≤[R xx (0)R yy (0)]7 填充(1)R xx (0)表示信号X(t)的 。

(2)R xx (∝)表示信号X(t)的 。

(3)当X(t)的均值为零时,R xx (0)等于信号X(t)的 。

(4)相关检测适用于 信号的检测。

(5)当 时, R nn (τ)→0。

(6)自相关检测得到的是信号的 , 而不是信号的 。

(7)一般来说,R ss (τ)波形 S i (t),只是以某种特定的方式 S i (t)。

(8)互相关检测抑制噪声的能力比自相关检测 。

(9)相关器的带通中心频率与电路本身元件参数 ,带宽与电路本身元件参数 。

(10)从频域上讲,相关检测等效于 。

8 如图所示为电子开关形式的PSD ,当后接RC 低通滤波器时,构成了锁定放大器的相关器。

K 为电子开关,由参考通道输出V r 的方波脉冲控制:若V r 正半周时,K 接向A ;若V r 负半周时,K 接向B 。

请说明其相敏检波的工作原理,并画出下列图(a)、(b)和(c)所示的已知V s 和V r 波形条件下的V o 和V d 的波形图。

9 已知某一LIA 的FS=10nV ,满刻度指示为1V ,每小时的直流输出电平漂移为5⨯10-4FS;对白噪声信号和不相干信号的过载电平分别为100FS和1000FS。

若不考虑前置BPF的作用,分别求在对上述两种信号情况下的Ds 、Do和Di。

10如图为某一Boxcar积分器工作原理图,对于被噪声污染的周期信号,求当已知输入信号波形V in(为明了,未画出噪声干扰),参考信号V r时,其中,T d=2ms,T g=0.5ms,画出输出波形,并求:(1)如果测量时间为3S,则SNIR为多少(先不考虑RC)?(2)如果V in被噪声污染,噪声的均方根值为10mV,则测量1S时间,(S/N)out=?(3)当R=10KΩ时,要求SNIR不变(与(1)相同),则C=?11如图所示的被测信号(为明了,未画出噪声干扰),采用Boxcar扫描型测量,要求SNIR=100,δ≥99%,采用T g=200μS取样,求:(1)确定参数T B及T S';(2)当R=1MΩ时,C为多少?(3)为了满足上述选定的SNIR,则最小的慢扫描时间为多少?12选择题(1)提高SNIR,意味着。

A 提高放大器增益B 延长测量时间C 改变信号周期D 增大输入信号(2)对于Boxcar平均器,提高SNIR,即要求。

A 增大RC参数B 延长测量时间C 改变信号周期D 提高放大器增益(3)对于定点型Boxcar平均器,提高SNIR,即要求。

A 增大RC参数 B减小门控信号宽度 C提高放大器增益D (A)与(B)(4)对于Boxcar平均器,当RC参数确定后,则也确定。

A 精度δB SNIRC 测量时间D (A)、(B)与(C)(5)数字多点平均器的比扫描型Boxcar平均器。

A精度….高m倍 B SNIR…高m倍 C测量时间…少m倍 D (A)、(B)和(C)(6)锁定放大器的SNIR等于。

A n2B 4RCfC nD n (7)扫描型Boxcar平均器是以牺牲测量时间来获得。

A SNIR的提高B 波形恢复的不失真的提高C 增益的提高 D(A )与(B )(8)数字多点平均器的SNIR 一般正比于 。

A 一个信号周期内的取样数B (A )的二次方根C 信号的周期数的测量次数D (C )的二次方根 (9)对于LIA ,已知输入总动态范围D i ,则可检测的输入信号电平为 。

A MDS 至OVL 之间 B FS 至OVL 之间 C MDS 至FS 之间 D (A )+(B )+(C )(10)数字多点平均器对被测信号经过100次周期取样,每次25个点的平均,则SNIR 为 。

A 100B 10C 25D 513利用扫描型Boxcar 平均器的T S 表达式,证明对于数字迭加系统的测量时间为T S =nT ,其中T 为信号周期,n 为信号的测量次数。

相关文档
最新文档