人体热释电红外感应电路bs0001
热释电红外感测器PIR的原理

图3、电源电路BISS0001的可重复触发/不可重复触发模式通过R22、R36来设置,使晶片A引脚为高电平或低电平来决定模式。
A为高电平的时候,晶片处在可重复触发模式;A 为低电平的时候,晶片处在不可重复触发模式。
输出延迟时间Tx由R16、R17、R12和C14来设定。
R15和C12决定输出控制信号的触发封锁时间。
Tx=24567*R*C14,其中R=R16,R17,R12。
Ti=R15*C12*24。
Vo为输出控制信号,根据不同的运用可以将Vo接光电偶合器的输入端进行大功率的开关控制;也可以将Vo接RF发射电路的触发信号,通过Vo控制RF电路发射输出“开”信号和“关”信号。
三、硫化镉光敏电阻(以下简称CDSCDS是一种光导器件,当光照射到CDS上时,其电阻值会发生变化。
光照越强,CDS的阻值越小。
在没有光照的情况下测得的CDS阻值为“暗电阻”,通常为几MΩ到几十MΩ;在有光照的情况下测得电阻为“亮电阻”,在光强度为10Lux的时候,亮电阻通常为几KΩ到几百KΩ。
通常对於一个CDS元件,它的暗电阻越大并且亮电阻越小,则说明它的灵敏度越好。
图4、CDS实物和结构图CDS的光谱回应范围为350-800nm,峰值在520-620nm之间。
CDS在可见光环境里灵敏度高,结构简单,成本低。
CDS光敏电阻的实物和结构如图4所示。
CDS的工作状态的稳定性可以通过γ值来说明。
一般均按10Lux和100Lux照度条件下,CDS的对应阻值R10和R100来计算其γ值。
γ=lg(R10/R100CDS的γ值在0.55~0.98之间。
在这里,Lux为发光强度的衡量单位,指的是1流明(lumen的光通量(Luminous flux均匀地分布在1平方米面积上的照度。
具体的,每平方米的面积上,受距离一米、发光强度为1烛光的光源,垂直照射的光通量。
适宜於阅读的光照强度约为60Lux。
CDS在较宽的测光范围内,γ值不能保持一致,特别是在高、低照度时,γ值差异较大;在低照度时回应缓慢,存在光滞效应;受环境温度的影响较大。
人体热释电红外线传感器照明电路3

人体热释电红外线传感器控制照明电路热释电人体红外线传感器是上世纪80 年月末期出现的一种新式传感器件。
热释电红外传感器不受白日黑夜的影响,可日夜不断地用于监测,宽泛地用于防盗报警。
红外照明控制器主要由光学系统、热释电红外传感器、信号滤波和放大、信号办理和继电器控制电路等几部分构成,其构造框图如下图。
光学系统热释电红信号继电器待测目标(菲涅尔透外传感器办理控制一、热释电人体红外线传感器的基本构造和原理热释电红外 (PIR) 传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新式高敏捷度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其变换成电压信号输出。
将输出的电压信号加以放大,即可驱动各样控制电路,如作电源开关控制、防盗防火报警等。
当前市场上常有的热释电人体红外线传感器主要有上海赛拉企业的SD02、PH5324,德国 Perkinelmer企业的LHi954、 LHi958,美国 Hamastsu企业的 P2288,日本Nippon Ceramic 企业的 SCA02-1、RS02D等。
固然它们的型号不同样,但其构造、外型和特征参数大概同样,大图 1 热释电传感器实物图部分能够相互交换使用。
热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大多数构成,如图 1 所示。
对不同的传感器来说,探测元的制造资料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288 由 LiTaO3制成。
将这些资料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两头则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,所以形成的等效小电容能自己产生极化,在电容的两头产生极性相反的正、负电荷。
传感器中两个电容是极性相反串连的。
当传感器没有检测到人体辐射出的红外线信号时,在电容两头产生极性相反、电量相等的正、负电荷,所以,正负电荷互相抵消,回路中无电流,传感器无输出。
当人体静止在传感器的检测地区内时,照耀到两个电容上的红外线光能能量相等,且达到均衡,极性相反、能图 2 双探测元热释电红外传感器量相等的光电流在回路中互相抵消,传感器仍旧没有信号输出。
人体热释放感应电路

人体热释放感应开关电路一、设计思想人体能量热释放有一特定波长红外线,由红外传感器检测到这种红外线的变化并予以放大选频处理后,可以推动适当的负载,就可以构成一个人体红外自动开关。
