电气自动化专业英语第三单元

合集下载

翻译电气工程及其自动化专业英语3

翻译电气工程及其自动化专业英语3

第6章(6)-3)Section 3 Operation and Control of Power Systems 第3节操作和控制的电力系统The purpose of a power system is to deliver the power the customers require in real time, on demand, within acceptable voltage and frequency limits, and in a reliable and economic manner. 该系统的目的,权力是为客户提供电力的时间为客户需要实际需求,对,在可接受的电压和频率的限制,在一个可靠和经济的方式。

In normal operation of a power system, the total power generation is balanced by the total load and transmission losses. 在电力系统正常运行的,总发电是平衡的总负荷和传输的损失。

The system frequency and voltages on all the buses are within the required limits, while no overloads on lines or equipment are resulted. 该系统的频率和电压的所有公共汽车都在规定的限额,而没有超载或设备上线造成的。

However, loads are constantly changed in small or large extents, so some control actions must be applied to maintain the power system in the normal and economic operation state. 但是,负载不断变化幅度小或大,所以一些控制行动必须适用于维持在正常和经济运行状态的电力系统。

自动化专业英语unit 3 A

自动化专业英语unit 3 A
2. substrate ['sʌbstreit] n. 基质;基片;衬底(等于 substratum)
3. component [kəm'pəunənt] n.成分,元件组件 adj. 组成的,构成的
4. principle ['prinsəpl] n.原理,原则;道义; 本义;根源,源泉
5. metallic [mi'tælik, me-] adj. 金属的,含金属的 n. 金属纤维
adv. 锐利地 n. 内行;尖头
Technical Terms
electronic counter 电子计数器 frequency synthesizer 频率合成器
digital instrument 数字仪器
Language points
1.Integrated circuit,or IC is a combination...to perform definite function involved in converting information.
Language points
4.Each set contains all the components such as transistors,diodes,and resistors which are interconnected with short fine metallБайду номын сангаасc stripes deposited on the wafer surface.
Language points
2. intend to打算做……,倾向于……,想要…… e.g. 1) I intend to work in the information services (service) industry, or market sectors. 我意向从事信息服务行业,或者市场销售行业。 2)I intend to give up my present post in order to get a more challenging opportunity. 为了获得一个更有挑战性的工作机会,本人打算放弃目前的职 位。 3)I intend to become the master of my own body level dream. 我意愿成为精通我自己身体水平梦想的大师。

电气工程及其自动化专业英语第三章课文翻译

电气工程及其自动化专业英语第三章课文翻译

Semiconductor switches are very important and crucial components in power electronic systems.these switches are meant to be the substitutions of the mechanical switches,but they are severely limited by the properties of the semiconductor materials and process of manufacturing. 在电力电子系统,中半导体开关是非常重要和关键部件。

半导体开关将要替换机械开关,但半导体材料的性质和生产过程严重限制了他们。

Switching losses开关损耗Power losses in the power eletronic converters are comprised of the Switching losses and parasitic losses. 电力电子转换器的功率损耗分为开关损耗和寄生损耗the parasitic losses account for the losses due to the winding resistances of the inductors and transformers,the dielectric losses of capacitors,the eddy and the hysteresis losses. 寄生损失的绕组电感器、变压器的阻力、介电损耗的电容器,涡流和磁滞损耗the switching losses are significant and can be managed. 这个开关损耗是非常重要的,可以被处理。

they can be further divided into three components:(a)the on-state losses,(b)the off-state losses and the losses in the transition states. 他们可以分为三个部分: 通态损耗,断态损耗和转换过程中产生的损耗。

