人教数学 圆的综合的专项 培优练习题附详细答案

人教数学 圆的综合的专项 培优练习题附详细答案
人教数学 圆的综合的专项 培优练习题附详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

(1)OC的长为;

(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;

(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.

【答案】(1)4;(2)3

5

;(3)点E的坐标为(1,2)、(

5

3

10

3

)、(4,2).

【解析】

分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则

MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,

②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.

详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.

∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.

∵∠BHA=90°,∠BAO=45°,

∴tan∠BAH=BH

HA

=1,∴BH=HA=4,∴OC=BH=4.

故答案为4.

(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).

由(1)得:OH =2,BH =4. ∵OC 与⊙M 相切于N ,∴MN ⊥OC . 设圆的半径为r ,则MN =MB =MD =r . ∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA . ∵BM =DM ,∴CN =ON ,∴MN =1

2

(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.

在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2. 解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD . ∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG . ∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴

AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =1

2

BD =2,∴OF =4,

∴OG

同理可得:OB AB ,∴BG =1

2

AB .

设OR =x ,则RG x .

∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2, ∴(

2﹣x 2=()2﹣(x )2.

解得:x =

5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5

在Rt △ORB 中,sin ∠BOR =BR OB

3

5

故答案为

35

. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.

此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2. 解得:t =1.则OP =CD =DB =1. ∵DE ∥OC ,∴△BDE ∽△BCO ,∴DE OC =BD BC =1

2

,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2). ②当∠BED =90°时,如图3.

∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,

∴BE

BC =2DB BE OB ∴,∴BE =

5

t . ∵PE ∥OC ,∴∠OEP =∠BOC .

∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,

∴OE

OB =

25

OP

BC

,=

2

t

,∴OE=5t.

∵OE+BE=OB=255

,∴t+5

t=25.

解得:t=5

3

,∴OP=

5

3

,OE=

55

,∴PE=22

OE OP

-=

10

3

∴点E的坐标为(510

33

,).

③当∠DBE=90°时,如图4.

此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.

则有OD=PE,EA=22

PE PA

+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.

∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.

在Rt△DBE中,cos∠BED=BE

DE

=

2

,∴DE=2BE,

∴t=22

(t﹣22)=2t﹣4.

解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).

综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、

(510

33

,)、(4,2).

点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数

学思想,有一定的综合性.

2.如图,在锐角△ABC 中,AC 是最短边.以AC 为直径的⊙O ,交BC 于D ,过O 作OE ∥BC ,交OD 于E ,连接AD 、AE 、CE . (1)求证:∠ACE=∠DCE ;

(2)若∠B=45°,∠BAE=15°,求∠EAO 的度数; (3)若AC=4,

2

3

CDF COE S S ??=,求CF 的长.

【答案】(1)证明见解析,(2)60°;(3)43

3

【解析】 【分析】

(1)易证∠OEC =∠OCE ,∠OEC =∠ECD ,从而可知∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G ,易证∠AGC =∠B +∠BAG =60°,由于OE ∥BC ,所以∠AEO =∠AGC =60°,所以∠EAO =∠AEO =60°; (3)易证

1

2COE CAE

S S

=

,由于2

3

CDF COE

S S

=

,所以

CDF CAE

S S =

1

3

,由圆周角定理可知∠AEC =∠FDC =90°,从而可证明△CDF ∽△CEA ,利用三角形相似的性质即可求出答案. 【详解】

(1)∵OC =OE ,∴∠OEC =∠OCE .

∵OE ∥BC ,∴∠OEC =∠ECD ,∴∠OCE =∠ECD ,即∠ACE =∠DCE ; (2)延长AE 交BC 于点G .

∵∠AGC 是△ABG 的外角,∴∠AGC =∠B +∠BAG =60°. ∵OE ∥BC ,∴∠AEO =∠AGC =60°. ∵OA =OE ,∴∠EAO =∠AEO =60°.

