2020届高三理科数学大题专项练习10

合集下载

北京市2020〖人教版〗高三数学复习试卷全国统一高考数学试卷理科

北京市2020〖人教版〗高三数学复习试卷全国统一高考数学试卷理科

北京市2020年〖人教版〗高三数学复习试卷全国统一高考数学试卷理科创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B. C.1 D.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=17.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.18.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.311.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C ∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为.(用数字作答)14.(5分)设x、y满足约束条件,则z=x+4y的最大值为.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设z=,则z的共轭复数为()A.﹣1+3i B.﹣1﹣3i C.1+3i D.1﹣3i【分析】直接由复数代数形式的除法运算化简,则z的共轭可求.【解答】解:∵z==,∴.故选:D.【点评】本题考查复数代数形式的除法运算,考查了复数的基本概念,是基础题.2.(5分)设集合M={x|x2﹣3x﹣4<0},N={x|0≤x≤5},则M∩N=()A.(0,4]B.[0,4)C.[﹣1,0)D.(﹣1,0]【分析】求解一元二次不等式化简集合M,然后直接利用交集运算求解.【解答】解:由x2﹣3x﹣4<0,得﹣1<x<4.∴M={x|x2﹣3x﹣4<0}={x|﹣1<x<4},又N={x|0≤x≤5},∴M∩N={x|﹣1<x<4}∩{x|0≤x≤5}=[0,4).故选:B.【点评】本题考查了交集及其运算,考查了一元二次不等式的解法,是基础题.3.(5分)设a=sin33°,b=cos55°,c=tan35°,则()A.a>b>c B.b>c>a C.c>b>a D.c>a>b【分析】可得b=sin35°,易得b>a,c=tan35°=>sin35°,综合可得.【解答】解:由诱导公式可得b=cos55°=cos(90°﹣35°)=sin35°,由正弦函数的单调性可知b>a,而c=tan35°=>sin35°=b,∴c>b>a故选:C.【点评】本题考查三角函数值大小的比较,涉及诱导公式和三角函数的单调性,属基础题.4.(5分)若向量、满足:||=1,(+)⊥,(2+)⊥,则||=()A.2 B. C.1 D.【分析】由条件利用两个向量垂直的性质,可得(+)•=0,(2+)•=0,由此求得||.【解答】解:由题意可得,(+)•=+=1+=0,∴=﹣1;(2+)•=2+=﹣2+=0,∴b2=2,则||=,故选:B.【点评】本题主要考查两个向量垂直的性质,两个向量垂直,则它们的数量积等于零,属于基础题.5.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.6.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1 B.+y2=1 C.+=1 D.+=1【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.7.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于()A.2e B.e C.2 D.1【分析】求函数的导数,利用导数的几何意义即可求出对应的切线斜率.【解答】解:函数的导数为f′(x)=e x﹣1+xe x﹣1=(1+x)e x﹣1,当x=1时,f′(1)=2,即曲线y=xe x﹣1在点(1,1)处切线的斜率k=f′(1)=2,故选:C.【点评】本题主要考查导数的几何意义,直接求函数的导数是解决本题的关键,比较基础.8.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.9.(5分)已知双曲线C的离心率为2,焦点为F1、F2,点A在C上,若|F1A|=2|F2A|,则cos∠AF2F1=()A.B.C.D.【分析】根据双曲线的定义,以及余弦定理建立方程关系即可得到结论.【解答】解:∵双曲线C的离心率为2,∴e=,即c=2a,点A在双曲线上,则|F1A|﹣|F2A|=2a,又|F1A|=2|F2A|,∴解得|F1A|=4a,|F2A|=2a,||F1F2|=2c,则由余弦定理得cos∠AF2F1===.故选:A.【点评】本题主要考查双曲线的定义和运算,利用离心率的定义和余弦定理是解决本题的关键,考查学生的计算能力.10.(5分)等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.4 D.3【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{a n}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2•…•a8)=4lg10=4.故选:C.【点评】本题考查了等比数列的性质、对数的运算性质,属于基础题.11.(5分)已知二面角α﹣l﹣β为60°,AB⊂α,AB⊥l,A为垂足,CD⊂β,C ∈l,∠ACD=135°,则异面直线AB与CD所成角的余弦值为()A.B.C.D.【分析】首先作出二面角的平面角,然后再构造出异面直线AB与CD所成角,利用解直角三角形和余弦定理,求出问题的答案.【解答】解:如图,过A点做AE⊥l,使BE⊥β,垂足为E,过点A做AF∥CD,过点E做EF⊥AE,连接BF,∵AE⊥l∴∠EAC=90°∵CD∥AF又∠ACD=135°∴∠FAC=45°∴∠EAF=45°在Rt△BEA中,设AE=a,则AB=2a,BE=a,在Rt△AEF中,则EF=a,AF=a,在Rt△BEF中,则BF=2a,∴异面直线AB与CD所成的角即是∠BAF,∴cos∠BAF===.故选:B.【点评】本题主要考查了二面角和异面直线所成的角,关键是构造二面角的平面角和异面直线所成的角,考查了学生的空间想象能力和作图能力,属于难题.12.(5分)函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,则y=f(x)的反函数是()A.y=g(x)B.y=g(﹣x)C.y=﹣g(x)D.y=﹣g(﹣x)【分析】设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,代入解析式变形可得.【解答】解:设P(x,y)为y=f(x)的反函数图象上的任意一点,则P关于y=x的对称点P′(y,x)一点在y=f(x)的图象上,又∵函数y=f(x)的图象与函数y=g(x)的图象关于直线x+y=0对称,∴P′(y,x)关于直线x+y=0的对称点P″(﹣x,﹣y)在y=g(x)图象上,∴必有﹣y=g(﹣x),即y=﹣g(﹣x)∴y=f(x)的反函数为:y=﹣g(﹣x)故选:D.【点评】本题考查反函数的性质和对称性,属中档题.二、填空题(本大题共4小题,每小题5分)13.(5分)的展开式中x2y2的系数为70.(用数字作答)【分析】先求出二项式展开式的通项公式,再令x、y的幂指数都等于2,求得r的值,即可求得展开式中x2y2的系数.=•(﹣1)【解答】解:的展开式的通项公式为T r+1 r••=•(﹣1)r••,令 8﹣=﹣4=2,求得 r=4,故展开式中x2y2的系数为=70,故答案为:70.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.14.(5分)设x、y满足约束条件,则z=x+4y的最大值为5.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.16.(5分)若函数f(x)=cos2x+asinx在区间(,)是减函数,则a的取值范围是(﹣∞,2].【分析】利用二倍角的余弦公式化为正弦,然后令t=sinx换元,根据给出的x 的范围求出t的范围,结合二次函数的图象的开口方向及对称轴的位置列式求解a的范围.【解答】解:由f(x)=cos2x+asinx=﹣2sin2x+asinx+1,令t=sinx,则原函数化为y=﹣2t2+at+1.∵x∈(,)时f(x)为减函数,则y=﹣2t2+at+1在t∈(,1)上为减函数,∵y=﹣2t2+at+1的图象开口向下,且对称轴方程为t=.∴,解得:a≤2.∴a的取值范围是(﹣∞,2].故答案为:(﹣∞,2].【点评】本题考查复合函数的单调性,考查了换元法,关键是由换元后函数为减函数求得二次函数的对称轴的位置,是中档题.三、解答题17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.18.(12分)等差数列{a n}的前n项和为S n,已知a1=13,a2为整数,且S n≤S4.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.【分析】(1)通过S n≤S4得a4≥0,a5≤0,利用a1=13、a2为整数可得d=﹣4,进而可得结论;(2)通过a n=13﹣3n,分离分母可得b n=(﹣),并项相加即可.【解答】解:(1)在等差数列{a n}中,由S n≤S4得:a4≥0,a5≤0,又∵a1=13,∴,解得﹣≤d≤﹣,∵a2为整数,∴d=﹣4,∴{a n}的通项为:a n=17﹣4n;(2)∵a n=17﹣4n,∴b n===﹣(﹣),于是T n=b1+b2+……+b n=﹣[(﹣)+(﹣)+……+(﹣)]=﹣(﹣)=.【点评】本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)X表示同一工作日需使用设备的人数,求X的数学期望.【分析】记A i表示事件:同一工作日乙丙需要使用设备,i=0,1,2,B表示事件:甲需要设备,C表示事件,丁需要设备,D表示事件:同一工作日至少3人需使用设备(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)X的可能取值为0,1,2,3,4,分别求出PX i,再利用数学期望公式计算即可.【解答】解:由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)X的可能取值为0,1,2,3,4P(X=0)=(1﹣0.6)×0.52×(1﹣0.4)=0.06P(X=1)=0.6×0.52×(1﹣0.4)+(1﹣0.6)×0.52×0.4+(1﹣0.6)×2×0.52×(1﹣0.4)=0.25P(X=4)=P(A2•B•C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)﹣P(X=4)=0.25,P(X=2)=1﹣P(X=0)﹣P(X=1)﹣P(X=3)﹣P(X=4)=1﹣0.06﹣0.25﹣0.25﹣0.06=0.38.故数学期望EX=0×0.06+1×0.25+2×0.38+3×0.25+4×0.06=2【点评】本题主要考查了独立事件的概率和数学期望,关键是找到独立的事件,计算要有耐心,属于难题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得 p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px(p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得 p=2,或 p=﹣2(舍去).故C的方程为 y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为 x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为 x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N 两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为 x﹣y﹣1=0,或 x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.22.(12分)函数f(x)=ln(x+1)﹣(a>1).(Ⅰ)讨论f(x)的单调性;(Ⅱ)设a1=1,a n+1=ln(a n+1),证明:<a n≤(n∈N*).【分析】(Ⅰ)求函数的导数,通过讨论a的取值范围,即可得到f(x)的单调性;(Ⅱ)利用数学归纳法即可证明不等式.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),f′(x)=,①当1<a<2时,若x∈(﹣1,a2﹣2a),则f′(x)>0,此时函数f(x)在(﹣1,a2﹣2a)上是增函数,若x∈(a2﹣2a,0),则f′(x)<0,此时函数f(x)在(a2﹣2a,0)上是减函数,若x∈(0,+∞),则f′(x)>0,此时函数f(x)在(0,+∞)上是增函数.②当a=2时,f′(x)≥0,此时函数f(x)在(﹣1,+∞)上是增函数,③当a>2时,若x∈(﹣1,0),则f′(x)>0,此时函数f(x)在(﹣1,0)上是增函数,若x∈(0,a2﹣2a),则f′(x)<0,此时函数f(x)在(0,a2﹣2a)上是减函数,若x∈(a2﹣2a,+∞),则f′(x)>0,此时函数f(x)在(a2﹣2a,+∞)上是增函数.(Ⅱ)由(Ⅰ)知,当a=2时,此时函数f(x)在(﹣1,+∞)上是增函数,当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>,(x>0),又由(Ⅰ)知,当a=3时,f(x)在(0,3)上是减函数,当x∈(0,3)时,f(x)<f(0)=0,ln(x+1)<,下面用数学归纳法进行证明<a n≤成立,①当n=1时,由已知,故结论成立.②假设当n=k时结论成立,即,则当n=k+1时,a n=ln(a n+1)>ln(),+1a k+1=ln(a k+1)<ln(),即当n=k+1时,成立,综上由①②可知,对任何n∈N•结论都成立.【点评】本题主要考查函数单调性和导数之间的关系,以及利用数学归纳法证明不等式,综合性较强,难度较大.创作人:百里严守创作日期:202B.03.31审核人:北堂本一创作单位:雅礼明智德学校。

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

2020届高三理科数学模拟试卷(解析版)

2020届高三理科数学模拟试卷(解析版)

