热释电红外传感器型号

合集下载

热释电探测器介绍

热释电探测器介绍

热释电红外线传感器热释电红外线传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。

在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。

由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。

为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20米范围内人的行动。

菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。

当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。

人体辐射的红外线中心波长为9~10--um,而探测元件的波长灵敏度在0.2~20--um范围内几乎稳定不变。

在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10--um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。

被动式热释电红外探头的工作原理及特性:人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。

人体发射的10UM 左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。

红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。

1)这种探头是以探测人体辐射为目标的。

所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。

智能红外传感器AS612

智能红外传感器AS612

8

PIR
A S 6 12
南阳森霸光电股份有限公司
敏感元分类 1:A类 2:B类
电源电压 1: 外部提供3V直流电源 2: 内置3V稳压二极管
引脚数 3:3pin 4:4pin 6:6pin
窗口大小 S:3*4mm M:4.2*5.2mm L:3.8*5mm
性能参数
IC 型号
A:IC1 B:IC2 D:IC3 H:IC4 Z:IC5
备注
2.工作条件 (T=25°C, Vdd=3V,除另有规定外)
电源电压 工作电流
参量
符号 最小值 典型值 最大值 单位
备注
VDD
2.7
3
3.3
V
IDD
12
15
20
μA
灵敏度阀值 输出REL 输出低电流 输出高电流 REL的低电平输出锁定时间 REL的高电平输出延时时间
VSENS
120
IOL
10
IOH
大于这个电平就记为一个有效的脉冲信号,低于它则认为是无效的信号。如果把这个 SENS 引脚直接接地,那么探头 内部就认为是最低的门槛电压,这样就认为探头具有最高的灵敏度。这种方式可以把探头自身的噪声进行有效的过滤, 防止误触发。如果该引脚的电压大于 VDD/4,则门槛电压是最高的,探头的灵敏度也最低。该引脚电压和内部阈值电 平的关系如下图:
R6
R8
R10
0R
C5
100 K C6
75K
C7
10u F/16V
10u F/16V
10u F/16V
CD S GL 5528( 10K-2 0K)
R11 100 R
B
DS1
LA MP