PIR RE200B热释电人体红外传感器能检测到人体移动引起的红外热能之变化并将它转换为电压量。
设计的思想是怎么将此电压量处理,用什么形式去推动负载,构成自动开关。
二、设计目的通过PIR RE200B热释电人体红外传感器及相应的处理信号的集成块构成一自动控制电灯的开关电路。
可以实现以下功能:⏹白天,不管有人无人灯都不会亮;⏹晚上,只要检测到人体信号,灯就会亮(有人灯亮,无人灯灭);⏹该开关电路应可接到220V的生活用电压,方便安装使用。
三、设计内容(一)、信号处理集成块BISS0001BISS0001是一款具有较高性能的传感信号处理集成电路。
(1)特点如下:1、 CMOS工艺; 2、数模混合; 3、具有独立的高输入阻抗运算放大器; 4、内部的双向鉴幅器可有效抑制干扰;5、内设延迟时间定时器和封锁时间定时器;6、采用16脚DIP封装。
BISSOOO1管脚图(2)管脚说明1 A --可重复触发和不可重复触发选择端。
当A为“1”时,允许重复触发;反之,不可重复触发2 VO-- 控制信号输出端。
由VS的上跳变沿触发,使Vo输出从低电平跳变到高电平时视为有效触发。
在输出延迟时间Tx之外和无VS的上跳变时,Vo保持低电平状态。
3 RR1-- 输出延迟时间Tx的调节端4 RC1--输出延迟时间Tx的调节端5 RC2--触发封锁时间Ti的调节端6 RR2--触发封锁时间Ti的调节端7 VSS--工作电源负端8 VRFI --参考电压及复位输入端。
通常接VDD,当接“0”时可使定时器复位9VCI触发禁止端。
当Vc<VR时禁止触发;当Vc>VR 时允许触发(VR≈0.2VDD)10 IB--运算放大器偏置电流设置端11 VDD--工作电源正端12 2OUTO--第二级运算放大器的输出端13 2IN-I--第二级运算放大器的反相输入端14 1IN+I--第一级运算放大器的同相输入端15 1IN-I--第一级运算放大器的反相输入端16 1OUTO--第一级运算放大器的输出端(3)集成块内部结构图(4)工作原理BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
热释电人体感应红外报警器设计制作教案

毕业设计热释电人体感应红外报警器设计制作学生学号:学生姓名:导师姓名:班级专业名称提交日期年月日答辩日期年月日年月摘要随着现在社会的发展,时代进步,高新技术的快速融入,人们的生活发生了巨大的改变,人们置购了大量高新技术的产品,许多高科技产品的使用越来越成为家庭生活的主旋律,因此人们对自己所处环境的安全要求就越来越高,特别是家居安全,不得不时刻留意不速之客的光顾。
现在许多小区都有着保安看管,但在一些农村就没有这些设施了,于是,许多家庭都安装了报警系统,这有效的保护了大家的财产安全。
在本文中,介绍一种利用热释电红外传感器进行监控,并进行报警的系统的设计。
热释电红外传感器,它的制作简单、成本低、安装比较方便,而且防盗性能比较稳定,抗干扰能力强、灵敏度高、安全可靠。
这种防盗器安装隐蔽,不易被盗贼发现,便于多用户统一管理。
本设计包括硬件和软件设计两个部分。
硬件部分包括单片机控制模块、红外探头模块、驱动执行报警模块、LED 控制模块等部分组成。
处理器采用51系列单片机STC89C52,程序使用C语言编写。
关键字:热释电红外传感器、STC89C52、红外线一、引言 (1)二、设计任务分析 (1)三、技术方案的详细设计(实施) (2)3.1本系统的设计方案 (2)3.1.1系统概述 (2)3.2硬件电路设计 (2)3.2.1红外感应部分 (3)3.3单片机部分 (8)3.3.1 STC89C52单片机简介 (8)3.3.2 单片机最小系统 (9)3.3.3按键控制电路 (10)3.3.4指示灯和报警电路 (11)3.4软件的程序实现 (11)3.4.1主程序工作流程图 (11)3.5 报警判断程序 (13)3.6 程序编写与调试 (13)3.7 硬件调试及调试中遇到的问题 (20)四、总结评价 (20)致谢 (21)参考文献 (21)附件一:总体原理图设计 (22)附件二:实物图 (23)附件三:程序源代码 (23)1一、引言随着科技的提高,电子电器飞速发展,人民生活水平有了很大提高。
热释电人体红外传感电路设计

热释电人体红外传感电路设计热释电红外传感器可探测人体辐射的红外能量,实现在探测范围内对运动人体的检测。
它以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
红外传感器电路加电压比较器,当人体进入检测区域的时候电压比较器就输出高电平,否则输出低电平。
目前基于热释电红外传感器的运动人体探测技术已经广泛的应用于入侵防范系统、照明自动控制、电梯节能控制等系统中。
在检测到没有人的情况下关闭房间内的灯:当无人进入检测区时,电梯不运转;当人要乘电梯进入检测区时,电梯开动载人上楼;当把人送上楼后若无人上电梯,则电梯停止运转。