(3)∵O 是AC 中点,∴

12

COE CAE

S

S =. 23CDF COE

S S

=

,∴CDF CAE

S S

=

1

3

. ∵AC 是直径,∴∠AEC =∠FDC =90°. ∵∠ACE =∠FCD ,∴△CDF ∽△CEA ,∴

CF CA 3∴CF 343

【点睛】

本题考查了圆的综合问题,涉及平行线的性质,三角形的外角的性质,三角形中线的性质,圆周角定理,相似三角形的判定与性质等知识,需要学生灵活运用所学知识.

3.如图,AB为⊙O的直径,点D为AB下方⊙O上一点,点C为弧ABD的中点,连接CD,CA.

(1)求证:∠ABD=2∠BDC;

(2)过点C作CH⊥AB于H,交AD于E,求证:EA=EC;

(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长度.

【答案】(1)证明见解析;(2)见解析;(3)

9

2 DE=.

【解析】

【分析】

(1)连接AD,如图1,设∠BDC=α,∠ADC=β,根据圆周角定理得到∠CAB=∠BDC=α,由AB为⊙O直径,得到∠ADB=90°,根据余角的性质即可得到结论;

(2)根据已知条件得到∠ACE=∠ADC,等量代换得到∠ACE=∠CAE,于是得到结论;(3)如图2,连接OC,根据圆周角定理得到∠COB=2∠CAB,等量代换得到

∠COB=∠ABD,根据相似三角形的性质得到OH=5,根据勾股定理得到

AB22

AD BD

+=26,由相似三角形的性质即可得到结论.

【详解】

(1)连接AD.如图1,设∠BDC=α,∠ADC=β,

则∠CAB=∠BDC=α,

∵点C为弧ABD中点,∴AC=CD,∴∠ADC=∠DAC=β,∴∠DAB=β﹣α,

∵AB为⊙O直径,∴∠ADB=90°,∴α+β=90°,∴β=90°﹣α,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣α),∴∠ABD=2α,∴∠ABD=2∠BDC;

(2)∵CH ⊥AB ,∴∠ACE +∠CAB =∠ADC +∠BDC =90°, ∵∠CAB =∠CDB ,∴∠ACE =∠ADC , ∵∠CAE =∠ADC ,∴∠ACE =∠CAE ,∴AE =CE ; (3)如图2,连接OC ,∴∠COB =2∠CAB , ∵∠ABD =2∠BDC ,∠BDC =∠CAB ,∴∠COB =∠ABD , ∵∠OHC =∠ADB =90°,∴△OCH ∽△ABD ,∴1

2

OH OC BD AB ==, ∵OH =5,∴BD =10,∴AB =22AD BD +=26,∴AO =13,∴AH =18,

∵△AHE ∽△ADB ,∴

AH AE AD AB =,即1824=26AE ,∴AE =392,∴DE =9

2

【点睛】

本题考查了垂径定理,相似三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.

4.如图,AB 是半圆O 的直径,C 是

的中点,D 是

的中点,AC 与BD 相交于点E .

(1)求证:BD 平分∠ABC ; (2)求证:BE =2AD ; (3)求

DE

BE

的值.

【答案】(1)答案见解析(2)BE=AF=2AD(3)21 2 -

【解析】

试题分析:(1)根据中点弧的性质,可得弦AD=CD,然后根据弦、弧、圆周角、圆心角的性质求解即可;

(2)延长BC与AD相交于点F, 证明△BCE≌△ACF, 根据全等三角形的性质可得

BE=AF=2AD;

(3)连接OD,交AC于H.简要思路如下:设OH为1,则BC为2,OB=OD=2,

DH=21

-, 然后根据相似三角形的性质可求解.