gy906测温原理

gy906测温原理

GY-906是一种基于光学原理的红外测温模块,通过红外传感器和相关算法实现非接触测温。

GY-906模块使用了红外测温技术中的红外热释电传感器(IR Thermopile Sensor),它能够感测物体发出的红外辐射能量,并将其转换为温度值。

具体的工作原理如下:
1. 探测红外辐射:当物体的温度高于绝对零度时,会释放红外辐射能量。

GY-906模块中的红外热释电传感器能够探测到这种红外辐射。

2. 传感器测量:GY-906模块的红外热释电传感器接收到红外辐射后,会产生微弱的电压信号。

该电压信号与接收到的红外辐射强度成正比,可以反映物体的温度。

3. 温度计算:GY-906模块内部的算法会将传感器接收到的电压信号转换为相应的温度值。

该算法基于热物理原理和校准数据,通过校正和计算得出最终的温度值。

GY-906模块还包括一个用来校准环境温度的测温传感器,
它用于补偿环境温度的影响,提高测温的准确性。

需要注意的是,GY-906模块对于测温物体的表面温度进行测量,它的精确度和测量范围受到多种因素的影响,如传感器的质量、环境温度等。

因此,在使用GY-906模块进行测温时,需要按照使用说明进行校准和适当的环境条件控制,以确保测温结果的准确性。

热释电数字智能传感器 AM412_V1.4

热释电数字智能传感器 AM412_V1.4

2.检测区域内有温度差的检测对象横切后可进行检测。
5

南阳森霸光电股份有限公司
外观尺寸图
探头外观图(A)
透镜外观图(B)
注:外观图 A 和 B 可以配合使用。
6

南阳森霸光电股份有限公司
1
2
3
4
D
D
U2 412 1
D3 1N4148 ຫໍສະໝຸດ 3 2上拉电阻 不贴 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 1M 0R
下拉电阻 0R 24K 39K 56K 75K 91K 110K 130K 150K 174K 200K 220K 240K 270K 294K 不贴
ONTIME引脚电压中心值对应的REL输出高电平持续时间
K1
C LIN 2 1 D1 ZMM12 R2 2 M7 1 C1 0.68uF/400V 150R/1W D2 1
3.3V
12V
GND TIM E
VDD OUT
R4 1M U1 VOUT 3
C 3 4 1 2
R1 NIN 1 1M
+ CE1 220uF/50V
2
VIN GND HT7533 1
+ CE2 100uF/25V
Step
ONTIME 中心值电压 (V)
ONTIME(s)
电压值(V)
ONTIME引脚分压电阻推荐值 (±1%精度)
(VDD*(Step*2)+3)/128 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3/128 或更低 (VDD*2+3)/128 (VDD*4+3)/128 (VDD*6+3)/128 (VDD*8+3)/128 (VDD*10+3)/128 (VDD*12+3)/128 (VDD*14+3)/128 (VDD*16+3)/128 (VDD*18+3)/128 (VDD*20+3)/128 (VDD*22+3)/128 (VDD*24+3)/128 (VDD*26+3)/128 (VDD*28+3)/128 (VDD*30+3)/128 或更高

D203S规格书

D203S规格书

Page 2 of 6
SENSOR MANUAL

测试方法
测量条件 环境温度 黑体温度 调制频率 放大倍数
25º C 420K ( @147˚ C) 1 赫兹, 0.3~3.5 赫兹 △f, 72.5 dB
双元传感器的灵敏平衡度是通过测量每个单元的灵敏度(即单个输出峰值电压) ,并采用 下列公式计算得出。 平衡度 = |VA-VB|/(VA+VB) × 100% VA = A 面的灵敏度 ( mVp-p ) VB = B 面的灵敏度 ( mVp-p )
SENSOR MANUAL
热释电红外线传感器
Pyroelectric Infrared Radial Sensor
型号:D203S SHENZHEN SENBAN OPTICAL & ELECTRONIC CO., LTD.
______________________________________________________________________________________________
型号 封装 红外接收电极 窗口尺寸 接收波长 透过率 输出信号峰值[Vp-p] 灵敏度 探测率 (D*) 噪声峰值[Vp-p] 输出平衡度 源极电压 电源电压 工作温度范围 保存温度范围
1.Drain 2.Source 3.Ground
入射视角图
等效电路图
______________________________________________________________________________________________
______________________________________________________________________________________________

暖释电红外线传感器D204S的技术规格书说明书

暖释电红外线传感器D204S的技术规格书说明书

热释电红外线传感器D204S标准规格和尺寸窗口尺寸4*3mm红外接受电极2.6*1mm,2elements封装TO-5接收波长5—14μm 透过率≥75%输出信号峰值[Vp-p]≥3500mV 灵敏度≥3300V/W 探测率(D*) 1.4×108cmHz 1/2/W噪声峰值[Vp-p]<80mV 输出平衡度<10%源极电压0.3~1.2V 电源电压3~15V 工作温度范围-30~70ºC 保存温度范围-40~80ºC注意:1.不要在超出产品规格范围的情况下使用本产品.2.在产品封样过程中,双方对承认书需书面确认。

以便保证批量产品无误。

3.本说明书中提到的应用电路仅作为标准使用范例.请注意根据外围设施来设计电路并调整参数设置.4错误的使用,会导致危险和人身伤害。

产品概述热释电红外线传感器是利用材料自发极化随温度变化的特征来探测红外线辐射的传感器,采用双灵敏元设计,抑制环境温度变化产生的干扰,提高了传感器的工作稳定性。

本产品应用广泛,例如智能玩具,自动灯开关,感应门等,特别适用于智能玩具应用场合。

入射视角图等效电路图输出触发模式测试方法测量条件♦环境温度25ºC♦黑体温度420K(@147˚C)♦调制频率1赫兹,0.3-3.5赫兹△f♦放大倍数72.5dB测量条件双元传感器的灵敏平衡度是通过测量每个单元的灵敏度(即单个输出峰值电压),并采用下列公式计算得出。