一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|1}A x x =<,2{|log 1}B x x =<,则( )A .{|1}AB x x =<U B .{|2}A B x x =<UC .{|1}A B x x =<ID .{|2}A B x x =<I 【答案】B {|1}A x x =<,{|02}B x x =<<,{|01}A B x x =<<I ,{|2}A B x x =<U . 2.i 是虚数单位,4i1iz =-,则||z =( ) A .2 B .22 C .4 D .42 【答案】B 由题意得4i 4i(1i)2i(1i)22i 1i (1i)(1i)z +===+=-+--+,∴22||(2)222z =-+=.故选B . 3.已知某公司按照工作年限发放年终奖金并且进行年终表彰.若该公司有工作10年以上的员工100人,工作510:年的员工400人,工作05:年的员工200人,现按照工作年限进行分层抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作510:年的员工代表有( ) A .8人 B .16人 C .4人 D .24人【答案】B 依题意知,该公司的所有员工中工作10年以上、工作510:年、工作05:年的员工人数比例为1:4:2, 所以工作510:年的员工代表有428167⨯=. 4.已知向量||2=a ,||1=b ,(2)2⋅-=a a b ,则a 与b 的夹角为( ) A .30︒ B .60︒ C .90︒ D .150︒【答案】B ∵2(2)2422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos ||||2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.5.长方体1111ABCD A B C D -,1AB =,2AD =,13AA =,则异面直线11A B 与1AC 所成角的余弦值为( ) A .1414 B .8314 C .1313D .13【答案】A【解析】∵1111C D A B ∥,∴异面直线11A B 与1AC 所成的角即为11C D 与1AC 所成的角11AC D ∠, 在11AC D Rt △中,111C D =,222112314AC =++=,∴11111114cos 1414C D AC D AC ∠===,故选A . 6.执行下图的程序框图,若输出的结果为10,则判断框中的条件是( )A .4?i <B .5?i <C .6?i <D .7?i < 【答案】B【解析】由程序框图可知,该程序框图的功能是计算(1)1232i i S i +=++++=L 的值, 又10S =,所以4i =,当15i +=时退出循环,结合选项可知,应填5?i <.6题 7题7.函数()sin()f x A x ωϕ=+(其中0A >,0ω>)的部分图象如图所示,将函数()f x 的图象 向左平移π6个单位长度,得到()y g x =的图象,则下列说法不正确的是( ) A .函数()g x 为奇函数 B .函数()g x 的最大值为3 C .函数()g x 的最小正周期为π D .函数()g x 在π(0,)3上单调递增【答案】D 由图可知3A =,35ππ3π()41234T =--=,∴πT =,2ω=, 将点5π(,3)12代入3sin(2)y x ϕ=+,得π2π3k ϕ=-+()k ∈Z ,故π()3sin(2)3f x x =-,向左平移π6个单位长度得ππ()3sin[2()]3sin 263y g x x x ==+-=,故A ,B ,C 正确,故选D .8.随机设置某交通路口亮红绿灯的时间,通过对路口交通情况的调查,确定相邻两次亮红灯与亮绿灯的时间之和为90秒,且一次亮红灯的时间不超过60秒,一次亮绿灯的时间不超过50秒,则亮绿灯的时间不小于亮红灯的时间的概率为( )A .14 B .19 C .59 D .511【答案】A 设亮绿灯的时间随机设置为t 秒,则50t ≤,亮红灯的时间为9060t -≤,所以3050t ≤≤, 亮绿灯的时间不小于亮红灯的时间即为45t ≥,由几何概型的概率公式知:P =50−4550−30=14. 9.已知函数1()1ln f x x x=--,则()y f x =的图象大致为( )A .B .C .D .【答案】A ∵1()1ln f x x x=--,∴1ln 0x x --≠,令()1ln g x x x =--,∵(1)0g =,∴函数的定义域为(0,1)(1,)+∞U ,可得211()(1ln )x f x x x x -'=-⋅--, 当(0,1)x ∈时,()0f x '>,函数单调递增;当(1,)x ∈+∞时,()0f x '<,函数单调递减,∴A 选项图象符合题意10.已知圆222x y r +=(0)r >与抛物线22y x =交于A ,B 两点,与抛物线的准线交C ,D 两点,若四边形ABCD 是矩形,则r 等于( ) A .22B .2C .52 D .5 【答案】C 由题意可得,抛物线的准线方程为12x =-,画出图形如图所示:在222x y r +=(0)r >中,当12x =-时,则有2214y r =-.① 由22y x =,得22y x =,代入222x y r +=,消去x 整理得422440y y r +-=.②结合题意可得点A ,D 的纵坐标相等,故①②中的y 相等, 由①②两式消去2y ,得222211()4()4044r r r -+--=, 整理得42168150r r --=,解得254r =或234r =-(舍去),∴52r =,故选C . 11.在ABC △中,内角A 、B 、C 所对的边分别为a 、b 、c ,已知5a =,2534ABC S =△,且2222cos cos b c a ac C c A +-=⋅+⋅,则sin sin B C +=( )A .3B . 9√32C .3D .33【答案】C 在ABC △中,由余弦定理得22222222cos cos 22a b c b c a ac C c A ac c bc ab bc+-+-⋅+⋅=⋅+⋅=,∵2222cos cos b c a ac C c A +-=⋅+⋅,∴222b c a bc +-=,由余弦定理得2221cos 22b c a A bc +-==,∵0πA <<,∴π3A =,∵2534ABC S =△,∴13253sin 244bc A bc ==,∴25bc =,即22225b c a +-=, ∵5a =,∴2250b c +=,由222550bc b c =⎧⎨+=⎩,解得5b c ==,∴a b c ==,∴π3B C A ===, ∴π3sin sin 2sin2332B C +==⨯=.12.已知函数24,0(),0x x x x f x e x x⎧+≤⎪=⎨>⎪⎩,()()g x f x ax =-,若()g x 有4个零点,则a 的取值范围为( )A .2(,4)4eB .(,4)4eC .(,)4e +∞D .2(,)4e +∞【答案】A 因为()()g x f x ax =-有4个零点,即函数()y f x =与y ax =有4个交点,当0x >时,2(1)()xx ef x x-'=, 所以(0,1)x ∈时,()0f x '<,()f x 单调递减;(1,)x ∈+∞时,()0f x '>,()f x 单调递增, 画出()f x 的图象如图所示,求出()f x 的过原点的切线,()f x 在0x =处的切线1l 的斜率为2100(4)|(24)|4x x k x x x =='=+=+=, 设()f x 的过原点的切线2l 的切点为000(,)x e P x x 0(0)x ≠,切线2l 的斜率为2k ,又2(1)()x x e x e x x -'=,故000220020(1)x x x e k x e x k x ⎧-=⎪⎪⎪⎨⎪⎪=⎪⎩,解得02x =,224e k =, 由图可知()y f x =与y ax =有4个交点,则21k a k <<,所以244ea <<.二、填空题:本大题共4小题,每小题5分,共20分. 13.若5(2)()ax x x+-展开式的常数项等于80,则a = . 【答案】2【解析】5()a x x -的通项公式为55525155C (1)(1)C r r r r r r r r r r T a x x a x ----+=⋅⋅⋅-⋅=-⋅,∴5(2)()a x x x+-展开式中的常数项为235C 80a =,∴2a =.14.设x ,y 满足约束条件10103x y x y x -+≥⎧⎪++≥⎨⎪≤⎩,则23z x y =-的最小值是 .【答案】-6【解析】根据题意,画出可行域与目标函数线如图所示,由103x y x -+=⎧⎨=⎩,得34x y =⎧⎨=⎩,由图可知目标函数在点(3,4)A 取最小值23346z =⨯-⨯=-.15.已知双曲线22:13y C x -=的左右焦点分别为1F 、2F ,点A 在双曲线上,点M 的坐标为2(,0)3,且M 到直线1AF ,2AF 的距离相等,则1||AF = .【答案】4【解析】由题意得1(2,0)F -,2(2,0)F ,点A 在双曲线的右支上,又点M 的坐标为2(,0)3, ∴128||233F M =+=,224||233MF =-=. 画出图形如图所示,1MP AF ⊥,2MQ AF ⊥,垂足分别为P ,Q ,由题意得||||MP MQ =,∴AM 为12F AF ∠的平分线,∴1122||||2||||AF F M AF MF ==,即12||2||AF AF =, 又12||||2AF AF -=,∴1||4AF =,2||2AF =.故答案为4.16.在平面直角坐标系xOy 中,已知圆22:1O x y +=,直线:l y x a =+,过直线l 上点P 作圆O 的切线PA ,PB ,切点分别为A ,B ,若存在点P 使得32PA PB PO +=u u u r u u u r u u u r,则实数a 的取值范围是 .【答案】[−2√2,2√2]【解析】取AB 中点H ,OH AB ⊥,∵PA PB =,H 为AB 中点,∴90AHP ∠=︒,∴O ,H ,P 三点在一条直线上,2PA PB PH +=u u u r u u u r u u u r,322PH PO =u u u r u u u r ,34PH PO =u u u r u u u r ,设||3PH x =u u u r ,∴||4PO x =uuu r,∴OH x =,在AHO Rt △中,得222r OH AH -=,221AH x =-,①,在OAP 中运用射影定理得2AH OH PH =⋅,2233AH x x x =⋅=,②, 联立①②,2231x x =-,214x =,12x =,||42OP x ==, ∴P 点以O 为圆心,2r =的圆上,P 轨迹224x y +=, 又∵P 在y x a =+上,直线与圆有交点,∴||211a d =≤+,∴2222a -≤≤. 三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(12分)已知数列{}n a 满足132********n n n a a a a +-++++=-L ()n ∈*N ,4log n n b a =. (1)求数列{}n a 的通项公式; (2)求数列11{}n n b b +⋅的前n 项和n T .【解析】(1)∵132********n n n a a a a +-++++=-L ,∴31212222222nn n a a a a --++++=-L (2)n ≥, 两式相减得112222n n n nn a +-=-=,∴212n n a -=(2)n ≥. 又当1n =时,12a =满足上式,∴212n n a -=()n ∈*N . ∴数列{}n a 的通项公式212n n a -=. (2)由(1)得21421log 22n n n b --==, ∴114112()(21)(21)2121n n b b n n n n +==-⋅-+-+, ∴12231111111112[(1)()()]3352121n n n T b b b b b b n n +=+++=-+-++-⋅⋅-+L L 142(1)2121nn n =-=++.18.(12分)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,22AD BC ==,90BAD ABC ∠=∠=︒.(1)证明:PC BC ⊥;(2)若直线PC 与平面PAD 所成角为30︒,求二面角B PC D --的余弦值. 【解析】(1)取AD 的中点为O ,连接PO ,CO , ∵PAD △为等边三角形,∴PO AD ⊥.底面ABCD 中,可得四边形ABCO 为矩形,∴CO AD ⊥,∵0PO CO =I ,∴AD ⊥平面POC ,PC ⊂平面POC ,AD PC ⊥. 又AD BC ∥,所以PC BC ⊥.(2)由面PAD ⊥面ABCD ,PO AD ⊥知,∴PO ⊥平面ABCD ,OP ,OD ,OC 两两垂直,直线PC 与平面PAD 所成角为30︒, 即30CPO ∠=︒,由2AD =,知3PO =,得1CO =.分别以OC u u u r ,OD u u u r ,OP uuu r的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz -,则(0,0,3)P ,(0,1,0)D ,(1,0,0)C ,(1,1,0)B -,(0,1,0)BC =u u u r ,(1,0,3)PC =-u u u r ,(1,1,0)CD =-u u u r,设平面PBC 的法向量为(,,)x y z =n ,∴030y x z =⎧⎪⎨-=⎪⎩,则(3,0,1)=n .设平面PDC 的法向量为(,,)x y z =m ,∴030x y x z -=⎧⎪⎨-=⎪⎩,则(3,3,1)=m .427|cos ,|||||727⋅<>===m n m n m n , ∴二面角B PC D --的余弦值为277-.19.(12分)某学校共有1000名学生,其中男生400人,为了解该校学生在学校的月消费情况, 采取分层抽样随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示:将月消费金额不低于元的学生称为“高消费群”.(1)求a 的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);(2)现采用分层抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X ,求X 的分布列及数学期望;(3)若样本中属于“高消费群”的女生有10人,完成下列22⨯列联表,并判断是否有97.5%的把握认为该校学生属于“高消费群”与“性别”有关?(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)解:(1)由题意知100(0.00150.00250.00150.001)1a ++++=,解得0.0035a =,样本的平均数为:5000.156000.357000.258000.159000.10670x =⨯+⨯+⨯+⨯+⨯=(元), 所以估计该校学生月消费金额的平均数为670元.(2)由题意,从[550,650)中抽取7人,从[750,850)中抽取3人.随机变量X 的所有可能取值有0,1,2,3,337310C C ()C k k P X k -==(0,1,2,3)k =,所以,随机变量X 的分布列为随机变量X 的数学期望35632119()012312012012012010E X =⨯+⨯+⨯+⨯=. (3)由题可知,样本中男生40人,女生60人,属于“高消费群”的25人,其中女生10人; 得出以下22⨯列联表:750222()100(10251550)505.556 5.024()()()()406025759n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有97.5%的把握认为该校学生属于“高消费群”与“性别”有关.20.(12分)已知椭圆22221x y a b +=(0)a b >>的右焦点F 与抛物线28y x =的焦点重合,且椭圆的离心率为63,过x 轴正半轴一点(,0)m 且斜率为33-的直线l 交椭圆于A ,B 两点.(1)求椭圆的标准方程;(2)是否存在实数m 使以线段AB 为直径的圆经过点F ,若存在,求出实数m 的值;若不存在说明理由. 解:(1)∵抛物线28y x =的焦点是(2,0),∴(2,0)F ,∴2c =,又∵椭圆的离心率为63,即63c a =,∴6a =,26a =,则2222b a c =-=,故椭圆的方程为22162x y +=.(2)由题意得直线l 的方程为3()3y x m =--(0)m >, 由221623()3x y y x m ⎧+=⎪⎪⎨⎪=--⎪⎩,消去y 得222260x mx m -+-=, 由2248(6)0Δm m =-->,解得2323m -<<,又0m >,∴023m <<,设11(,)A x y ,22(,)B x y ,则12x x m +=,21262m x x -=,∴212121212331[()][()]()33333m m y y x m x m x x x x =--⋅--=-++. ∵11(2,)FA x y =-u u u r ,22(2,)FB x y =-u u u r,∴212121212462(3)(2)(2)()43333m m m m FA FB x x y y x x x x +-⋅=--+=-+++=u u u r u u u r , 若存在m 使以线段AB 为直径的圆经过点F ,则必有0FA FB ⋅=u u u r u u u r, 即2(3)03m m -=,解得0m =或3m =. 又023m <<,∴3m =,即存在3m =使以线段AB 为直径的圆经过点.21.(12分)已知函数1()ln 12m f x x x =+-()m ∈R 的两个零点为1x ,2x 12()x x <.(1)求实数m 的取值范围;(2)求证:12112x x e+>. 解:(1)2212()22m x mf x x x x -'=-+=, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,不可能有两个零点; 当0m >时,由()0f x '>,可解得2x m >;由()0f x '<,可解得02x m <<, ∴()f x 在(0,2)m 上单调递减,在(2,)m +∞上单调递增,∴min 1()(2)ln 2122m f x f m m m ==+-, 要使得()f x 在(0,)+∞上有两个零点,则11ln 21022m +-<,解得02e m <<,则m 的取值范围为(0,)2e . (2)令1t x=,则1111()ln()1ln 122f x m mt t x x =--=--,由题意知方程1ln 102mt t --=有两个根,即方程ln 22t m t+=有两个根,不妨设111t x =,221t x =,令ln 2()2t h t t+=,则当1(0,)t e ∈时,()h t 单调递增,1(,)t e∈+∞时,()h t 单调递减,综上可知,1210t t e >>>, 令2()()()x h x h x e ϕ=--,下面证()0x ϕ<对任意的1(0,)x e∈恒成立,2221ln()21ln ()()()222()x x e x h x h x e x x eϕ-----'''=+-=+-, ∵1(0,)x e ∈,∴ln 10x -->,222()x x e<-,∴222221ln()2ln ()1ln ()2222()2()2()x x x x e e x x x x e e eϕ--------'>+=---, 又∵1(0,)x e∈,∴22221()()2x xe x x e e +--≤=, ∴()0x ϕ'>,则()x ϕ在1(0,)e 单调递增,∴1()()0x eϕϕ<=,∵2222()()()0t h t h t e ϕ=--<,∴222()()h t h t e<-,又∵12()()h t h t =,∴122()()h t h t e<-,∴122t t e >-,∴122t t e +>,即12112x x e +>.2020届尼尔基一中高三理科数学模拟试卷7(教师版)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】平面直角坐标系中,直线l 的参数方程为131x t y t =+⎧⎪⎨=+⎪⎩(t 为参数),以原点为极点,x 轴正半轴为 极轴建立极坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-. (1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l '过点(2,0)M ,且与曲线C 交于A ,B 两点,试求||||MA MB ⋅.【解析】(1)把直线l 的参数方程化为普通方程为3(1)1y x =-+,即3130x y -+-=. 由22cos 1cos θρθ=-,可得22(1cos )2cos ρθρθ-=,∴曲线C 的直角坐标方程为22y x =. (2)直线l 的倾斜角为π3,∴直线l '的倾斜角也为π3, 又直线l '过点(2,0)M ,∴直线l '的参数方程为12232x t y t ⎧'=+⎪⎪⎨⎪'=⎪⎩(t '为参数),将其代入曲线C 的直角坐标方程可得234160t t ''--=,设点A ,B 对应的参数分别为1t ',2t ', 由一元二次方程的根与系数的关系知12163t t ''=-,1243t t ''+=,∴16||||3MA MB ⋅=. 23.(10分)【选修4-5:不等式选讲】设函数()|||2|([0,2])f x x a x a a =+---∈.(1)当1a =时,解不等式()1f x ≥;(2)求证:()2f x ≤.【解析】(1)当1a =时,解不等式()1f x ≥等价于|1||1|1x x +--≥,①当1x ≤-时,不等式化为111x x --+-≥,原不等式无实数解;②当11x -<<时,不等式化为111x x ++-≥,解得112x ≤<; ③当1x ≥时,不等式化为111x x +-+≥,解得1x ≥,综上所述,不等式()1f x ≥的解集为1[,)2+∞.(2)()|()(2)|2f x x a x a a a ≤+---=+-,∵[0,2]a ∈,∴(2)2(2)a a a a +-≥-,∴22[(2)](2)a a a a +-≥+-, ∴2(2)4a a +-≤,22a a +-≤,∴()2f x ≤.。