(最新整理)(完整版)电气工程及其自动化专业英语

(最新整理)(完整版)电气工程及其自动化专业英语

电气工程及其自动化专业教研室
6
• The exciting or magnetizing current (励磁电流)can thus be very small. Further, the proportion of the total flux which is linked mutually by the two coils is greatly increased.
of two coils in close proximity. One coil of N1 turns is excited with
alternating current and therefore establishes a flux φ11 which alternates with the current (随时间交变). The other coil is linked
• the applied voltage 外施电压
• zero-power-factor 零功率因数
• the no-load power factor 空载功率因数
• formulate 用公式表示,系统地阐述
• saturation 饱和
2021/7/26
电气工程及其自动化专业教研室
4
Unit 11 The Transformer on No Load
a result (因此), is called the secondary winding.
2021/7/26
电气工程及其自动化专业教研室
7
• It should not be difficult to realize that the two functions are interchangeable: if coil 2 were excited instead, a mutual e.m.f. would be induced in coil 1 which would then become the secondary winding(二次绕组).

电气自动化专业英语全文翻译

电气自动化专业英语全文翻译

电气自动化专业英语全文翻译第一部分:电子技术第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器.一些工作需要精确测量面另一些工作只需粗略估计rough estimates.有些仪器被使用be used to仅仅solely是确定线路是否完整.最常用的测量测试仪表有:电压测试仪voltage testers,电压表voltmeters,欧姆表ammeters, ohmmeters 连续性测试仪continuity testers,兆欧表megohmmeters,瓦特表wattmeters还有瓦特小时表所有测量电值的表基本上都是电流表. 他们测量或是比较通过他们的电流值. 这些仪表可以被校准calibrate并且设计了不同的量程scale,以便to读出期望的数值.1.1 安全预防safety precaution仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的. 仪表的结构construction和操作的基本知识能帮助使用者按安全工作程序safe working order来对他们正确连接和维护.许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用interchangeably.注意:每种仪表只能用来测量符合设计要求的电流类型. 如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害.许多仪表被设计成are constructed to只能测量很低的数值,还有些能测量非常大的数值.警告: 仪表不允许超过它的额定rated最大值maximum limit. 不允许被测的实际数值超过exceed仪表最大允许值的要求再强调也不过分overemphasized.超过最大值对指针indicating needle有伤害,有害于interfere正确校准proper calibration,并且在某种情况下and in some instances 能引起仪表爆炸explode造成result in对作用者的伤害.