试题解析:(1)∵D是的中点

∴AD=DC

∴∠CBD=∠ABD

∴BD平分∠ABC

(2)提示:延长BC与AD相交于点F,

证明△BCE≌△ACF,

BE=AF=2AD

(3)连接OD,交AC于H.简要思路如下:

设OH为1,则BC为2,OB=OD=2,

DH=21

-, DE

BE

=

DH

BC

DE BE =

21

-

5.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D 作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.

(1)求证:DP∥AB;

(2)若AC=6,BC=8,求线段PD的长.

【答案】详见解析

【解析】

【分析】

(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由

∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB.

(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到

AD52

22

===;由△ACE为等腰直角三角形,得到

AE CE32

22

====,在Rt△AED中利用勾股定理计算出DE=42,则

CD=72,易证得∴△PDA∽△PCD,得到PD PA AD52

PC PD CD72

===,所以PA=

5

7

PD,

PC=7

5

PD,然后利用PC=PA+AC可计算出PD.

【详解】

解:(1)证明:如图,连接OD,

∵AB为⊙O的直径,∴∠ACB=90°.

∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°.

∴∠DAB=∠ABD=45°.∴△DAB为等腰直角三角形.

∴DO⊥AB.

∵PD为⊙O的切线,∴OD⊥PD.

∴DP∥AB.

(2)在Rt△ACB中,,

∵△DAB为等腰直角三角形,∴.

∵AE⊥CD,∴△ACE为等腰直角三角形.∴.在Rt△AED中,,

∴.

∵AB∥PD,∴∠PDA=∠DAB=45°.∴∠PAD=∠PCD.

又∵∠DPA=∠CPD ,∴△PDA ∽△PCD .∴.

∴PA=

75PD ,PC=5

7

PD . 又∵PC=PA+AC ,∴

75PD+6=5

7

PD ,解得PD=.

6.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作AC 、

CB 、BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对

称图形,设点l 为对称轴的交点.

(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;

(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;

(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)

【答案】(1)3π;(2)27π;(3)3. 【解析】

试题分析:(1)先求出AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;

(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.

试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,

AC BC AB ==,∴AC BC l l ==AB l =

603

180

π?=π,∴线段MN 的长为AC BC AB l l l ++=3π.故答案为3π;

(2)如图1.∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,

由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=

2

1203

360

π?

=3π,∴图形在运动过

程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;

(3)如图2,连接BI并延长交AC于D.∵I是△ABC的重心也是内心,∴∠DAI=30°,

AD=1

2

AC=

3

2

,∴OI=AI=

3

2

30

AD

cos DAI cos

=

?

=3,∴当它第1次回到起始位置时,点I

所经过的路径是以O为圆心,OI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n?2π?3=23nπ.故答案为23nπ.

点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出AC的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.

7.如图1,已知⊙O是ΔADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.

(1)求证:AC=BC;

(2)如图2,在图1 的基础上做⊙O的直径CF交AB于点E,连接AF,过点A作⊙O的切线AH,若AH//BC,求∠ACF的度数;

(3)在(2)的条件下,若ΔABD的面积为63ΔABD与ΔABC的面积比为2:9,求CD 的长.

【答案】(1)证明见解析;(2)30°;(3)233

【解析】

分析:(1)运用“在同圆或等圆中,弧相等,所对的弦相等”可求解;

(2)连接AO并延长交BC于I交⊙O于J,由AH是⊙O的切线且AH∥BC得AI⊥BC,易证∠IAC=30°,故可得∠ABC=60°=∠F=∠ACB,由CF是直径可得∠ACF的度数;

(3)过点D作DG⊥AB ,连接AO,知ABC为等边三角形,求出AB、AE的长,在RtΔAEO 中,求出AO的长,得CF的长,再求DG 的长,运用勾股定理易求CD的长.

详解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴AC=BC.

(2)如图,连接AO并延长交BC于I交⊙O于J

∵AH是⊙O的切线且AH∥BC,

∴AI⊥BC,

∴BI=IC,

∵AC=BC,

∴IC=1

AC,

2

∴∠IAC=30°,

∴∠ABC=60°=∠F=∠ACB.