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(全国III卷)2020年普通高等学校招生全国统一考试理科数学试题参考答案

(3) 2 2 列联表如下:
人次 400
空气质量不好
33
空气质量好
22
人次 400 37 8
K2
100 338 37 222
5.820 3.841 ,
55 45 70 30
因此,有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考
根据题意画出图形,如图
理科数学参考答案 7
| BP || BQ | , BP BQ , PMB QNB 90 ,
又 PBM QBN 90 , BQN QBN 90 ,
PBM BQN , 根据三角形全等条件“ AAS ”, 可得:△PMB △BNQ ,
x2 16 y2 1 , 25 25
【解析】 【分析】
(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、 2 、 3 、 4 的概率; (2)利用每组的中点值乘以频数,相加后除以100 可得结果;
(3)根据表格中的数据完善 2 2 列联表,计算出 K2 的观测值,再结合临界值表可得结论.
【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为 2 16 25 0.43 , 100
(2)由错位相减法求解即可.
【详解】(1)由题意可得 a2 3a1 4 9 4 5 , a3 3a2 8 15 8 7 ,
由数列an 的前三项可猜想数列an 是以 3 为首项,2 为公差的等差数列,即 an 2n 1,
证明如下:
当 n 1 时, a1 3成立;
假设 n k 时, ak 2k 1 成立.
机密★启用前
2020 年普通高等学校招生全国统一考试

2020年高考理科数学全国3卷(word版,含答案)

2020年高考理科数学全国3卷(word版,含答案)