许多仪表装备了are equippedwith过载保护over correct protection.然而,通常情况下电流大于仪表设计的限定仍然是危险的hazardous.1.2 基本仪表的结构和操作许多仪表是根据电磁相互作用electromagnetic interaction的原理动作的.这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁permanent magnet的磁极poles之间) .这种类型的仪表专门适合于is suit for直流电direct current.不管什么时候电流流过导体, 磁力magnetic force总会围绕导体形成is developed. 磁力是由在永久磁铁力的作用下起反应react的电流引起.这就引起指针的移动.导体可以制成线圈coil,放置在永久磁铁磁极之间的枢钮(pivot 中心)上.线圈通过两个螺旋型spiral弹簧springs连在仪器的端子上.这些弹簧提供了与偏差成正比proportional的恢复力deflection.当没有电流通过时,弹簧使指针回复到零.表的量程被设计来指明被测量的电流值.线圈的移动(或者是指针的偏移)与线圈的电流值成正比.如果必须要测量一个大于线圈能安全负载的电流,仪表要包含旁路bypass circuit 或者分流器shunt.分流器被容纳在仪表盒内或者连接到外部.例子一个仪表被设计成最大量程scale是10A.线圈能安全负载0.001A,那分流器必须被设计成能负载9.999A.当时.001A 流过线圈时指针指示10A.图1.1(A)说明了一个永久磁铁类型仪表.图1.1(B)显示了一个外部分流器连接到仪表端子上. 永久磁铁类型仪表可以被用作安培表或者电压表. 当量程被设计成指示电流并且内阻internal resistance保持最小时, 这个表可以作为安培表用. 当量程被设计成指示电压, 内阻相对relatively高一些时, 这个表可以用来测量电压值.注意:不管如何设计,指针移动的距离取决于线圈的电流值.为了让这类表用在交流电中,在设计时必须作微小的改动.整流器rectifier可以把交流变成直流电. 整流器合并incorporate进仪表中并且量程要指示出正确的交流电压值. 整流器类型的仪表不能用于直流电中并且它一般被设计成电压表.如图1.2,电测力计electrodynamometer是另一种能用于交流电alternating current的既能作安培表也能作电压表的仪器.它由两个固定线圈stationary coils和一个移动线圈movable coil构成consist of. 这三个线圈通过两个螺旋型spiral弹簧串联in series with在一起. 这个弹簧支撑住移动线圈.当电流流行性过线圈时移动线圈顺时针方向in clockwise direction移动.电测力计因为属永久磁铁型仪表it is in permanent magnet-type meters, 量程不是均匀分布的the scale is not divided uniformly. 作用在动线圈上的力根据流过该线圈的电流平方the square of the current flowing through the coil来变化vary with.有必要在量程开始比量程结束分割的密一点.分割点之间距离越大, 仪表的读数越精确.争取strive for 精确的读值an accurate reading是重要的.移动叶片moving-vane结构是仪表的另一种类型.电流流过线圈引起cause两个铁片iron stripes(叶片)磁化to become magnetized.一个叶片是可动的,另一个是固定的sationary.在两个叶片间的磁的作用引起可动叶片扭转turn.移动的数值取决于线圈的电流值.警告:所有描述的取决于磁力作用的仪器,都不要放置在另一个磁性物质附近.它的磁力可能对引起仪表故障或者导致测量值不准确.1.3 测量仪器的使用电压表a voltmeter是设计来is designed to测量measure电路applied a current的电压electrical pressure或者通过元器件across a component的压降voltage drop. 