平衡度=|VA-VB|/(VA+VB)×100%VA=A面的灵敏度(mVp-p)VB=B面的灵敏度(mVp-p)典型应用电路注意:U1A-D:LM324电源:12VDCRs=47KΩ,作为参考电压设置电阻模拟PIR+数字芯片典型应用模拟PIR+数字芯片(ISB01)应用参考图注意事项一、电路设计方面1.PIR与其他器件的连线要越短越好,双面板或多层板上,该连线下方尽量不要走线,尤其是不能有大电流的走线。

热释电红外传感器型号

热释电红外传感器型号

热释电红外传感器型号、引脚及工作参数模块图:用HN911L热释电传感器模块及NE555制作的人体感应继电器开关电路热释电红外传感器型号主要有P228、LHl958、LHI954、RE200B、KDS209、PIS209、LHI878、PD632等。

热释电红外传感器通常采用3引脚金属封装,各引脚分别为电源供电端(内部开关管D极,DRAIN)、信号输出端(内部开关管S极,SOURCE)、接地端(GROUND)。

热释电红外传感器的主要工作参数有工作电压(常用的热释电红外传感器工作电压范围为3~15V)、工作波长(通常为7.5~14 μm)、源极电压(通常为0.4~1.1V,R=47kΩ)、输出信号电压(通常大于2.0V)等2015/4/15 23:04:34太阳风暴2015/4/15 23:04:34应用电路图1三、《热释电传感器检测电路》电路工作正常在你已经装好的《热释电传感器检测电路》,应能实现电路工作正常。

1.接上12V电源后,电容器C8两端电压为6V,LED2电源指示灯亮,电源电路工作正常。

2.手靠近远红外传感器PIR时,经一段时间后,报警发光二极管LED1由微亮转光亮,LS1慢慢变大声。

延时及检测电路工作正常。

3.手离开远红外传感器PIR时,发光二极管LED1延时亮1分钟,LS1也延时响1分钟。

延时电路工作正常。

4.手离开远红外传感器PIR时再开机或结束停电后来电时不应出现LED1亮和LS1响。

太阳风暴2015/4/15 23:04:49应用电路图2热释电人体感应开关电路(热释电红外探头选用LN074B型)应用电路图3人体感应电子自动门及报警两用电路本装置可自动控制单位大门的开与关,有人进出时门自动打开,进出过后门自动关闭。