1.【ID:4002701】已知集合,,则中元素的个数为()A.B.C.D.【答案】C【解析】解:集合,,.中元素的个数为.故选:C.2.【ID:4002702】复数的虚部是()A.B.C.D.【答案】D【解析】解:,复数的虚部是.故选:D.3.【ID:4002703】在一组样本数据中,,,,出现的频率分别为,,,,且,则下面四种情形中,对应样本的标准差最大的一组是()A. ,B. ,C. ,D. ,【答案】B【解析】解:选项A:,所以;同理选项B:,;选项C:,;选项D:,;故选:B.4.【ID:4002704】模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的模型:,其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.B.C.D.【答案】C【解析】解:由已知可得,解得,两边取对数有,解得,故选:C.5.【ID:4002705】设为坐标原点,直线与抛物线:交于,两点,若,则的焦点坐标为()A.B.C.D.【答案】B【解析】解:将代入抛物线,可得,,可得,即,解得,所以抛物线方程为:,它的焦点坐标.故选:B.6.【ID:4002706】已知向量,满足,,,则()A.B.C.D.【答案】D【解析】解:向量,满足,,,可得,.故选:D.7.【ID:4002707】在中,,,,则()A.B.C.D.【答案】A【解析】解:在中,,,,由余弦定理可得;故;,故选:A.8.【ID:4002708】右图为某几何体的三视图,则该几何体的表面积是()A.B.C.D.【答案】C【解析】解:由三视图可知几何体的直观图如图:几何体是正方体的一个角,,、、两两垂直,故,几何体的表面积为:,故选:C.9.【ID:4002709】已知,则()A.B.C.D.【答案】D【解析】解:由,得,即,得,即,即,则,故选:D.10.【ID:4002710】若直线与曲线和圆都相切,则的方程为()A.B.C.D.【答案】D【解析】解:直线与圆相切,那么直线到圆心的距离等于半径,四个选项中,只有A,D满足题意;对于A选项:与联立可得:,此时:无解;对于D选项:与联立可得:,此时解得;直线与曲线和圆都相切,方程为,故选:D.11.【ID:4002711】设双曲线:的左、右焦点分别为,,离心率为,是上一点,且,若的面积为,则()A.B.C.D.【答案】A【解析】解:由题意,设,,可得,,,,可得,可得,解得.故选:A.12.【ID:4002712】已知,.设,,,则()A.B.C.D.【答案】A【解析】解:,;,,,;,,,,综上,.故选:A.13.【ID:4002713】若,满足约束条件,则的最大值为________.【答案】7【解析】解:先根据约束条件画出可行域,由解得,如图,当直线过点时,目标函数在轴上的截距取得最大值时,此时取得最大值,即当,时,.故答案为:.14.【ID:4002714】的展开式中常数项是________(用数字作答).【答案】24015.【ID:4002715】已知圆锥的底面半径为,母线长为,则该圆锥内半径最大的球的体积为________.【答案】【解析】解:因为圆锥内半径最大的球应该为该圆锥的内切球,如图,圆锥母线,底面半径,则其高,不妨设该内切球与母线切于点,令,由,则,即,解得,,故答案为:.16.【ID:4002716】关于函数有如下四个命题:①的图象关于轴对称.②的图象关于原点对称.③的图象关于直线对称.④的最小值为.其中所有真命题的序号是________.【答案】②③【解析】解:对于①,由可得函数的定义域为,故定义域关于原点对称,由;所以该函数为奇函数,关于原点对称,所以①错②对;对于③,由,所以该函数关于对称,③对;对于④,令,则,由双勾函数的性质,可知,,所以无最小值,④错;故答案为:②③.17. 设数列满足,.(1)【ID:4002717】计算,,猜想的通项公式并加以证明.【答案】见解析【解析】解:,,,,由此可猜测的通项公式为.证明:当时,左边,右边,等式成立.假设当时等式成立,即,则当时,,等式成立.综上所述,对都成立.(2)【ID:4002718】求数列的前项和.【答案】,【解析】解:由得,,,①,②,得:,综上,数列的前项和,.18. 某学生兴趣小组随机调查了某市天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)【ID:4002719】分别估计该市一天的空气质量等级为,,,的概率.【答案】见解析【解析】解:设表示事件“该市一天的空气质量等级”.由表格数据得:;;;.(2)【ID:4002720】求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表).【答案】【解析】由题意得:一天中到该公园锻炼的平均人次的估值一天中到该公园锻炼的平均人次的估值为.(3)【ID:4002721】若某天的空气质量等级为或,则称这天“空气质量好”;若某天的空气质量等级为或.则称这天“空气质量不好”,根据所给数据,完成下面的列联表.并根据列联表,判断是否有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:,【答案】见解析【解析】由题意得:(空气质量好,人数);(空气质量好,人数);(空气质量不好,人数);(空气质量不好,人数);,可以有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.19. 如图,在长方体中,点,分别在棱,上,且,.(1)【ID:4002722】证明:点在平面内.【答案】见解析【解析】解:连接,;取的三等分点,,且,四边形为平行四边形,,又长方体性质易得:,,,,,在同一平面内,在平面内.(2)【ID:4002723】若,,,求二面角的正弦值.【答案】【解析】解:以为坐标原点,方向为轴,方向为轴,方向为轴,在长方体内建立空间直角坐标系,易得:,,,,,,,,设平面的法向量,则,,令,则可以为,设平面的法向量,,,令,则可以为,,二面角的正弦值为.20. 已知椭圆:的离心率为,,分别为的左、右顶点.(1)【ID:4002724】求的方程.【答案】【解析】,,,,即,的方程为.(2)【ID:4002725】若点在上,点在直线上,且,,求的面积.【答案】【解析】设,,,则,,①,又,②,由①,,代入②式:,,,不妨设,代入①:,时,;时,;,或,,①,,,:,即,且,,.②,,,:,即,且,,,综上所述,.方法:由,设,点,根据对称性,只需考虑的情况,此时,,,有①,又,②,又③,联立①②③得或,当时,,,,同理可得当时,,综上,的面积是.21. 设函数,曲线在点处的切线与轴垂直.(1)【ID:4002726】求.【答案】【解析】解:,,.(2)【ID:4002727】若有一个绝对值不大于的零点,证明:所有零点的绝对值都不大于.【答案】见解析【解析】,,令,,,,,,,时,,,,,,,若,,则,则,,,,所有零点都在上.解法:设为的一个零点,根据题意,,且,则,由,令,,当时,,当时,可知在,上单调递减,在上单调递增.又,,,,.设为的零点,则必有,即,,得,即.所有零点的绝对值都不大于.22. 在直角坐标系中,曲线的参数方程为(为参数且),与坐标轴交于,两点.(1)【ID:4002728】求.【答案】【解析】解:与坐标轴交于,,则令或,即或,则或(舍)或或(舍),,,,,,,则,坐标为,,.(2)【ID:4002729】以坐标原点为极点,轴正半轴为极轴建立极坐标系,求直线的极坐标方程.【答案】【解析】:,即,由,,则直线极坐标方程为:.23. 设,,,,.(1)【ID:4002730】证明:.【答案】见解析【解析】解:,且,,.(2)【ID:4002731】用表示,,的最大值,证明:.【答案】见解析【解析】不妨设为最大值,,则由,,,,,即.。

2020届高三联考数学理科试题(含答案)

2020届高三联考数学理科试题(含答案)

2020年高三联考理科数学试题本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)2. 已知x ,y ∈R ,i 为虚数单位,且(x ﹣2)i ﹣y=1,则(1)x yi -+的值为( ) A .4 B . ﹣4C . ﹣2iD . ﹣2+2i3、已知),2(ππα∈,53sin =α,则)4tan(πα-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为 A .π12 B . π3 C .π34 D .π3127.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A .132-+ B .132+ C .152-+ D .152+ 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x(x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为10. 设31(5)nx x-的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞上的奇函数,0x >的解析式是()2xf x =,则0x <时的解析式为()2xf x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。