这些都是热释电红外传感器的典型应用。
本系统中也采用了热释电人体红外传感器作为人数参数检测装置。
(1)热释电人体红外线传感器的基本结构和原理如图所示,热释电红外人体传感器由三部分组成,分别是敏感元件(双元热释电器件)、阻抗变换器(偏置电阻)和滤光窗。
图8热释电人体红外线传感器1)敏感元件敏感元件,是用热释电人体红外材料(通常是锆钛酸铝)制成的,先把热释电材料制成很小的薄片,再在薄片两面镀上电极,构成两个串联的有极性的小电容器。
将极性相反的两个敏感元做在同一晶片上,是为了抑制由于环境与自身温度变化而产生热释电信号的干扰。
而热释电人体红外传感器在实际使用时,前面要安装透镜,通过透镜的外来红外辐射只会聚在一个敏感元件上,以增强接收信号。
热释电人体红外传感器的特点是它只在由于外界的辐射而引起它本身的温度变化时,才给出一个相应的电信号,当温度的变化趋于稳定后就再没有信号输出,所以说热释电信号与它本身的温度的变化率成正比,或者说热释电红外传感器只对运动的人体敏感,应用于当今探测人体移动报警电路中。
2)场效应管和高阻值电阻Rg通常敏感元件材料阻值高达。
因此,要用场效应管进行阻抗变换,场效应管常用2SK303V3、2SK94X3等来构成源极跟随器,高阻值电阻Rg的作用是释放栅极电荷,使场效应管正常工作。
(完整版)红外热释电处理芯片BISS0001介绍

红外热释电处理芯片BISS0001介绍BISS0001是一款具有较高性能的传感信号处理集成电路,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。
它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。
特点CMOS工艺数模混合具有独立的高输入阻抗运算放大器内部的双向鉴幅器可有效抑制干扰内设延迟时间定时器和封锁时间定时器采用16脚DIP封装管脚图管脚说明引脚名称I/O功能说明1 A I可重复触发和不可重复触发选择端。
当A为“1”时,允许重复触发;反之,不可重复触发2 VO O 控制信号输出端。
由VS的上跳前沿触发,使Vo输出从低电平跳变到高电平时视为有效触发。
在输出延迟时间Tx之外和无VS的上跳变时,Vo保持低电平状态。
3 RR1 -- 输出延迟时间Tx的调节端4 RC1 -- 输出延迟时间Tx的调节端5 RC2 -- 触发封锁时间Ti的调节端6 RR2 -- 触发封锁时间Ti的调节端7 VSS -- 工作电源负端8 VRF I 参考电压及复位输入端。
通常接VDD,当接“0”时可使定时器复位9 VC I 触发禁止端。
当VcVR时允许触发(VR≈0.2VDD)10 IB -- 运算放大器偏置电流设置端11 VDD -- 工作电源正端2OU12O 第二级运算放大器的输出端T13 2IN- I 第二级运算放大器的反相输入端14 1IN+ I 第一级运算放大器的同相输入端15 1IN- I 第一级运算放大器的反相输入端1OU16O 第一级运算放大器的输出端T工作原理BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。
不可重复触发工作方式下的波形。
人体热释电红外感应电路bs0001

人体热释电红外感应电路TX0001人体热释电红外感应电路TX0001是一款具有较高性能的传感信号处理集成电路。
它和BISS0001芯片完全兼容,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。
它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。
TX0001完全兼容BIS0001,不但可以直接替代原用于BIS0001的场合,而且功耗更低,尤其是价格很有竞争力,以BIS0001为例,一般市场售价为3.6元,而TX0001价格可以做到2.2元,大批量价格另议。
感兴趣的客户可以购买样片进行测试,每次需支付15元的邮费。
特点*CMOS工艺*数模混合*具有独立的高输入阻抗运算放大器*内部的双向鉴幅器可有效抑制干扰*内设延迟时间定时器和封锁时间定时器*采用16脚DIP封装管脚图管脚说明工作原理TX0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。
不可重复触发工作方式下的波形首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。
然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。
由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V 时,可有效抑制±1V的噪声干扰,提高系统的可靠性。