夜晚大门停用后,本装置可转作报警器,一旦有人走近大门即产生报警,以告知门卫开小门放人进出。

图1是人体感应信号产生及放大电路。

其中RS是热释电远红外被动式传感器,A1、A2是两级放大器。

第六章、 热释电红外传感器及其应用

第六章、 热释电红外传感器及其应用

热释电效应:当一些晶体受热时,在晶体两端将会 产生数量相等而符号相反的电荷。这种由于热变化 而产生的电极化现象称为热释电效应。 通常,晶体自发极化所产生的束缚电荷被空气中 附集在晶体外表面的自由电子所中和,其自发极化 电矩不能显示出来。当温度变化时,晶体结构中的 正、负电荷重心产生相对位移,晶体自发极化值就 会发生变化,在晶体表面就会产生电荷,对外显示 电性。 若温度对时间的变化率为Dt/dt,极化强度PS 对 时间的变化率为dPs/dt,它相当于外电路上流动的 电流。射电极面积为A,则信号电压的大小为:
第六章、 热释电红外传感器及其应用
热释电红外传感器是一种被动式调制型温度 敏感器件,利用热释电效应工作,它是通过目标 与背景的温差来探测目标的。其响应速度虽不如 光子型,但由于它可在室温下使用、光谱响应宽、 工作频率宽,灵敏度与波长无关,容易使用。这 种探测器,灵敏度高,探测面广,是一种可靠性 很强的探测器。因此广泛应用于各类入侵报警器, 自动开关、非接触测温、火焰报警器等,目前生 产有单元、双元、四元、180°等传感器和带有 PCB控制电路的传感器。常用的热释电探测器如: 硫酸三甘钛(TGS)探测器、铌酸锶钡(SBN) 探测器、钽酸锂(LiTaO3)探测器、锆钛酸铅 (PZT)探测器等。
表10.1.1
TWH95系列控制电路内部设计有两个高阻抗输入低噪声运算 放大器,其总增益限制在67dB之内,灵敏度可通过外接电阻进行 调整。比较器为一个典型的窗口比较电路,其上下阈值经若干次 选择后,确定出最佳门限值。其比较放大电路由内部4V稳压电路 供电,设有温度补偿电路,因此增益不会随外界温度的变化而改 变。这种电路能抑制热气团流动所产生的红外干扰,误报率低, 其探测距离达12米以上。TWH95系列电路,均有使能控制端RD, 该脚悬空时为自动状态,接入光控元件可使电路白天待机,晚上 恢复自动工作。 电路内部均有为PIR预热的开机自动延时电路,延迟时间为45 秒,使PIR预热后建立稳定的工作状态。内部还设置了输出延时系 统电路,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热释电红外传感器型号、引脚及工作参数模块图:用HN911L热释电传感器模块及NE555制作的人体感应继电器开关电路热释电红外传感器型号主要有P228、LHl958、LHI954、RE200B、KDS209、PIS209、LHI878、PD632等。

热释电红外传感器通常采用3引脚金属封装,各引脚分别为电源供电端(内部开关管D极,DRAIN)、信号输出端(内部开关管S极,SOURCE)、接地端(GROUND)。

热释电红外传感器的主要工作参数有工作电压(常用的热释电红外传感器工作电压范围为3~15V)、工作波长(通常为7.5~14 μm)、源极电压(通常为0.4~1.1V,R=47kΩ)、输出信号电压(通常大于2.0V)等2015/4/15 23:04:34太阳风暴2015/4/15 23:04:34应用电路图1三、《热释电传感器检测电路》电路工作正常在你已经装好的《热释电传感器检测电路》,应能实现电路工作正常。

1.接上12V电源后,电容器C8两端电压为6V,LED2电源指示灯亮,电源电路工作正常。

2.手靠近远红外传感器PIR时,经一段时间后,报警发光二极管LED1由微亮转光亮,LS1慢慢变大声。

延时及检测电路工作正常。

3.手离开远红外传感器PIR时,发光二极管LED1延时亮1分钟,LS1也延时响1分钟。

延时电路工作正常。

4.手离开远红外传感器PIR时再开机或结束停电后来电时不应出现LED1亮和LS1响。

太阳风暴2015/4/15 23:04:49应用电路图2热释电人体感应开关电路(热释电红外探头选用LN074B型)应用电路图3人体感应电子自动门及报警两用电路本装置可自动控制单位大门的开与关,有人进出时门自动打开,进出过后门自动关闭。

夜晚大门停用后,本装置可转作报警器,一旦有人走近大门即产生报警,以告知门卫开小门放人进出。

图1是人体感应信号产生及放大电路。

其中RS是热释电远红外被动式传感器,A1、A2是两级放大器。

传感器检测到人体红外线后产生的感应信号很微弱,电路中设置了诸多旁路电容都是为了抑制干扰,避免误动作。

A3、A4是上、下限电压比较器,平时A2的输出电平比A3⑥脚电平低,而比A4③脚电平高,A3、A4输出皆为低电平。

只有传感器感应产生的交变信号经放大达到足够电平才能使A3或A4输出为高电平,以控制后续电路工作。

图2、图3是自动门电机控制电路及报警变换电路。

由图1的CZ插座②脚来的高电平使BG1导通、J1动作,触点J1-1闭合使C1短路,IC3的③脚输出高电平使J2得电,J2-1闭合接通市电,J2-2动触头转换到“a”位置,电机M正转开门。