河北省衡水中学2020届高三下学期第十次调研数学(理)试题 Word版含解析

河北省衡水中学2020届高三下学期第十次调研数学(理)试题 Word版含解析

高三年级第十次调研考试数学试卷(理科)一、选择题1.已知{}1A x Z x =∈>-,集合{}2log 2B x x =<,则A B =( )A. {}14x x -<< B. {}04x x <<C. {}0,1,2,3D. {}1,2,3【答案】D 【解析】 【分析】先求解集合B 再求AB 即可.【详解】{}04B x x =<<,∵{}1A x Z x =∈>-,∴{}1,2,3A B =,故选:D.【点睛】本题主要考查了对数的不等式求解以及交集的运算,属于基础题. 2.设复数()1z bi b R =+∈,且234z i =-+,则z 的虚部为( ) A. 2i B. 2i -C. 2D. 2-【答案】D 【解析】 【分析】根据复数的乘法运算及复数相等的充要条件求出复数z ,从而得到z 的共轭复数,即可得解; 【详解】解:因为()1z bi b R =+∈ 所以221234z b bi i =-+=-+, ∴2b =,∴12z i =+,∴12z i =-, 故z 的虚部为2-, 故选:D.【点睛】本题考查复数代数形式的乘法运算,复数相等的充要条件,属于基础题. 3.在等比数列{}n a 中,11a =,6835127a a a a +=+,则6a 的值为( )A. 127B.181C.1243D.1729【答案】C【解析】【分析】根据等比数列各项之间的关系化简6835127a aa a+=+求得13q=,再根据561a a q=⋅求解即可. 【详解】设等比数列{}n a公比为q,则()335368353511273a a qa aq qa a a a++===⇒=++,所以5611243a a q=⋅=.故选:C.【点睛】本题主要考查了等比数列各项之间的关系,属于基础题.4.如图的框图中,若输入1516x=,则输出的i的值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】根据程序框图逐步计算即可.【详解】输入1516x=,0i=,进入循环体:15721168x=⨯-=,011i=+=,0x=判定为否;732184x =⨯-=,112i =+=,0x =判定为否;312142x =⨯-=,213i =+=,0x =判定为否;12102x =⨯-=,314i =+=,0x =判定为是;输出4i =. 故选:B【点睛】本题主要考查了根据程序框图的输入结果计算输出结果问题,属于基础题. 5.已知3log 0.8a =,0.83b =, 2.10.3c =,则( ) A. a ab c <<B. ac b c <<C. ab a c <<D.c ac b <<【答案】C 【解析】 【分析】先判断,,a b c 的大致范围,再根据不等式的性质逐个判断即可.【详解】33log 0.8log 10a =<=,0.80331b =>=,()2.100.30,0.3c =∈,故0a <,1b >,01c <<.对A,若()10a ab a b <⇒-<,不成立.故A 错误. 对B,因为1c b <<,故B 错误. 对C, ab a c <<成立.对D, 因为0ac c <<,故D 错误. 故选;C【点睛】本题主要考查了指对幂函数的大小判定以及不等式的性质.需要根据题意确定各数的范围,再逐个推导.属于基础题.6.已知某函数的图像如图所示,则下列函数中,图像最契合的函数是( )A. ()sin x xy e e -=+B. ()sin x xy e e-=-C. ()cos x xy e e -=-D.()cos x x y e e -=+【答案】D 【解析】 【分析】根据0x =时的函数值,即可选择判断. 【详解】由图可知,当0x =时,0y <当0x =时,()sin x xy e e -=+20sin =>,故排除A ;当0x =时,()sin x xy e e-=-00sin ==,故排除B ;当0x =时,()cos x x y e e -=-010cos ==>,故排除C ;当0x =时,()cos x x y e e -=+20cos =<,满足题意.故选:D【点睛】本题考查函数图像的选择,涉及正余弦值的正负,属基础题.7.《算数书》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136v L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式23112v L h ≈相当于将圆锥体积公式中的π近似取为( ) A.227B.258 C.289D.8227【答案】C 【解析】 【分析】设圆锥底面半径为r ,根据圆锥的底面周长L 求得2L r π=,再代入体积公式得212L h v π=,再对照23112v L h ≈求解即可. 【详解】设圆锥底面半径为r,则22L r L r ππ=⇒=,所以22213283121129L h v r h L h πππ==≈⇒≈.故选:C.【点睛】本题主要考查了圆锥底面周长与体积等的计算.属于基础题. 8.已知函数()f x 是定义在R 上的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()32x f x =-,则()()20192020f f +=( )A. 1-B. 0C. 1D. 2【答案】A 【解析】 【分析】根据函数的奇偶性与对称性可得()f x 最小正周期4T=,再利用函数的性质将自变量转换到(]0,1x ∈求解即可.【详解】∵()()f x f x -=-,()()11f x f x -+=+,∴()()2()f x f x f x +=-=-, ∴()()()42f x f x f x +=-+=, ∴最小正周期4T=,又()00f =,∴()()()()201950541111f f f f =⨯-=-=-=-,()()()2020505400f f f =⨯==,∴()()201920201f f +=-,故选:A.【点睛】本题主要考查了根据函数性质求解函数值问题,需要根据奇偶性推出函数的对称性,再将自变量利用性质转换到已知函数解析式的区间上求解.属于中档题.9.甲乙两运动员进行乒乓球比赛,采用7局4胜制.在一局比赛中,先得11分的运动员为胜方,但打到10平以后,先多得2分者为胜方.在10平后,双方实行轮换发球法,每人每次只发1个球.若在某局比赛中,甲发球赢球的概率为12,甲接发球贏球的概率为25,则在比分为10:10后甲先发球的情况下,甲以13:11赢下此局的概率为( ) A.225B.310C. 110D.325【答案】C 【解析】 【分析】分后四球胜方依次为甲乙甲甲,与乙甲甲甲两种情况进行求解即可. 【详解】分两种情况:①后四球胜方依次为甲乙甲甲,概率为113123252550P =⋅⋅⋅=; ②后四球胜方依次为乙甲甲甲,概率为212121252525P =⋅⋅⋅=. 所以,所求事件概率为:12110P P +=. 故选:C.【点睛】本题主要考查了分步与分类计数求解概率的问题,需要根据题意判断出两种情况再分别求解,属于基础题.10.已知()1,0A x ,()2,0B x 两点是函数()2sin()1(0,(0,))f x x ωϕωϕπ=++>∈与x 轴的两个交点,且满足12min3x x π-=,现将函数()f x 的图像向左平移6π个单位,得到的新函数图像关于y 轴对称,则ϕ的可能取值为( ) A.6π B.3π C.23π D.56π 【答案】A 【解析】 【分析】 根据12min3x x π-=,即可求得ω,再根据平移后函数为偶函数,即可求得ϕ.【详解】令()2sin 10x ωϕ++=,解得()1sin 2x ωϕ+=-, 因为12min3x x π-=,故令21x x >,并取12711,66x x ππωϕωϕ+=+=,则()2123x x πω-=,即可求得2ω=. 此时()()2sin 21f x x ϕ=++,向左平移6π个单位得到2sin 213y x πϕ⎛⎫=+++ ⎪⎝⎭, 若其为偶函数,则2,32k k Z ππϕπ+=+∈,解得26k πϕπ=+.当0k =时,6π=ϕ. 故选:A【点睛】本题考查由三角函数的性质求参数值,属综合中档题.11.已知直线2x a =与双曲线()2222:10,0x y C a b a b-=>>的一条渐近线交于点P ,双曲线C 的左,右焦点分别为12,F F ,且211cos 4PF F ∠=-,则双曲线C 的渐近线方程为( ) A. 15y x =±B. 31511y x =±C. 215y x =±D. 15y x =±或31511y =±【答案】B 【解析】【详解】设直线2x a =与x 轴交点为()2,0Q a ,由题可知()2,2P a b ,()1,0F c -,()2,0F c , ∵211cos 4PF F ∠=-,故2a c >,即12e << 且21cos 4PF Q ∠=.故22F Q a c =-,)22PQ Q a c ==-.又2PQ b =,)()()222221524a c b a c c a-=⇒-=-,整理得221160640c ac a +-=,即21160640e e +-=.∴1611e =或4e =.又12e <<,故1611e =∴渐近线方程为:11y ==±. 故选:B.【点睛】本题主要考查了双曲线中渐近线以及构造齐次方程求解离心率的问题.需要根据题意找到基本量,,a b c 之间的关系,再求得离心率的值进而求得渐近线方程.属于中档题.12.已知k ∈R ,函数()()2322,11,1x x kx k x f x x k e e x ⎧-+≤⎪=⎨--+>⎪⎩,若关于x 的不等式()0f x ≥在x ∈R 上恒成立,则k 的取值范围为( )A. 20,e ⎡⎤⎣⎦B. 22,e ⎡⎤⎣⎦C. []0,4D. []0,3【答案】D 【解析】 【分析】当1x ≤时,根据二次函数的对称轴与最值求解()222f x x kx k =-+的最小值,再根据()0f x ≥求解.当1x >时求导分析()()31x f x x k e e =--+的单调性,再分1k ≤与1k >两种情况讨论函数的单调性进而求得最小值再求解()0f x ≥恒成立的k 的取值范围即可. 【详解】(1)当1x ≤时,()222f x x kx k =-+,∴()f x 的对称轴为x k =,开口向上①当1k <时,()f x 在(),k -∞递减,(),1k 递增∴当x k =时,()f x 有最小值,即()0f k ≥,∴01k ≤< ②当1k时,()f x 在(),1-∞上递减∴当1x =时,()f x 有最小值,即()10f ≥ ∴10≥显然成立,此时1k ,∴当1x ≤时, 0k ≥.(2)当1x >时,()()31xf x x k e e =--+,∴()()xf x x k e '=-①当1k ≤时,()f x 在()1,+∞上递增∴()()310f x f ke e >=-+≥,∴2k e ≤,∴此时1k ≤.②当1k >时,()f x 在()1,k 递减,()k +∞递增∴()()30kf x f k e e ≥=-+≥,∴3k ≤,∴此时13k <≤∴当1x >时, 3k ≤. 综上:0k ≤≤3. 故选:D【点睛】本题主要考查了根据分段函数的恒成立求解参数的问题,需要根据二次函数的最值以及求导分析函数的最值进行求解.属于难题.二、填空题13.已知向量()1,1a =-,向量()0,1b =,则2a b -=______.【解析】 【分析】根据模长的坐标运算求解即可.【详解】()()()21,10,21,3a b -=--=-==【点睛】本题主要考查了向量模长的坐标运算,属于基础题. 14.已知抛物线()2:,0C y mx m R m =∈≠过点()14P -,,则抛物线C 的准线方程为______.【答案】116y =- 【解析】【分析】代入()14P -,求解抛物线()2:,0C y mx m R m =∈≠,再化简成标准形式求解准线方程即可.【详解】由题, ()2414m m =⋅-⇒=,故221:44C y x x y =⇒=.故抛物线C 的准线方程为116y =-. 故答案为:116y =-【点睛】本题主要考查了根据抛物线上的点抛物线方程以及准线的问题.属于基础题. 15.已知数列{}n a ,{}n b ,其中数列{}n a 满足()10n n a a n N ++=∈,前n 项和为n S 满足()2211,102n n n S n N n +-+=-∈≤;数列{}n b 满足:()12n n b b n N ++=∈,且11b =,11n n nb b n +=+,(),12n N n +∈≤,则数列{}n n a b ⋅的第2020项的值为______. 【答案】14【解析】 【分析】根据()10n n a a n N ++=∈可知数列{}n a 周期为10,并根据n S 求得{}n a 在10n ≤时的通项公式.又()12n n b b n N ++=∈可知数列{}n b 周期为12,再求出1n b n=,分析{}n n a b ⋅的周期再求解即可.【详解】当1n =时,112111922a -+=-=; 当2n ≥时, ()()221121112112211n n n n n n n a n S S ----+-+=-=+=--, 故19,1211,210n n a n n ⎧=⎪=⎨⎪-≤≤⎩,又∵11b =,11n n nb b n +=+,∴()111n n nb n b +=+=(),12n N n +∈≤,所以1n b n=(),12n N n +∈≤, 又数列{}n a ,{}n b 的公共周期为60,所以202020204040a b a b ⋅=⋅, 而40101a a ==,40414b b ==,所以20202020404014a b a b ⋅=⋅= 故答案为:14【点睛】本题主要考查了根据数列的前n 项和与通项的关系,求解通项公式以及构造数列求通项公式的方法.同时也考查了周期数列的运用.属于中档题.16.如图,四棱锥P ABCD -中,底面为四边形ABCD .其中ACD 为正三角形,又3DA DB DB DC DB AB ⋅=⋅=⋅.设三棱锥P ABD -,三棱锥P ACD -的体积分别是12,V V ,三棱锥P ABD -,三棱锥P ACD -的外接球的表面积分别是12,S S .对于以下结论:①12V V <;②12V V =;③12V V >;④12S S <;⑤12S S ;⑥12S S >.其中正确命题的序号为______.【答案】①⑤ 【解析】 【分析】设2AD =,根据DA DB DB DC ⋅=⋅化简可得DB AC ⊥.【详解】不妨设2AD =,又ACD 为正三角形,由3DA DB DB DC DB AB ⋅=⋅=⋅,得()0DA DB DB DC DB DA DC DB CA ⋅-⋅=⋅-=⋅=,即有DB AC⊥,所以30ADB CDB ∠=∠=︒.又3DB DC DB AB ⋅=⋅得()2333DB DC DB DB DA DB DB DA ⋅=⋅-=-⋅,又DB DC DB DA ⋅=⋅,故2344cos30DB DB DA DB DA =⋅=⋅⋅︒.化简可以得DB =,∴90DAB ∠=︒,易得ABD ACD S S <△△,故12V V <.故①正确. 又由于60ADB ACD ∠=∠=︒,所以ABD △与ACD 的外接圆相同(四点共圆),所以三棱锥P ABD -,三棱锥P ACD -的外接球相同,所以12S S .故⑤正确.故答案为:①⑤【点睛】本题主要考查了平面向量与立体几何的综合运用,需要根据平面向量的线性运算以及数量积公式求解各边的垂直以及长度关系等.同时也考查了锥体外接球的问题.属于难题.三、解答题17.在ABC 中,角,,A B C 的对边分别为,,a b c ,若2cos 3A =,2B A =,8b =. (1)求边长a ;(2)已知点M 为边BC 的中点,求AM 的长度.