∵FC是直径,

∴∠FAC=90°,

∴∠ACF=180°-90°-60°=30°. (3)过点D 作DG AB ⊥,连接AO

由(1)(2)知ABC 为等边三角形 ∵∠ACF=30°, ∴AB CF ⊥, ∴AE=BE , ∴2ΔABC 3

3S AB =

= ∴AB=3 ∴33AE =

在RtΔAEO 中,设EO=x ,则AO=2x , ∴222AO AE OE =+, ∴()(2

2

2233

x x =+,

∴x =6,⊙O 的半径为6, ∴CF=12.

∵ΔABD 11

636322

S AB DG DG =??=?= ∴DG=2.

如图,过点D 作DG CF '⊥,连接OD . ∵AB CF ⊥,DG AB ⊥, ∴CF//DG ,

∴四边形G ′DGE 为矩形, ∴2G E '=,

63211CG G E CE +=++'==',

在RtΔOG D '中,5,6OG OD ='=,

∴11DG '= ∴2221111233CD DG CG =

++=''点睛:本题是一道圆的综合题.考查了圆的基本概念,垂径定理,勾股定理,圆周角定理等

相关知识.比较复杂,熟记相关概念是解题关键.

8.如图①,已知Rt ABC ?中,90ACB ∠=,8AC =,10AB =,点D 是AC 边上一点(不与C 重合),以AD 为直径作

O ,过C 作CE 切O 于E ,交AB 于F .

(1)若

O 的半径为2,求线段CE 的长;

(2)若AF BF =,求O 的半径;

(3)如图②,若CE CB =,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.

【答案】(1)42CE =;(2)O 的半径为3;(3)G 、E 两点之间的距离为9.6.

【解析】 【分析】

(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE BC =OC BA ,即r 8-r

=610

,解得即可;

(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,

GB GE

AB AC

=,即12108GE =,解得即可. 【详解】

(1)如图,连结OE . ∵CE 切

O 于E ,

∴90OEC ∠=?.

∵8AC =,O 半径为2,

∴6OC =,2OE =.

∴2242CE OC OE =-=; (2)设

O 半径为r .

在Rt ABC ?中,90ACB ∠=?,10AB =,8AC =, ∴226BC AB AC =-=.

∵AF BF =, ∴AF CF BF ==. ∴ACF CAF ∠=∠. ∵

CE 切O 于E ,

∴90OEC ∠=?. ∴OEC ACB ∠=∠, ∴OEC BCA ?~?. ∴OE OC

BC BA =, ∴

8610

r r -=, 解得3r =. ∴

O 的半径为3;

(3)连结EG 、OE ,设EG 交AC 于点M ,

由对称性可知,CB CG =. 又CE CB =, ∴CE CG =. ∴EGC GEC ∠=∠. ∵CE 切

O 于E ,

∴90GEC OEG ∠+∠=?. 又90EGC GMC ∠+∠=?,

∴OEG GMC ∠=∠.又GMC OME ∠=∠, ∴OEG OME ∠=∠. ∴OE OM =. ∴点M 与点D 重合.

∴G 、D 、E 三点在同一条直线上. 连结AE 、BE , ∵AD 是直径,

∴90AED ∠=?,即90AEG ∠=?. 又CE CB CG ==, ∴90BEG ∠=?.

∴180AEB AEG BEG ∠=∠+∠=?, ∴

A 、E 、

B 三点在同一条直线上.

∴E 、F 两点重合.

∵90GEB ACB ∠=∠=?,B B ∠=∠, ∴GBE ABC ?~?. ∴

GB GE AB AC =,即12108

GE

=. ∴9.6GE =.

故G 、E 两点之间的距离为9.6. 【点睛】

本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G 、D 、E 三点共线以及A 、E 、B 三点在同一条直线上是解题的关键.