电压表必须与被测量的电路或元器件并联in parallel with.1.3.1 压力检验计(电压检测计)交-直流电压检验计是一种相当粗糙crude但对电工electrician来说很有用的仪器.这种仪器指示电压的近似值.更常见类型指示的电压值如下:AC,110,220,440,550V,DC,125,250,600V. 许多这种仪器也指示indicate直流电的极性polarity.那就是说(i.e=that is)电路中的导体是阳性positively(正)的还是阴性negatively(负) .电压检验计通常用来检验check公共电压common voltages,识别identify接地导体grounded conductor,检查to check for被炸毁的保险丝blown fuses,区分distinguish AC 和DC. 电压检验计很小很坚固rugged,比一般的电压表average voltmeter容易携带和保存.图1.31.4 描述了depict用电压检验计检查保险丝的用法methods.为了确定电路或系统中的导体接地, 把测试仪连接在导体和已建立的地之间. 如果测试仪指示了一个电压值,导体没有接地.对每一个导体重复这个步骤continue this procedure直到until零电压zero voltage出现is indicated(见图1.5) .为了确定任意两个导体间的近似电压值,把测试仪连接在导体之间.警告:要认真读并遵守电压检验计提供supplied的说明书instructions.1.3.2 电压表电压表比电压检验计测量更精确. 因为电压表与被测量的电路或元件并联, 必须有相对高一点的电阻. 内阻要保证通过仪表的电流最小. 流过仪表的电流越小, 对电路特性electrical characteristics的影响effect越小.仪表的灵敏度sensitivity用符号O/V 表示is stated.这个数值越高仪表的质量越好.高灵敏度可使电路特性的改变减到最小.电工使用的仪表精确度在95%到98%之间.这个精确度范围对大多数应用是满意的.然而, 电力工作者力求strive to obtain最精确的可能读数是重要的. 一个精确读数可以在仪表盘上显示standing directly in front of the meter face也可以直接读出来.如果在指针后面有镜子,调整视线的角度直到指针在镜子中看不到映象.如要更精确可以使用数字表.电压表有与电压检验计同样的应用. 电压表比电压检验计更精确. 因而, 也支持更多的应用. 例如,如果一个建筑物的供电电压低于正常值slightly below normal,电压表能指示出这个问题.电压表也用来确定馈电线on feeder和支线电路导体branch circuit conductors的压降值voltage drop.电压表有时有不只一个量程. 选择一个能更精确测量的量程很重要. 选择器开关范围达到这个目的.注意:开始用一个适当的高一点的量程,然后逐渐降低到在限定范围之内的最低量程.设定选择器开关在可用的最低量程上能使读数达到最精确.使用仪表之前,要检查仪表确保指针指在零上.在仪表盘下面有一个调整螺钉an adjustment screw.一个轻微的扭动就能使指针偏移.扭转调整螺钉使指针对准零线.当在DC 中使用电压表时,保持maintain正确proper的极性是很重要的.大多数的直流电源和仪表都用颜色标记color coded极性polarity.红色指示阳极,黑色指示阴极.如果电路和元件的极性未知,触一下端子的导线leads观察observing指针indicating needle.如果指针犹豫着试图attempts to摆动,仪表导线连接就要颠倒一下be reversed.警告:不要让仪表连接反的极性polarity reversed.1.3.3 安培表安培表是用来测量电路或部分电路的电流数量的. 他与被测电路元件串联连接. 仪表的电阻必须非常低这样不会影响restrict流过电路的电流. 当测量很灵敏的设备的电流, 安培表电流的轻微改变可能会引起设备的故障.安培表象电压表一样, 也有一个调零的调整螺钉. 许多仪表也有镜子帮助assist使用者保证读数精确in obtaining an accurate reading.