【答案】(1)6(2)3AM = 【解析】 【分析】(1)根据2cos 3A =可得sin A =,再根据2B A =与二倍角公式求解得sin B =,再利用正弦定理求解a 即可. (2)先求解得1cos 9B =-,再求解得22cos 27C =,再在ACM 中,由余弦定理求解AM 即可.【详解】解:(1)由0A π<<,2cos 3A =,得sin 3A ==,所以2sin sin 22sin cos 2339B A A A ===⨯=, 由正弦定理sin sin a b A B=,可得sin 6sin b Aa B ==. (2)2221cos cos 22cos 12139B A A ⎛⎫==-=⨯-=- ⎪⎝⎭,在ABC 中,()22cos cos sin sin cos cos 27C A B A B A B =-+=-=在ACM 中,由余弦定理得:2223052cos 9AM AC CM AC CM C =+-⋅⋅=所以,305AM =【点睛】本题主要考查了三角函数恒等变换以及正余弦定理在解三角形中的运用,需要根据题意确定合适的公式化简求解.属于中档题.18.已知,图中直棱柱1111ABCD A B C D -的底面是菱形,其中124AA AC BD ===.又点,,,E F P Q 分别在棱1111,,,AA BB CC DD 上运动,且满足:BF DQ =,1CP BF DQ AE -=-=.(1)求证:,,,E F P Q 四点共面,并证明EF ∥平面PQB . (2)是否存在点P 使得二面角B PQ E --5?如果存在,求出CP 的长;如果不存在,请说明理由.【答案】(1)见解析(2)不存在点P 使之成立.见解析 【解析】 【分析】(1) 在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,进而得到MNPQ 与EF MN 即可.(2) 以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系,再求解平面BPQ 的法向量与平面EFPQ 的法向量,再设BF a =,[]1,3a ∈,再根据二面角的计算方法分析是否存在[]1,3a ∈使得二面角为的余弦值为5即可. 【详解】解:(1)证法1:在线段,CP DQ 上分别取点,M N ,使得1QN PM ==,易知四边形MNQP 是平行四边形,所以MN PQ ,联结,,FM MN NE ,则AE ND =,且AEND所以四边形ADNE 为矩形,故ADNE ,同理,FMBCAD且NE MF AD ==,故四边形FMNE 是平行四边形,所以EF MN ,所以EFPQ故,,,E F P Q 四点共面 又EFPQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .证法2:因为直棱柱1111ABCD A B C D -的底面是菱形,∴AC BD ⊥,1AA ⊥底面ABCD ,设,AC BD 交点为O ,以O 为原点,分别以,OA OB ,及过O 且与1AA 平行的直线为,,x y z 轴建立空间直角坐标系.则有()2,0,0A ,()0,1,0B ,()2,0,0C -,()0,1,0D -,设BF a =,[]1,3a ∈,则()2,0,1E a -,()0,1,F a ,()2,0,1P a -+,()0,1,Q a -,()2,1,1EF =-,()2,1,1QP =-,所以EFPQ ,故,,,E F P Q 四点共面.又EF PQ ,EF ⊄平面BPQ ,PQ ⊂平面BPQ ,所以EF 平面PQB .(2)平面EFPQ 中向量()2,1,1EF =-,()2,1,1EQ =--,设平面EFPQ 的一个法向量为()111,,x y z ,则1111112020x y z x y z -++=⎧⎨--+=⎩,可得其一个法向量为()11,0,2n =.平面BPQ 中,()2,1,1BP a =--+,()0,2,BQ a =-,设平面BPQ的一个法向量为()222,,n x y z =,则()2222221020x y a z y az ⎧--++=⎨-+=⎩,所以取其一个法向量()22,2,4n a a =+.若()1212225cos ,55216n n n n a a ⋅==⋅+++,则()2210548a a a +=++, 即有24230a a --=,[]1,3a ∈,解得[]2321,3a =±∉,故不存在点P 使之成立.【点睛】本题主要考查了根据线线平行证明共面的方法,同时也考查了建立空间直角坐标系确定是否存在满足条件的点的问题.需要根据题意建立合适直角坐标系,再利用空间向量求解二面角的方法,分析是否有参数满足条件等.属于难题.19.已知圆221:2C x y +=,圆222:4C x y +=,如图,12,C C 分别交x 轴正半轴于点,E A .射线OD 分别交12,C C 于点,B D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点,M N ,射线OH l ⊥与点H ,且交曲线C 于点Q .问:211MN OQ +的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由. 【答案】(1)22142x y +=(2)是定值,为34. 【解析】 【分析】(1) 设BOE α∠=,再根据三角函数的关系可得2cos P x α=,2P y α,进而消参求得轨迹C 的方程即可.(2) 设直线l 的方程为2x my =+再联立直线与(1)中椭圆的方程,根据弦长公式化简211MN OQ +,代入韦达定理求解即可. 【详解】解:方法一:(1)如图设BOE α∠=,则)22Bαα()2cos ,2sin D αα,所以2cos P x α=,2P y α=.所以动点P 的轨迹C 的方程为22142x y +=.方法二:(1)当射线OD 的斜率存在时,设斜率为k ,OD 方程为y kx =,由222y kx x y =⎧⎨+=⎩得2221P y k =+,同理得2241P x k =+,所以2224P P x y +=即有动点P 的轨迹C 的方程为22142x y +=.当射线OD 的斜率不存在时,点(0,2也满足.(2)由(1)可知E 为C 的焦点,设直线l的方程为x my =0时)且设点()11,M x y ,()22,N x y ,由2224x my x y ⎧=+⎪⎨+=⎪⎩()22220m y ++-=所以122122222y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()221241m MN m +==+ 又射线OQ 方程为y mx =-,带入椭圆C 的方程得()2224x my +=,即22412Q x m=+ 222412Q m y m=+,()22211241m m OQ +=+ 所以()()2222211212344141m m MN m m OQ +++=+=++ 又当直线l 的斜率为0时,也符合条件.综上,211MN OQ +为定值,且为34. 【点睛】本题主要考查了轨迹方程的求解以及联立直线与椭圆的方程求解线段弦长与证明定值的问题,属于难题.20.某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p . (1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值. 【答案】(1)49(2)理论上至少要进行27轮游戏.2123p p == 【解析】 【分析】(1)分①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次三种情况进行求和即可.(2)同(1),分别计算三种情况的概率化简求和,再代入1243p p +=可知221212833P p p p p =-,再设12t p p =,根据二次函数在区间上的最值方法求解可得当49t =时,max 1627P =.再根据他们小组在n 轮游戏中获“优秀小组”次数ξ满足()~,B n p ξ,利用二项分布的方法求解即可. 【详解】解:(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次. 故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ (2)他们在一轮游戏中获“优秀小组”的概率为()()()122221222222211222122221221212121()()1()()23()()P C p p C p C p C p p C p C p p p p p p p =-+-+=+-因为1243p p +=,所以22121283()()3P p p p p =- 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤=⎪⎝⎭所以121499p p <≤,令12t p p =,以1499t <≤,则()2833P h t t t ==-+ 当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足()~,B n p ξ由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p == 【点睛】本题主要考查了排列组合在概率中的运用,需要根据题意分析三种情况的概率之和,再根据包含概率的函数解析式,结合二次函数与基本不等式的方法求最值即可.属于难题. 21.已知函数()ln f x a x x a =-+,()ln g x kx x x b =--,其中,,a b k R ∈. (1)求函数()f x 的单调区间;(2)若对任意[]1,a e ∈,任意[]1,x e ∈,不等式()()f x g x ≥恒成立时最大的k 记为c ,当[]1,b e ∈时,b c +的取值范围.【答案】(1)见解析(2)22,1b c e e ⎡⎤+∈++⎢⎥⎣⎦【解析】 【分析】(1)求导后分0a ≤与0a >两种情况分析函数的单调性即可. (2)参变分离()()f x g x ≥与[]1,a e ∈可得1ln ln x x x x bk x+-++≤,再令()1ln ln x x x x b g x x +-++=,求导得()2ln x x bg x x-+-'=,再分析()ln p x x x b =-+-的单调性,分()10p ≥,()0p e ≤与()()10p p e <三种情况求解导函数的正负以及原函数的单调性,进而求得b c +的解析式,再求导分析单调性与范围即可. 【详解】解:(1)∵()()ln 0,f x a x x a x a R =-+>∈ ∴()1a a x f x x x-'=-=,∵0x >,a R ∈ ∴①当0a ≤时,()f x 的减区间为()0,∞+,没有增区间 ②当0a >时,()f x 的增区间为()0,a ,减区间为(),a +∞(2)原不等式()1ln ln a x x x x bk x+-++⇔≤.∵[]1,a e ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln x x x x b x x b g x g x x x+-++-+-'=⇒=, 令()()1ln 1p x x x b p x x'=-+-⇒=-+()ln p x x x b ⇒=-+-在()1,+∞上递增;①当()10p ≥时,即1b ≤,∵[]1,b e ∈,所以1b =时[]1,x e ∈,()()00p x g x '≥⇒≥, ∴()g x 在[]1,e 上递增;∴()()min 122c g x g b b c b ===⇒+==.②当()0p e ≤,即[]1,b e e ∈-时[]1,x e ∈,()()00p x g x '≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 2212,1b b c g x g e b c b e e e e ee ++⎡⎤===⇒+=+∈+++⎢⎥⎣⎦ ③当()()10p p e <时,又()ln p x x x b =-+-在()1,e 上递增; 存在唯一实数()01,x e ∈,使得()00p x =,即00ln b x x =-, 则当()01,x x ∈时()()00p x g x '⇒<⇒<. 当()0,x x e ∈时()()00p x g x '⇒>⇒>. ∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+. 令()()()11ln 10x h x x x h x h x x x-'=-⇒=-=>⇒在[]1,e 上递增, ()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述22,1b c e e ⎡⎤+∈++⎢⎥⎣⎦. 【点睛】本题主要考查了求导分析函数单调区间以及分情况讨论导函数零点以及参数范围的问题,需要根据题意构造合适的函数进行原函数单调性以及最值的分析等.属于难题. 22.在平面直角坐标系xoy 中,曲线1C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中.曲线2C 的极坐标方程为22483sin ρθ=+. (1)求曲线1C 和曲线2C 的一般方程;(2)若曲线2C 上任意一点P ,过P 点作一条直线与曲线1C 相切,与曲线1C 交于A 点,求PA 的最大值.【答案】(1)()2211x y -+=,2211612x y +=(2)max AP =【解析】 【分析】(1)根据圆的标准方程可得1C 的一般方程,再根据222x y ρ+=,且cos x ρθ=,sin y ρθ=代入2C 化简可得2C 的一般方程.(2)易得221PA PC r =-,再设点P 的坐标为()4cos ,23sin θθ,再利用三角函数范围以及二次函数的范围求解PA 的取值范围,进而求得max AP 即可.【详解】解:(1)曲线1C 表示圆心为()1,0,半径为1的圆.故1C 的一般方程是()2211x y -+= ∵222x y ρ+=,且cos x ρθ=,sin y ρθ=,给2222222483sin 4834483sin x y ρρρθθ=⇒+=⇒+=+. ∴曲线2C 的一般方程为2211612x y += (2)设点P 的坐标为()4cos ,23sin θθ,∵221PA PC r =-,()()()2222214cos 123sin 4cos 8cos 134cos 19PC θθθθθ=-+=-+=-+∴()24cos 1826PA θ=-+≤,即cos 1θ=-时,max 26AP = 【点睛】本题主要考查了参数方程与极坐标和直角坐标的互化,同时也考查了设点的参数坐标求解距离的最值问题.属于中档题.23.已知点(,)P x y 的坐标满足不等式:111x y -+-≤.(1)请在直角坐标系中画出由点P 构成的平面区域Ω,并求出平面区域Ω的面积S. (2)如果正数,,a b c 满足()()a c b c S ++=,求23a b c ++的最小值.【答案】(1)2;(2)4【解析】【分析】(1)根据111x y -+-≤,即可容易求得平面区域以及面积;(2)利用均值不等式即可容易求证.【详解】(1)因为111x y -+-≤,故可得当1,1x y ≤≤时,不等式等价于1x y +≥;当1,1x y ≤>时,不等式等价于1x y -≥-;当1,1x y >>时,不等式等价于3x y +≤;当1,1x y >≤时,不等式等价于1x y -≤;如图,平面区域平面区域Ω由一个正方形及其内部组成,四个顶点分别为(1,0),(2,1),(1,2),(0,1),所以222S ==.(2)由(1)()()2a c b c ++=,而,,a b c 都为正数,所以 232()22()()4a b c a c b c a c b c ++=+++≥++=,当且仅当2()2a c b c +=+=取得最小值.【点睛】本题考查绝对值不等式表示的平面区域,以及利用均值不等式求最值,属综合基础题.。