同时BG2饱和导通,IC4的③脚为低电平。

经过一定时间,门位移到终点碰触轨道上的限位开关K1,J2释放,电机停转。

当人们进出门结束后,BG1基极无信号而截止,J1释放,再经过一定时间(此时间由R3、C1的值决定),IC3的③脚输出低电平,BG2截止,IC4的③脚受由低到高的脉冲触发,其①脚输出高电平,一方面使BG3导通,J3得电,J3-1使电机接通市电,此时因J2不工作,J2-2动触头已回到“b”位,故电机反转,门开始关。

门到达“关”的终点即碰触轨道上的限位开关K2,电机停转。

另一方面IC4的①脚上电压通过R8对C3充电,当④脚为高电平时①脚翻转为低电平,BG3截止,J3释放。

若在关门过程中又有人要进出门,则BG1又接到信号,J2又工作,J2-2又转换到“a”位置,门便立即由“关”转为“开”。

因此,只要有人进出门,无论原来门处于何种状态,总会作开门运行。

当夜晚不需要自动门工作时,可将K3由“1”扳至“2”,这时本系统即构成报警器。

一旦有人走到门附近,J2-1与J3-1便相继接通市电,使声、光报警器发出警报。

在RS传感器上加装菲涅尔透镜可增大作用距离。

另外,为了使人进门与出门都能自动开门,须在门的两侧都装有图1所示的人体感应信号产生及放大电路,分别安装于门内门外的上方,将其输出端并联后接在图2电路的输入端即可。

实验点评:笔者对图1的人体感应信号产生及放大电路部分作了实验,当人进入红外探头的探测区域时,插座CZ的②脚有预期的高电平输出,说明红外探头信号能对后续控制电路进行控制,进而控制自动门和报警器。

太阳风暴2015/4/15 23:05:57热释电人体红外线传感器的原理和应用热释电人体红外线传感器是上世纪80年代末期出现的一种新型传感器件。

现在,已得到越来越广泛的应用。

目前,一些书刊只简要介绍了被动式热释电人体红外线传感器的基本应用。

本文就主动式和被动式两方面的基本应用原理作一大致介绍。

一、热释电人体红外线传感器的基本结构和原理目前,市场上出现的热释电人体红外线传感器主要有上海产的SD02、PH5324,德国产的LH1954、LH1958,美国HAMAMATSU公司产P2288,日本NIPPON CERAMIC 公司的SCA02-1、RS02D等。

虽然它们的型号不一样,但其结构、外型和电参数大致相同,大部分可以彼此互换使用。

热释电人体红外线传感器(以下简称:传感器)由敏感单元、阻抗变换器和滤光窗等三大部分组成。

图1为P2288、SD02、SCA02-1的外形图。

图1a为它们的顶视图,其中较大的矩形部分为滤光窗,两个虚线框矩形为敏感单元,面积约2x1mm2 ,间距1mm。

图1b为侧视图;图1c为底视图;它们的监视、探测角度如图1a、d,其中参数为SCA02-1的数据,其它两种的参数大致相同。

1.敏感单元其内部结构见图1a及图2。

对不同的传感器来说,敏感单元的制造材料有所不同。

如,SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。

这些材料再做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容,如图2中的P1、P2。

因为这两个小电容是做在同一硅晶片上的,而它们形成的等效小电容能自身产生极化,极化的结果是,在电容的两端产生极性相反的正、负电荷。

但这两个电容的极性是相反串联的。

这正是传感器的独特设计之处,因而使得它具有独特的抗干扰性。

当传感器没有检测到人体辐射出的红外线信号时,由于P1、P2自身产生极化,在电容的两端产生极性相反、电量相等的正、负电荷,而这两个电容的极性是相反串联的,所以,正、负电荷相互抵消,回路中无电流,传感器无输出。

当人体静止在传感器的检测区域内时,照射到P1、P2上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消。

传感器仍然没有信号输出。

同理,在灯光或阳光下,因阳光移动的速度非常缓慢,P1、P2上的红外线光能能量仍然可以看作是相等的,且在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感。