COP3是一个条件比较器。
当输入电压Vc<VR(≈0.2VDD)时,COP3输出为低电平封住了与门U2,禁止触发信号Vs向下级传递;而当Vc>VR时,COP3输出为高电平,进入延时周期。
人体红外感应模块--BISS0001

111BISS0001组成。
当有人出现在它的探测区,传感器便能探测到信号并把信号传给单片机,单片机再根据实际情况是否该开启器件设备或让房间的电器设备处于一种可开启状态。
另外,关于走廊及洗手问用灯情况,当晚上有人经过时, 人体红外感应到人便开启走廊用灯或者洗手间用灯。
热释人体红外模块电路如图2所示。
图2热释人体红外电路图上图中,R3为光敏电阻,用来检测环境照度。
当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。
SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。
图中R6可以调节放大器增益的大小,原厂图纸选10K,实际使用时可以用3K,可以提高电路增益改善电路性能。
输出延迟时间Tx由外部的R9和C7的大小调整,触发封锁时间Ti由外部的R10和C6的大小调整,R9/R10可以用470欧姆,C6/C7 可以选0.11U。
3.1.1 BISS0001 芯片介绍(小四号黑体)BISS0001是一款传感信号处理集成电路。
静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器。
广泛用于安防、自控等领域能。
特点:CMOS工艺数模混合具有独立的高输入阻抗运算放大器内部的双向鉴幅器可有效抑制干扰内设延迟时间定时器和封锁时间定时器采用16脚DIP封装A W nil HCL KC2 胆咋5 ™/BESET3.1.1.1管脚图表3-1管脚说明工作原理BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。
不可重复触发工作方式下的波形。
首先,根据实际需要,利用运算放大器0P1组成传感信号预处理电路,将信号放大。
然后耦合给运算放大器0P2,再进行第二级放大,同时将直流电位抬高为VM(疋0.5VDD)后,将输出信号V2送到由比较器COP1和C0P2组成的双向鉴幅器,检出有效触发信号Vs。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体热释电红外感应电路TX0001
人体热释电红外感应电路TX0001是一款具有较高性能的传
感信号处理集成电路。
它和BISS0001芯片完全兼容,它配以热释电红外传感器和少量外接元器件构成被动式的热释电红外开关。
它能自动快速开启各类白炽灯、荧光灯、蜂鸣器、自动门、电风扇、烘干机和自动洗手池等装置,特别适用于企业、宾馆、商场、库房及家庭的过道、走廊等敏感区域,或用于安全区域的自动灯光、照明和报警系统。
TX0001完全兼容BIS0001,不但可以直接替代原用于BIS0001的场合,而且功耗更低,尤其是价格很有竞争力,以BIS0001为例,一般市场售价为3.6元,而TX0001价格可以做到2.2元,大批量价格另议。
感兴趣的客户可以购买样片进行测试,每次需支付15元的邮费。
特点
*CMOS工艺
*数模混合
*具有独立的高输入阻抗运算放大器
*内部的双向鉴幅器可有效抑制干扰
*内设延迟时间定时器和封锁时间定时器
*采用16脚DIP封装
管脚图
管脚说明
工作原理
TX0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路。
以下图所示的不可重复触发工作方式下的波形,来说明其工作过程。
不可重复触发工作方式下的波形
首先,根据实际需要,利用运算放大器OP1组成传感信号预处理电路,将信号放大。
然后耦合给运算放大器OP2,再进行第二级放大,同时将直流电位抬高为VM(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。
由于VH≈0.7VDD、VL≈0.3VDD,所以,当VDD=5V 时,可有效抑制±1V的噪声干扰,提高系统的可靠性。
COP3是一个条件比较器。
当输入电压Vc<VR(≈0.2VDD)时,COP3输出为低电平封住了与门U2,禁止触发信号Vs向下级传递;而当Vc>VR时,COP3输出为高电平,进入延时周期。
当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。
当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。
在Ti时间内,任何V2的变化都不能使Vo 跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。
以下图所示的可重复触发工作方式下的波形,来说明其工作过程。