2020高三数学(理科)测试试题及参考答案解析

2020高三数学(理科)测试试题及参考答案解析

2020高三测试试题 数学 (理科)一、 选择题:本大题共8小题,每小题5分,共40分 1函数||2)(x x f -=的值域是( )A .]1,0(B .)1,0(C .),0(+∞D .R2. 下列函数中,是奇函数且在区间(0,1)内单调递减的函数是A .12log y x = B .1y x=C .3y x = D .x y tan = 3.已知命题:0p x ∃≥,23x=,则A .:0p x ⌝∀<,23x≠ B .:0p x ⌝∀≥,23x≠ C .:0p x ⌝∃≥,23x≠ D .:0p x ⌝∃<,23x≠4.已知n S 为等差数列{}n a 的前n 项的和,254a a +=,721S =,则7a 的值为A .6B .7C .8D . 95. 把函数()(0,1)x f x a a a =>≠的图象1C 向左平移一个单位,再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象2C ,此时图象1C 恰与2C 重合,则a 为A . 4B . 2C . 12 D . 146.已知向量=a (1,0),=b (0,1),b a c λ+=(∈λR ),向量d 如图所示.则A .存在0>λ,使得向量c 与向量d 垂直B .存在0λ>,使得向量c 与向量d 夹角为︒60 C .存在0λ<,使得向量c 与向量d 夹角为30︒D .存在0>λ,使得向量c 与向量d 共线7.如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a = ( ) A. 14 B. 28 C. 21 D. 358.已知321,,a a a 为一等差数列,321,,b b b 为一等比数列,且这6个数都为实数,则下面四个结论中正确的是①21a a <与32a a >可能同时成立; ②21b b <与32b b >可能同时成立; ③若021<+a a ,则032<+a a ; ④若021<⋅b b ,则032<⋅b b A .①③ B .②④ C .①④ D .②③二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.30cos x dx π=⎰_________ .10.函数()ln 2f x x x =-的极值点为_________. 11.已知⎪⎭⎫ ⎝⎛∈=ππαα,2,53sin ,则cos sin 44ππαα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________ . 12.在ABC ∆中,90A ∠=o,且1AB BC ⋅=-u u u r u u u r,则边AB 的长为 .13.如图(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y 与乘客量x 之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示. 给出下说法:①图(2)的建议是:提高成本,并提高票价; ②图(2)的建议是:降低成本,并保持票价不变; ③图(3)的建议是:提高票价,并保持成本不变; ④图(3)的建议是:提高票价,并降低成本.其中所有说法正确的序号是 . 14.对于数列{}n a ,定义数列}{m b 如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值.(Ⅰ)设{}n a 是单调递增数列,若34a =,则4b =____________ ;(Ⅱ)若数列{}n a 的通项公式为*21,n a n n N =-∈,则数列{}m b 的通项是________(1)(2)(3)三 解答:15 (本小题共12分)在锐角△ABC 中,角,,A B C 的对边的长分别为,,,a b c 已知5b =,sin 4A =,4ABC S ∆=. (I )求c 的值; (II )求sin C 的值 .16 (本小题共12分)在等比数列}{n a 中,)(0*N n a n ∈>,且134a a =,13+a 是2a 和4a 的等差中项.(I )求数列}{n a 的通项公式;(II )若数列}{n b 满足12log n n n b a a +=+(1,2,3...n =),求数列}{n b 的前n 项和n S .17(14分) 已知函数2()f x ax bx c =++,[0,6]x ∈的图象经过(0,0)和(6,0)两点,如图所示,且函数()f x 的值域为[0,9].过动点(,())P t f t 作x 轴的垂线,垂足为A ,连接OP . (I )求函数()f x 的解析式;(Ⅱ)记OAP ∆的面积为S ,求S 的最大值. .18.(14分).设a ∈R,函数1,0,())1,0.a x x f x x a x ⎧-+<⎪=--> (Ⅰ) 当a =2时,试确定函数()f x 的单调区间;(Ⅱ) 若对任何x ∈R ,且0x ≠,都有()1f x x >-,求a 的取值范围.19. (本小题共14分)已知数列{}n a 满足:123,(1,2,3,)n n a a a a n a n ++++=-=L L(I )求123,,a a a 的值;(Ⅱ)求证:数列{1}n a -是等比数列;(Ⅲ)令(2)(1)n n b n a =--(1,2,3...n =),如果对任意*n N ∈,都有214n b t t +≤,求实数t 的取值范围.20 (本小题共14分)对x R ∈,定义1, 0sgn()0, 01, 0x x x x >⎧⎪==⎨⎪-<⎩.(I )求方程)sgn(132x x x =+-的根;(II )求函数)ln ()2sgn()(x x x x f -⋅-=的单调区间; (III )记点集()()(){}sgn 1sgn 1,10,0,0x y S x y xyx y --=⋅=>>,点集()(){}lg ,lg ,T x y x y S =∈,求点集T 围成的区域的面积.21已知数列}{n a 的前n 项和为n S ,对一切正整数n ,点),(n n S n P 都在函数xx x f 2)(2+=的图像上,且过点),(n n S n P 的切线的斜率为n k . (1)求数列}{n a 的通项公式. (2)若n k na b n 2=,求数列}{n b 的前n 项和n T .(3)设},2{},,{**∈==∈==N n a x x R N n k x x Q n n ,等差数列}{n c 的任一项R Q c n ⋂∈,其中1c 是R Q ⋂中的最小数,11511010<<c ,求}{n c 的通项公式.高三测试试题 答案数学试题(理科)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分) (9)(10) 12 (答案写成坐标形式扣3分) (11) 4950(12) 1 (13) ② ③(14) 43b =, ⎪⎪⎩⎪⎪⎨⎧++=是偶数是奇数m m m m b m ,22,21(也可以写成:⎪⎩⎪⎨⎧∈=+∈-==)(2,1)(12,**N k k m k N k k m k b m或(1)3()24m m m b n Z -+=+∈ ). 三、解答题(本大题共6小题,共80分) 15. (本小题共12分) 解:(I )由1sin 2ABC S bc A ∆== …………....……..….…2分 可得,6c = ……………....……..….….4分(II )由锐角△ABC中sin 4A =可得3cos 4A = …………………...…….....6分由余弦定理可得:22232cos 253660164a b c bc A =+-⨯=+-⨯=, ……..….….8分 有:4a = …….. …………....…….9分 由正弦定理:sin sin c aC A=, …….. …………....…….10分即6sin 4sin 4c AC a=== ................................12分16. (本小题共13分)解:(I )设等比数列}{n a 的公比为q .由134a a =可得224a =, ……………………………………1分因为0n a >,所以22a = ……………………………………2分 依题意有)1(2342+=+a a a ,得3432a a a q == ……………………………………3分 因为30a >,所以,2=q …………………………………………..4分所以数列}{n a 通项为12-=n n a ………………………………………...6分(II )12log 21n n n n b a a n +=+=+- ………………………………………....8分可得232(12)(1)(222...2)[123...(1)]122n nn n nS n --=+++++++++-=+- ….......12分 1(1)222n n n +-=-+…………………………………....13分17. (本小题共13分)解:(I )由已知可得函数()f x 的对称轴为3=x ,顶点为)9,3(. . ..........2分方法一:由⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=944320)0(2ab ac a bf 得0,6,1==-=c b a ...........5分得2()6,[0,6]f x x x x =-∈ ...........6分方法二:设9)3()(2+-=x a x f ...........4分由0)0(=f ,得1-=a ...........5分2()6,[0,6]f x x x x =-∈ ...........6分(II ))6,0(),6(2121)(2∈-=⋅=t t t t AP OA t S ...........8分 )4(23236)('2t t t t t S -=-= ...........9分列表...........11分由上表可得4t =时,三角形面积取得最大值. 即2max 1()(4)4(644)162S t S ==⨯⨯-=. ...........13分 18. (本小题共14分) (Ⅰ)解:当0x <时,1()2f x x=-+, 因为01)(2'>=x x f ,所以()f x 在)0,(-∞上为增函数; 当0x >时,()2)1f x x =--,()f x ¢=, 由()0f x ¢>,解得23x >, 由()0f x ¢<,解得203x <<,所以()f x 在),32(+∞上为增函数,在2(0,)3上为减函数.综上,()f x 增区间为)0,(-∞和),32(+∞,减区间为2(0,)3.(Ⅱ)解:当0x <时,由()1f x x >-,得11a x x -+>-,即 11a x x>+-, 设 1()1g x x x=+-,所以1()[()()]113g x x x=--+--≤-=-(当且仅当1x =-时取等号), 所以当1x =-时,()g x 有最大值3-,因为对任何0x <,不等式11a x x>+-恒成立, 所以 3a >-;当0x >时,由()1f x x >-)11x a x -->-,即a x <-,设()h x x =-,则211())24h x x =-=-,12=,即14x =时,()h x 有最小值14-,因为对任何0x >,不等式a x <-14a <-. 综上,实数a 的取值范围为134a -<<-.19解:(I )123137,,248a a a ===…………………………………..3分 (II )由题可知:1231n n n a a a a a n a -+++++=-L ①123111n n n a a a a a n a +++++++=+-L ②②-①可得121n n a a +-= …………………………..5分 即:111(1)2n n a a +-=-,又1112a -=-…………………………………..7分 所以数列{1}n a -是以12-为首项,以12为公比的等比数列…………………..…..8分(Ⅲ)由(2)可得11()2n n a =-, ………………………………………...9分22n n n b -= ………………………………………...10分由111112212(2)302222n n n n n n n n n n nb b +++++-------=-==>可得3n < 由10n n b b +-<可得3n > ………………………………………....11分 所以 12345n b b b b b b <<=>>>>L L故n b 有最大值3418b b ==所以,对任意*n N ∈,有18n b ≤ ………………………………………....12分如果对任意*n N ∈,都有214n b t t +≤,即214n b t t ≤-成立,则2max 1()4n b t t ≤-,故有:21184t t ≤-, ………………………………………....13分解得12t ≥或14t ≤-所以,实数t 的取值范围是11(,][42-∞-+∞U ,) ………………………………14分20解:(I )当0>x 时,1)sgn(=x ,解方程1132=+-x x ,得0=x (舍)或3=x当0=x 时,0)sgn(=x ,0不是方程0132=+-x x 的解 当0<x 时,1)sgn(-=x ,解方程1132-=+-x x ,得1=x (舍)或2=x (舍) 综上所述,3=x 是方程)sgn(132x x x =+-的根. ...........3分 (每一种情况答对即得1分)(II )函数)(x f 的定义域是}0{>x x ...........4分当2>x 时,x x x f ln )(-=,011)('>-=x x f 恒成立 ...........5分 当20<<x 时,)ln ()(x x x f --=,11)('-=xx f解0)('>x f 得10<<x ...........6分 解0)('<x f 得21<<x ...........7分 综上所述,函数)ln ()2sgn()(x x x x f -⋅-=的单调增区间是),2(),1,0(+∞,单调减区间是)2,1(. ...........8分(III )设点(),P x y T ∈,则()10,10xyS ∈.于是有10)10()10()110sgn()110sgn(=⋅--yxy x ,得()()sgn 101sgn 1011xyx y ⋅-+⋅-=当0>x 时,x x xxx=-=->-)110sgn(,1)110sgn(,0110 当0<x 时,x x xxx-=--=-<-)110sgn(,1)110sgn(,0110∴x x x =-)110sgn(同理,y y y=-)110sgn(∴}1),{(=+=y x y x T ...........11分点集T 的正方形,面积为2. ...........13分21解:(1)Q 点),(n n S n P 都在函数x x x f 2)(2+=的图像上,∴2*2()n S n n n N =+∈, 当n 2≥时,12 1.n n n a S S n -=-=+当n=1时,113a S ==满足上式,所以数列}{n a 的通项公式为2 1.n a n =+….4分(2)由x x x f 2)(2+=求导可得()22f x x =+‘Q 过点),(n n S n P 的切线的斜率为n k ,22n k n ∴=+.24(21)4n k n n n b a n ∴=⋅+⋅=.12343445447421)4n n ∴=⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅⨯+⨯n T +4(①由①×4,得2341443445447421)4n n +=⨯⨯+⨯⨯+⨯⨯+⋅⋅⋅⨯+⨯n T +4(②①-②得:()231343424421)4n n n +⎡⎤-=⨯+⨯++⋅⋅⋅+⨯⎣⎦n T +4-(21141434221)414n n n -+⎡⎤-=⨯+⨯+⨯⎢⎥-⎣⎦(4)-( 26116499n n ++∴=⋅-n T ………………………………………………………………..9分 (3){22,},{42,}Q x x n n N R x x n n N **==+∈==+∈Q ,Q R R ∴⋂=.又n c Q R ∈⋂Q ,其中1c 是R Q ⋂中的最小数,16c ∴=.{}n c Q 是公差是4的倍数,*1046()c m m N ∴=+∈.又10110115c <<Q ,*11046115m m N<+<⎧∴⎨∈⎩,解得m=27. 所以10114c =, 设等差数列的公差为d ,则1011146121019c cd ---===, 6(1)12126n c n n ∴=++⨯=-,所以{}n c 的通项公式为126n c n =-…………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020届高三数学(理)大题专项练习1017.在ABC △中,角、、A B C 所对的边分别为a b c 、、,2sin cos sin 2sin b C A a A c B +=;(1)证明:ABC △为等腰三角形;(2)若D 为BC 边上的点,2BD DC =,且2ADB ACD ∠=∠,3a =,求b 的值.18.