当环境温度变化而引起传感器本身的温度发生变化时,因P1、P2做在同一硅晶片上的,它所产生的极性相反、能量相等的光电流在回路中仍然相互抵消,传感器无输出。

从原理上讲,任何发热体都会产生红外线,热释电人体红外线传感器对红外线的敏感程度主要表现在传感器敏感单元的温度所发生的变化,而温度的变化导致电信号的产生。

环境与自身的温度变化由其内部结构决定了它不向外输出信号;而传感器的低频响应(一般为0.1~10Hz)和对特定波长红外线(一般为5~15um)的响应决定了传感器只对外界的红外线的辐射而引起传感器的温度的变化而敏感,而这种变化对人体而言就是移动。

所以,传感器对人体的移动或运动敏感,对静止或移动很缓慢的人体不敏感;它可以抗可见光和大部分红外线的干扰。

2.滤光窗它是由一块薄玻璃片镀上多层滤光层薄膜而成的,如图2中的M,滤光窗能有效地滤除7.0~14um波长以外的红外线。

例如,SCA02-1对7.5~14um波长的红外线的穿透量为70%,在6.5um处时下降为65%,而在5.0um处时陡降为0.1%;P2288的响应波长为6~14um,中心波长为10um。

物体发射出的红外线辐射能,最强波长和温度的关系满足λm*T=2989(um.k)(其中λm为最大波长,T为绝对温度)。

人体的正常体温为36~37.5。

C ,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um。

因此,人体辐射的最强的红外线的波长正好落在滤光窗的响应波长(7~14um)的中心。

所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。

综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。

菲涅尔透镜不使用菲涅尔透镜时传感器的探测半径不足2米,只有配合菲涅尔透镜使用才能发挥最大作用。

配上菲涅尔透镜时传感器的探测半径可达到10米。

例如,一些传感器对远在20米处快速行驶的汽车里的人体也能可靠地检测到。

菲涅尔透镜采用塑料片制作而成。

图3为它的平面图。

从图中可以看出,透镜在水平方向上分寸成3个部分,每一部分在竖直方向上又等分成若干不同的区域。

最上面部分的每一等份为一个透镜单元,它们由一个个同心圆构成,同心圆圆心在透镜单元内。

中间和下半部分的每一等份也为分别一个透镜单元,同样由同心圆构成,但同心圆圆心不在透镜单元内。

当光线通过这些透镜单元后,就会形成明暗相间的可见区和盲区。

由于每一个透镜单元只有一个很小的视角,视角内为可见区,视角外为盲区。

任何两个相邻透镜单元之间均以一个盲区和可见区相间隔,它们断续而不重叠和交叉,如图3b。

这样,当把透镜放在传感器正前方的适当位置时,运动的人体一旦出现在透镜的前方,人体辐射出的红外线通过透镜后在传感器上形成不断交替变化的阴影区(盲区)和明亮区(可见区),使传感器表面的温度不断发生变化,从而输出电信号。

也可以这样理解,人体在检测区内活动时,一离开一个透镜单元的视场,又会立即进入另一个透镜单元的视场,(因为相邻透镜单元之间相隔很近),传感器上就出现随人体移动的盲区和可见区,导致传感器的温度变化,而输出电信号。

菲涅尔透镜不仅可以形成可见区和盲区,还有聚焦作用,其焦点一般为5厘米左右,实际应用时,应根据实际情况或资料提供的说明调整菲涅尔透镜与传感器之间的距离,一般把透镜固定在传感器正前方1~5厘米的地方。

菲涅尔透镜一般采用聚乙烯塑料片制成,颜色为乳白色或黑色,呈半透明状,但对波长为10um左右的红外线来说却是透明的。

表1为热释电人体红外线传感器SCA02-1的主要电参数。

``二、热释电人体红外线传感器的基本应用图4是由P2288或SCA02-1构成的热释电人体红外线传感器检测与放大电路。

表1项目参数条件电源电压 2.2~10.0V源极电压0.3~2.0V 25.C源极阻抗47KΩId=6~43uA电平衡10%Max)频率响应0.3~30Hz 12db(Max)响应波长7.5~14um 平均大于70%工作温度-10~+50。

相关文档
最新文档