9.如图,直角坐标系中,直线y kx b =+分别交x ,y 轴于点A (-8,0),B (0,6),C (m ,0)是射线AO 上一动点,⊙P 过B ,O ,C 三点,交直线AB 于点D (B ,D 不重合). (1)求直线AB 的函数表达式. (2)若点D 在第一象限,且tan ∠ODC =

5

3

,求点D 的坐标.

【答案】(1)364y x =+;(2)D (8825,21625

). 【解析】 【分析】

(1)把A 、B 两点坐标代入y=kx+b 求出k 、b 的值即可;(2)连结BC ,作DE ⊥OC 于点E ,根据圆周角定理可得∠OBC=∠ODC ,由tan ∠ODC=

5

3

可求出OC 的长,进而可得AC 的长,利用∠DAC 的三角函数值可求出DE 的长,即可得D 点纵坐标,代入直线AB 解析式求

出D 点横坐标即可得答案. 【详解】

(1)∵A (-8,0)、B (0,6)在y=kx+b 上,

∴086k b b =-+??=?

解得346

k b ?=???=?,

∴直线AB 的函数表达式为y=3

4

x+6. (2)连结BC ,作DE ⊥OC 于点E , ∵∠BOC=90°,

∴BC 为⊙P 的直径, ∴∠ADC=90°,

∵∠OBC=∠ODC ,tan ∠ODC=5

3

OC 5

OB 3

=, ∵OB=6,OA=8,

∴OC=10,AC=18,AB=10,

∵cos ∠DAC=

OA AB =4

5,sin ∠DAC=OB AB =35

, 472

AD AC cos DAC 1855∠=?=?

=, 723216

DE AD sin DAC 5525

∠=?=?=,

∵D 点在直线AB 上, ∴

2163

x 6254

=+, 解得:88x 25

=, ∴D (

8825,21625

【点睛】

本题考查待定系数法求一次函数解析式、圆周角定理及锐角三角函数的定义,熟练掌握直径所对的圆周角等于90°及正切、正弦、余弦等三角函数的定义是解题关键.

10.结果如此巧合!

下面是小颖对一道题目的解答.

题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.

根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.

根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.

整理,得x2+7x=12.

所以S△ABC=1

2 AC?BC

=1

2

(x+3)(x+4)

=1

2

(x2+7x+12)

=1

2

×(12+12)

=12.

小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.

已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.

可以一般化吗?

(1)若∠C=90°,求证:△ABC的面积等于mn.

倒过来思考呢?

(2)若AC?BC=2mn,求证∠C=90°.

改变一下条件……

(3)若∠C=60°,用m、n表示△ABC的面积.

【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;

【解析】

【分析】

(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC?BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC?AG=mn.

【详解】

设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,

根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,

(1)如图1,

在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,

整理,得:x2+(m+n)x=mn,

所以S△ABC=AC?BC

=(x+m)(x+n)

=[x2+(m+n)x+mn]

=(mn+mn)

=mn;

(2)由AC?BC=2mn,得:(x+m)(x+n)=2mn,

整理,得:x2+(m+n)x=mn,

∴AC2+BC2=(x+m)2+(x+n)2

=2[x2+(m+n)x]+m2+n2

=2mn+m2+n2

=(m+n)2

=AB2,

根据勾股定理逆定理可得∠C=90°;

(3)如图2,过点A作AG⊥BC于点G,

在Rt△ACG中,AG=AC?sin60°=(x+m),CG=AC?cos60°=(x+m),

∴BG=BC﹣CG=(x+n)﹣(x+m),

在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,

整理,得:x2+(m+n)x=3mn,

∴S△ABC=BC?AG

=×(x+n)?(x+m)

=3

x2+(m+n)x+mn]

=3

(3mn+mn)3.

【点睛】

本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.

相关主题
相关文档
最新文档