如图,四棱锥P ABCD -的底面ABCD 为直角梯形,//BC AD ,且222,AD AB BC ===90,BAD PAD ∠=︒V 为等边三角形,平面ABCD ⊥平面PAD ;点E M 、分别为PD PC、的中点.(1)证明://CE 平面PAB ;(2)求直线DM 与平面ABM 所成角的正弦值.19.已知椭圆2222:1x y C a b +=(0a b >>1,2⎛- ⎝⎭. (1)求椭圆C 的方程;(2)过点)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.20.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k N +∈上有零点,求k 的值;21.某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:该景点为了预测2021年的旅游人数,建立了y 与x 的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型①:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型①的回归方程$bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).参考公式、参考数据及说明:①对于一组数据()()()1122,,,,,,n n v w v w v w L ,其回归直线µµµwv αβ=+的斜率和截距的最小二乘法估计分别为µµµ121()(),()niii nii w w v v w v v v βαβ==--==--∑∑. ①刻画回归效果的相关指数µ22121()1()nii i n ii yy R yy ==-=--∑∑ .①参考数据: 5.46235e ≈, 1.43 4.2e ≈.表中1011ln ,10i i i i u y u u ===∑.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos ,2sin ,x y θθ=⎧⎨=⎩(θ为参数),已知点(4,0)Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线l :y kx =与曲线2C 交于,A B 两点,若3OA AB u u u v u u u v=,求k 的值.23.已知函数()121f x ax x =++- (1)当1a =时,求不等式()3f x >的解集; (2)若02a <<,且对任意x ∈R ,3()2f x a≥恒成立,求a 的最小值.2020届高三数学(理)大题专项练习10(答案解析)17.在ABC △中,角、、A B C 所对的边分别为a b c 、、,2sin cos sin 2sin b C A a A c B +=;(1)证明:ABC △为等腰三角形;(2)若D 为BC 边上的点,2BD DC =,且2ADB ACD ∠=∠,3a =,求b 的值. 【解】(1)2sin cos sin 2sin b C A a A c B +=Q ,由正弦定理得:22cos 2bc A a cb +=,由余弦定理得:2222222b c a bc a bc bc+-⋅+=;化简得:222b c bc +=,所以()20b c -=即b c =, 故ABC V 为等腰三角形. (2)如图,由已知得2BD =,1DC =,2,ADB ACD ACD DAC Q ∠=∠=∠+∠ACD DAC ∴∠=∠, 1AD CD ∴==,又cos cos ADB ADC ∠=-∠Q ,22222222AD BD AB AD CD AC AD BD AD CD +-+-∴=-⋅⋅, 即2222221211221211c b +-+-=-⨯⨯⨯⨯,得2229b c +=,由(1)可知b c =,得b =解法二:取BC 的中点E ,连接AE .由(1)知,AB AC AE BC =∴⊥, 由已知得31,1,22EC DC ED ===,2,ADB ACD ACD DAC Q ∠=∠=∠+∠ACD DAC ∴∠=∠,AE ∴===b AC ∴====解法三:由已知可得113CD a ==,由(1)知,,AB AC B C =∴∠=∠, 又2DAC ADB C C C C ∠=∠-∠=∠-∠=∠Q ,CAB CDA ∴V V ∽,即CB CA CA CD =,即31bb =,b ∴=18.如图,四棱锥P ABCD -的底面ABCD 为直角梯形,//BC AD ,且222,AD AB BC ===90,BAD PAD ∠=︒V 为等边三角形,平面ABCD ⊥平面PAD ;点E M 、分别为PD PC、的中点.(1)证明://CE 平面PAB ;(2)求直线DM 与平面ABM 所成角的正弦值. 【解】(1)设PA 的中点为N ,连接,EN BN ,E Q 为PD 的中点,所以EN 为PAD △的中位线,则可得//EN AD ,且12EN AD =; 在梯形ABCD 中,//BC AD ,且12BC AD =, //,BC EN BC EN ∴=,所以四边形ENBC 是平行四边形,//CE BN ∴,又BN ⊂平面PAB ,CE ⊄平面PAB , //CE ∴平面PAB .法二:设O 为AD 的中点,连接,CO OE ,E Q 为PD 的中点,所以OE 是ADP △的中位线,所以//OE AP , 又OE ⊄平面PAB ,AP ⊂平面PAB ,//OE ∴平面PAB ,又在梯形ABCD 中,//BC AD ,且12BC AD =, 所以四边形BAOC 是平行四边形,//BC BA ∴,又OC ⊄平面PAB ,AB Ì平面PAB ,//OC ∴平面PAB ,又OE OC O ⋂=Q , 所以平面//OEC 平面PAB , 又CE ⊂平面PAB ,//CE ∴平面PAB .(2)设AD 的中点为O ,又,PA PD PO AD =∴⊥Q .因为平面PAD ⊥平面ABCD ,交线为AD ,PO ⊂平面PAD ,PO ∴⊥平面ABCD ,又由//CO BA ,90BAD ∠=︒,CO AD ∴⊥.即有,,OA OC OP 两两垂直,如图,以点O 为原点,OA 为x 轴,OP 为y 轴,OC 为z 轴建立坐标系.已知点()()()()111,0,0,1,0,1,0,,,1,0,0,0,0,1,1,2222A B M D AB AM ⎛⎫⎛⎫-==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u v u u u u v , 设平面ABM 的法向量为:(),,m x y z =v.则有0102m AB z m AM x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩u u uv v u u u u v v ,可得平面ABM的一个法向量为)2,0m =v,12DM ⎛⎫= ⎪ ⎪⎝⎭u u u u v ,可得:1120cos,7m DMm DMm DM++⨯⋅===⋅u u u u vvu u u u vvu u u u vv,所以直线DM与平面ABM.19.已知椭圆2222:1x yCa b+=(0a b>>)的离心率为2,且经过点⎛-⎝⎭.(1)求椭圆C的方程;(2)过点)作直线l与椭圆C交于不同的两点A,B,试问在x轴上是否存在定点Q 使得直线QA与直线QB恰关于x轴对称?若存在,求出点Q的坐标;若不存在,说明理由.【解】(1)由题意可得c2a=,22131a4b+=,又222a b c-=,解得2a4=,2b1=.所以,椭圆C的方程为22xy14+=(2)存在定点Q⎫⎪⎪⎝⎭,满足直线QA与直线QB恰关于x轴对称.设直线l的方程为x my0+-=,与椭圆C联立,整理得,()224m y10+--=.设()22B x,y,11x xy y12+=,定点()Qt,0.(依题意12t x,t x)≠≠则由韦达定理可得,122y y4m+=+,1221y y4m-=+.直线QA与直线QB恰关于x轴对称,等价于AQ,BQ的斜率互为相反数.所以,1212y yx t x t+=--,即得()()1221y x t y x t0-+-=.又11x my0+=,22x my0+=,所以,))1221y my t y my t 0-+-=,)()1212t y y 2my y 0-+-=.从而可得,)21t 2m 04m--⋅=+,即()2m 40=,所以,当t =,即Q ⎫⎪⎪⎝⎭时,直线QA 与直线QB 恰关于x 轴对称成立. 特别地,当直线l 为x 轴时,Q 3⎛⎫ ⎪ ⎪⎝⎭也符合题意. 综上所述,存在x 轴上的定点Q 3⎛⎫⎪ ⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称.20.已知函数()ln 2f x x x =--.(1)求曲线()y f x =在1x =处的切线方程;(2)函数()f x 在区间(,1)()k k k N +∈上有零点,求k 的值; (3)若不等式()(1)()x m x f x x-->对任意正实数x 恒成立,求正整数m 的取值集合.【解】(1)1()1f x x'=-,所以切线斜率为()01f '=, 又(1)1f =-,切点为(1,1)-,所以切线方程为1y =-. (2)令1()1f x x'=-,得1x =, 当01x <<时,()0f x '<,函数()f x 单调递减; 当1x >时,()0f x '>,函数()f x 单调递增, 所以()f x 的极小值为(1)10f =-<,又22221111()ln 20e e e e f =--=>, 所以()f x 在区间(0,1)上存在一个零点1x ,此时0k =;因为(3)3ln321ln30f =--=-<,(4)4ln 4222ln 22(1ln 2)0f =--=-=->, 所以()f x 在区间(3,4)上存在一个零点2x ,此时3k =.综上,k 的值为0或3. (3)当1x =时,不等式为(1)10g =>.显然恒成立,此时m R ∈;当01x <<时,不等式()(1)()x m x f x x -->可化为ln 1x x xm x +>-,令ln ()1x x x g x x +=-,则22ln 2()()(1)(1)x x f x g x x x --'==--,由(2)可知,函数()f x 在(0,1)上单调递减,且存在一个零点1x , 此时111()ln 20f x x x =--=,即11ln 2x x =- 所以当10x x <<时,()0f x >,即()0g x '>,函数()g x 单调递增;当11x x <<时,()0f x <,即()0g x '<,函数()g x 单调递减. 所以()g x 有极大值即最大值1111111111ln (2)()11x x x x x x g x x x x +-+===--,于是1m x >.当1x >时,不等式()(1)()x m x f x x -->可化为ln 1x x x m x +<-,由(2)可知,函数()f x 在(3,4)上单调递增,且存在一个零点2x ,同理可得2m x <. 综上可知12x m x <<.又因为12(0,1), (3,4)x x ∈∈,所以正整数m 的取值集合为{}1,2,3.21.某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向“观光、休闲、会展”三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数y (万人)与年份x 的数据:该景点为了预测2021年的旅游人数,建立了y 与x 的两个回归模型:模型①:由最小二乘法公式求得y 与x 的线性回归方程$50.8169.7y x =+;模型①:由散点图的样本点分布,可以认为样本点集中在曲线bxy ae =的附近.(1)根据表中数据,求模型①的回归方程$bx y ae =.(a 精确到个位,b 精确到0.01). (2)根据下列表中的数据,比较两种模型的相关指数2R ,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).参考公式、参考数据及说明:①对于一组数据()()()1122,,,,,,n n v w v w v w L ,其回归直线µµµwv αβ=+的斜率和截距的最小二乘法估计分别为µµµ121()(),()niii nii w w v v w v v v βαβ==--==--∑∑. ①刻画回归效果的相关指数µ22121()1()nii i n ii yy R yy ==-=--∑∑ .①参考数据: 5.46235e ≈, 1.43 4.2e ≈.表中1011ln ,10i i i i u y u u ===∑. 【解】(1)对bxy ae =取对数,得ln ln y bx a =+,设ln u y =,ln c a =,先建立u 关于x 的线性回归方程,()()()10110219.000.10883iii ii x x u u bx x ==--==≈-∑∑$, 6.050.108 5.5 5.456 5.46cu bx =-≈-⨯=≈$$ $ 5.46235c a e e =≈≈$∴模型①的回归方程为$0.11235x y e =(2)由表格中的数据,有30407>14607,即101022113040714607()()iii i y y y y ==>--∑∑,即10102211304071460711()()iii i y y y y ==-<---∑∑,2212R R <模型①的相关指数21R 小于模型①的22R ,说明回归模型①的拟合效果更好.2021年时,13x =,预测旅游人数为$0.1113 1.43235235235 4.2987y e e ⨯==≈⨯=(万人) 22.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos ,2sin ,x y θθ=⎧⎨=⎩(θ为参数),已知点(4,0)Q ,点P 是曲线1C 上任意一点,点M 为PQ 的中点,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)求点M 的轨迹2C 的极坐标方程;(2)已知直线l :y kx =与曲线2C 交于,A B 两点,若3OA AB u u u v u u u v=,求k 的值.【解】(1)设()2cos ,2sin P θθ,(),M x y .且点()4,0Q ,由点M 为PQ 的中点,所以2cos 42,22sin ,2x cos y sin θθθθ+⎧==+⎪⎪⎨⎪==⎪⎩整理得()2221x y -+=.即22430x y x +-+=, 化为极坐标方程为24cos 30ρρθ-+=.(2)设直线l :y kx =的极坐标方程为θα=.设()1,A ρα,()2,B ρα,因为3OA AB =u u u v u u u v,所以43OA OB =u u u v u u u v,即1243ρρ=.联立2430,,cos ρρθθα⎧-+=⎨=⎩整理得24cos 30ραρ-⋅+=.则1212124,3,43,cos ρραρρρρ+=⎧⎪=⎨⎪=⎩解得7cos 8α=.所以222115tan 1cos 49k αα==-=,则k =23.已知函数()121f x ax x =++- (1)当1a =时,求不等式()3f x >的解集; (2)若02a <<,且对任意x ∈R ,3()2f x a≥恒成立,求a 的最小值. 【解】(1)当1a =时,()121f x x x =++-,即()3,112,1213,2x x f x x x x x ⎧⎪-<-⎪⎪=-+-≤≤⎨⎪⎪>⎪⎩,解法一:作函数()121f x x x =++-的图象,它与直线3y =的交点为()()1,3,1,3A B -,所以,()3f x >的解集的解集为()(),11,-∞-⋃+∞.解法2:原不等式()3f x >等价于133x x <-⎧⎨->⎩ 或11223x x ⎧-≤≤⎪⎨⎪-+>⎩ 或1233x x ⎧>⎪⎨⎪>⎩,解得:1x <-或无解或1x >,所以,()3f x >的解集为()(),11,-∞-⋃+∞. (2)1102,,20,202a a a a <<∴-+-<Q . 则()()()()12,,1112122,,212,2a x x a f x ax x a x x a a x x ⎧-+<-⎪⎪⎪=++-=-+-≤≤⎨⎪⎪+>⎪⎩所以函数()f x 在1,a ⎛⎫-∞- ⎪⎝⎭上单调递减,在11,2a ⎡⎤-⎢⎥⎣⎦上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增. 所以当12x =时,()f x 取得最小值,()min 1122a f x f ⎛⎫==+ ⎪⎝⎭.因为对x R ∀∈,()32f x a≥恒成立, 所以()min 3122a f x a=+≥. 又因为0a >, 所以2230a a +-≥,解得1a ≥ (3a ≤-不合题意).所以a的最小值为1.。

相关文档
最新文档