安培表常用来找出过载或者开路.他们也用来平衡线路的负荷loads on multiwire circuits 和确定故障位置malfunctions.安培表总是与被测电路或元件串联连接.如果使用在DC 下要检查极性.图 1.6(A)显示了安培表测量电路的电流.图 1.6(B)显示的是AC 安培表.Chap2 固体功率器件的基本原理2.1 引言(绪论) 本章将集中讨论固态功率器件或功率半导体器件,并且只研究它们在采用相控(电压控制) 或频率控制(速度控制)的三相交流鼠笼式感应电机的功率电路中的应用.2.2 固态功率器件有五种用于固体交流电机控制中的功率元器件: (1) 二极管(2) 晶闸管(例如:可控硅整流器SCR) (3) 电子晶体管(4) 门极可关断晶闸管(GTO) (5) 双向可控硅晶闸管SCR 和双向可控硅一般用于相位控制(相控) .各种二极管,晶闸管SCR,电子晶体管,门极可关断晶闸管的联合体用于频控.这些器件的共性是:利用硅晶体形成的薄片构成P-N 结的各种组合.对二极管,SCR, GTO 一般P 结叫正极N 结叫负极;相应的电子晶体管叫集电极和发射极.这些器件的区别在于导通和关断的方法及电流和电压的容量. 让我们根据他们的参数简单看一下这些元器件. 2.2.1 二极管图 2.1 显示了一个二极管,左边部分显示的是在硅晶体中的一个PN 结,右边显示的是二极管的原理图符号. 当P 相对于N 是正时,由于节上有一个相当低的压降,前向电流开始流动.当极性相反时, 只有一个极小的反向漏电流流动.这些用图 2.2 阐明.前向电压通常大约有1V,不受电流额定值的影响. 二极管正向导通电流的额定值取决于其尺寸和设计, 而这二者是根据器件散热的要求来确定的,以保证器件不超过最大结温(通常为200C) . 反向击穿电压是二极管的另一个重要参数. 它的值更取决于二极管的内部设计而不是它的物理尺寸. 注意:一个二极管只有当加上正向电压时才会正向导通.它没有任何固有(内在的)的方法控制导通的电流和电压值. 二极管主要用在交流电路中作整流器,这意味着它们把AC 整流成DC,同时产生的直流电流和电压值没有固有的控制方法.单二极管可用额定值到4800A 和最大反向电压1200V, 2000A 最大反向电压4400V. 2.2.2 晶闸管图 2.3 显示了晶闸管(一般也叫可控硅)的PN 结排列和它的原理图符号.注意这不同的结从正到负是PNPN,还有一个门极连到了内部的P 层. 如果没有连门极,并且阳极加反向电压,从正极到负极就没有电流通过.这是因为内部P 结由于未通电而工作在阻断电路.这种情况对于正向阻断状态也是正确的.然而,当阳极是正的并且正信号作用到门上,则电流将从正极一直流向负极即使门极没有正信号. 换言之, 门极能打开晶闸管但不能关断它. 关断晶闸管的唯一方法是通过外部方式在正极强加上一个零电流. 因此在前向导通只能通过强加零电流停止方面, 晶闸管与二极管是相似的.然而,晶闸管与二极管在如何启动前向导通方面是不同的. (1)阳极是正(2)门时刻是正.这个特性暗指了术语"可控硅" . 图 2.4 阐明了晶闸管的稳态伏安特性.注意反向电压和反向泄漏电流的形状与二极管的很相似.反向电压导通时比二极管的高,通常有 1.4V.阻断状态也有一个极小的前向泄漏电流. 在二极管中,稳态电流值是由器件的性能和底座(散热器)散发的热量确定的.晶闸管的最大结温比二极管要低,大约在125C.这意味着在同样的额定电流下,加上 1.4V 的前向压降,晶闸管比二极管的前向压降大的多.单晶闸管可用额定值在最大反向电压2200V 超过2000A,在在最大反向电压4000V 超过1400A. 2.2.3 电子晶体管(电子管) 图2.5 列出了一个典型功率电子管的结排列,原理符号图和伏安特性.如果集电极为正, 除非在基电极和发射极间有电流才有电流从集电极到发射极. 与晶闸管比较, 只有在基极有电流时, 电子管没有从集电极到发射极的自锁电流. 基极开路, 集电极到发射极将阻断电流. 功率电子管与晶闸管在控制前向导通的启动时相似. 它与晶闸管不同的地方在于它能控制关断和交流电机频率控制所必需的换向. 注意伏安特性没有显示反向特性.一般的,一个反向分流二极管连在发射极和集电极之间, 以保护电子管受反向电压伤害.