可重复触发工作方式下的波形在Vc=“0”、A=“0”期间,信号Vs不能触发Vo为有效状态。
在Vc=“1”、A=“1”时,Vs可重复触发Vo为有效状态,并可促使Vo 在Tx周期内一直保持有效状态。
在Tx时间内,只要Vs发生上跳变,则Vo将从Vs上跳变时刻起继续延长一个Tx周期;若Vs保持为“1”状态,则Vo一直保持有效状态;若Vs保持为“0”状态,则在Tx周期结束后Vo恢复为无效状态,并且,同样在封锁时间Ti时间内,任何Vs的变化都不能触发Vo为有效状态。
应用线路图
TX0001的热释电红外开关应用电路图
上图中,运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信号Vo经晶体管T1放大驱动继电器接通负载。
上图中,R3为光敏电阻,用来检测环境照度。
当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。
SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。
输出延迟时间Tx由外部的R9和C7的大小调整,值为Tx≈24576xR9C7;触发封锁时间Ti 由外部的R10和C6的大小调整,值为Ti≈24xR10C6。
在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。
被动式热释电红外探头的工作原理及特性:
在自然界,任何高于绝对温度(-273度)时物体都将产生红外光谱,不同温度的物体,其释放的红外能量的波长是不一样的,因此红外波长与温度的高低是相关的。
在被动红外探测器中有两个关键性的元件,一个是热释电红外传感器(PIR),它能将波长为8一12um之间的红外信号变化转变为电信号,并能对自然界中的白光信号具有抑制作用,因此在被动红外探测器的警戒区内,当无人体移动时,热释电红外感应器感应到的只是背景温度,当人体进人警戒区,通过菲涅尔透镜,热释电红外感应器感应到的是人体温度与背景温度的差异信号,因此,红外探测器的红外探测的基本概念就是感应移动物体与背景物体的温度的差异。
另外一个器件就是菲涅尔透镜,菲涅尔透镜有两种形式,即折射式和反射式。
菲涅尔透镜作用有两个:一是聚焦作用,即将热释的红外信号折射(反射)在PIR上,第二个作用是将警戒区内分为若干个明区和
暗区,使进入警戒区的移动物体能以温度变化的形式在PIR上产生变化热释红外信号,这样PIR就能产生变化的电信号。
人体都有恒定的体温,一般在37度,所以会发出特定波长10微米左右的红外线,被动式红外探头就是靠探测人体发射的10微米左右的红外线而进行工作的。
人体发射的10微米左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10微米左右的红外辐射必须非常敏感。
2)为了仅仅对人体的红外辐射敏感,在它的辐射照面通常覆盖有特殊的菲泥尔滤光片,使环境的干扰受到明显的控制作用。
3)被动红外探头,其传感器包含两个互相串联或并联的热释电元。
而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几乎具有相同的作用,使其产生释电效应相互抵消,于是探测器无信号输出。
4)人一旦侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理而报警。
5)菲泥尔滤光片根据性能要求不同,具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。
被动式热释电红外探头的优缺点:
优点是本身不发任何类型的辐射,器件功耗很小,隐蔽性好。
价格低廉。
缺点是:
◆容易受各种热源、光源干扰
◆被动红外穿透力差,人体的红外辐射容易被遮挡,不易被探头接收。
◆易受射频辐射的干扰。
◆环境温度和人体温度接近时,探测和灵敏度明显下降,有时造成短时失灵。
红外线热释电传感器的安装要求:
红外线热释电人体传感器只能安装在室内,其误报率与安装位置和方式有极大的关系.。
正确的安装应满足下列条件:
1、红外线热释电传感器应离地面2~2.2米。
2、红外线热释电传感器远离空调, 冰箱,火炉等空气温度变化敏感的地方。
3、红外线热释电传感器和被探测的人体之间不得间隔家具、大型盆景、玻璃、窗帘等其他物体。
4、红外线热释电传感器不能直对门窗及有阳光直射的地方,否则窗外的热气流扰动和人员走动会引起误报,有条件的最好把窗帘拉上。
红外
线热释电传感器也不要安装在有强气流活动的地方。
5、安装探测器的天花板或墙要坚固,不能有晃动或震动。
红外线热释电传感器对人体的敏感程度还和人的运动方向关系很大。
红外线热释电传感器对于径向移动反应最不敏感, 而对于横切方向(即与半径垂直的方向)移动则最为敏感. 在现场选择合适的安装位置是避免红外探头误报、求得最佳检测灵敏度极为重要的一环。