功率电子管的可用额定值是最高反向电压1000V400A. 2.2.4 门极可关断晶闸管GTO 图 2.6 显示了GTO 的原理符号.GTO 与晶闸管的相似处在于PNPN 结的排列和前向电流的操作.如果阳极是正的,导体的启动是通过作用在门上的正脉冲.然而硅片和结是利用特殊特性设计的,所以即使阳极保持正值,加到门上的强负电流作用迫使前向电流阻断.GTO 常用的瞬间额定值是PRV1200V2400A.2.2.5 双向可控硅图2.7 显示了双向可控硅的原理符号图.一个双向可控硅由一个特殊的晶闸管包(包含前向和反向晶闸管)组成,它的操作由一个门极控制.他们常用在调光器电路中或者作为继电器的开关, 这样截止态下很小的泄漏电流不会引起其它控制器的误操作. 随着增加电流容量可控硅的可用性使他们用于交流电机的相位控制中. 2.3 功率半导体容量功率器件在稳态交流电机马力范围大于600V 时如何用,用在哪里摘要显示在表 2.1 中. 马力额定值基于没有并联的器件. 2.4 功率半导体的物理特性在物理特性条件下,有三类最常用的功率半导体: (1)栓接式(2)薄片或冰球式(3)绝缘散热器类型.他们的共同特征是需要与其它器件有物理联系.这器件叫散热器,为了保持结温在设计值内把内部热量散发出去.散热器吸收结的热量通过散热片,轮片(螺旋桨叶片) 或者液体冷却剂发散出去.液体冷却剂几乎从不用于600V 级的固态交流电动机控制中,而且也不包含在我们的讨论中. 这三类功率半导体的不同在于它们如何安装, 他们如何与散热器连接. 2.4.1 栓接式螺纹部分可能是PN 结的一部分,或者是与有源电子部分电子绝缘.在任一种情况下,螺纹部分常常插入散热器的螺纹孔. 栓接式器件在小马力额定值下常用来作为直接功率控制器件, 在大马力额定值下常用来作为辅助保护器件.在后一种情况下,它们常直接安装在较大器件使用的散热器上,如冰球式设计. 2.4.2 冰球式器件典型冰球式功率器件可能是二极管, 可控硅或GTO. 尺寸范围直径从近似25MM 到100MM. 每一个平坦的面即不是P 也不是N 结.热传递和导电从这表面产生.冰球式器件典型安装是联接铝型材的散热器.特别的箝位电路,联接绝缘混合剂和扭矩扳手都是需要的,用来确定光热传递和电导率. 由于栓接式和冰球式器件的散热器都能传递电流, 他们必须与机械底托电子绝缘. 轮片能加到散热器上增加热量排放并且增大固定负荷状态的完成. 由于散热器能在同样电压水平下作为功率器件, 冰球式和栓接式的固态AC 电动机控制必须通过附件(外壳)供给.附件(外壳)必须有合适的通风口或热交换器使得热量能散发.它不会用在放在安全封套中的用法,例如象NEMA12 的密封盒或相似的外围物. 2.4.3 绝缘散热器件绝缘散热器功率器件可能是二极管,可控硅,GTO,三极管或双向可控硅.单个的包包含器件的联合体,在内部以线加固.区别的特征是术语"绝缘散热器" .有一个铝底盘在每个包下面.这个底板与功率器件之间是导热并绝缘的.结的大部分热量传给了铝盘.这个底板依次安装在第二个更大的散热底板上.这个更大的散热底板在对面有鳍状表面. 绝缘散热器的设计使它自己是个完全封闭的设计. 他们也有经过预包装的已经内部加固过的复合器件的优点. 他们的缺点是通过底部安装的底板散热的能力有限, 所以固定负荷状态必须小于开放的散热器—安装在冰球式器件上. 尽管如此, 绝缘散热器在一般应用和器件容量的使用上迅速增长. 在较高的左上角的排列是唯一的, 同样它联合了有所有封闭设计的绝缘散热器概念的冰球式的优点(例如,易替换,易互换) .它也被恰当的称为"开放块状"模式. 2.5 换流在深入的讨论实际的固态交流电机的控制之前, 将换流的概念和种类阐述清楚是必要的. 换流的不同类型指所有讨论的固态电动机控制. 换流是功率半导体器件中负载电流被截止或停止流动或转换到另一回路的过程. 有以下三种换流方式: (1)自然或线电压换流(2)负载换流和(3)强制换流. 2.5.1 自然或线换流图 2.8 显示了功率半导体电路把AC 转换成DC.这个列举chap 3 模拟电子3.1 介绍3.1.1 模拟和数字电子的对比我们已经研究了晶体管和二极管作为开关设备怎样处理被以数字形式描述的信息(数字信息) .数字电子象用电力控制开关那样使用晶体管: 晶体管被饱和或者切断.动态区域只是从一个状态到另一个状态的过渡. 对比起来, 模拟电子取决于晶体管和其他类型放大器的动态区域. 希腊词根"analog" 意味着" 以一定的比例" ,在这里表示信息被编码成与被描述的量(被表达量) 成正比的电信号. 在图 3.1 中我们的信息是某种音乐,是乐器的激励和回响自然发起(引起) .被传播出的声音在于空气分子的有规则的运动并且被最好作为声波理解. 在话筒(扩音器)的振动膜里的这些产生的运动,依次产生一个电信号.电信号的变化与声波成比例(在电信号方面的变化是声波的成比例表现) .电信号被通过电子放大,即利用输入放大器的交流电能将信号的功率放大. 放大器的输出驱动一个录音磁头并且在磁盘上产生波浪状的槽沟. 如果整个系统是好的,空气的一切声变将被记录在磁盘上,当记录被通过一个相似的系统播放时,信号通过一个扬声器作为声音能量再传播出来,结果原始音乐被如实的再现了. 基于模拟原则的电子系统形成一类重要的电子仪器. 收音机和电视的广播是模拟系统的典型例子,许多电子仪器也是模拟系统,它们的应用包括偏差检测(应变计量器) ,运动控制(测速机)和温度测量(热电耦) .许多电子仪器---电压表,欧姆表,安培表和示波器利用了模拟技术,至少部分利用了模拟技术. 在数字电子计算机被发展之前,模拟计算机一直使用.在模拟计算机中,微分方程里的未知量被用电信号来模拟. 这些信号被用电子的方法积分,比例变换和求和以获得方程的解,比起解析或数值运算的求解方法要容易一些. 3.1.2 本章的主要内容模拟技术广泛地运用频域的观点.我们首先扩大我们的频域的概念包括周期,非周期和随机信号. 我们将看到大多数模拟信号和过程可以被表示为频域. 我们将介绍频谱的概念, 也就是,用同时存在的很多频率来表达一个信号.带宽(频宽)(频谱的宽度) 在频域上将与时间域上的信息率有关. 频域的这个被阐述的概念也帮助我们区分线和非线性的模拟设备的影响. 线性电路被显示有"滤波器" 的能力而不需要频率组件.对比起来,新频率可以被象二极管和晶体管那样的非线性的设备产生.这种性能允许我们通过调幅和调频调制技术在频域上转换模拟信号, 这种调制技术已被公开广泛地使用公用和私人通信系统. 作为一个例子我们将描述一台调幅收音机的操作. 下面我们研究一下反馈的概念, 在模拟系统中通过反馈可以交换到象线性或者更宽的带宽那样合乎需要的质量. 如果没有反馈, 象音频放大器或者电视接收机那样的模拟系统最多提供了一个糟糕的性能. 理解反馈的好处可以提供正确评价模拟电子中运算放大器的很多用途的基础(提高对模拟电子中运算放大器的很多用途的认识) . 运算放大器(简写OP amps) 是模拟电路的基本组成部分,正如NOR 或非和NAND 与非门电路是数字电路的基本单元一样. 我们将介绍一些运算放大器一般应用, 以在模拟计算机里的他们的用途来结束. 3.2 运算放大器电路3.2.1 介绍(1) 运算放大器的重要性.运算放大器是一个在受负反馈控制的高增益的电子放大器,用来在模拟电路中完成很多运算功能.这样的放大器最初被发展完成运算,例如在模拟计算机里为微分方程的求解的积分和求和. 运算放大器的应用被增加了, 直到目前为止, 大多数模拟电子电路基于运算放大器技术.例如,你需要一个放大器获得10 倍的增益,便利, 可靠性, 费用考虑将确定使用一个运算放大器. 因此, 运算放大器形成模拟电路的基本构件, 正如NOR 或非和NAND 与非门电路是数字电路的基本单元一样. (2) 运算放大器模型典型的特性.典型的运算放大器是利用十多个晶体管,几个二极管和很多电阻器的一个复杂的晶体管放大器. 这样的放大器被在半导体芯片上批量生产并且售价少于 1 美元一个.这些部件是可靠,耐用的,并且在他们的电子特性接近理想. 图 3.2 显示一台运算放大器的基本特性和符号.有两个输入电压u+和u _ ,用大的电压增益差分放大, 通常达105 - 106. 输入电阻R 也很大, K -100 M 欧. 100 输出电阻Ro 很小, 10-100 欧. 放大器经常用正极(+ Ucc) 和负极(-Ucc) 电源提供直流电源. 对这个情况来说,输出电压在供电电压之间,- Ucc<Uo<+ Ucc. 有时一个电源接地( 即,"-Ucc" =0). 这样的话输出电压在0<Uo<+ Ucc 之间.电源连接很少被画进电路图,可以认为运算放大器和合适的电源连结起来.因此运算放大器接近一个理想的电压放大器,有高的输入电阻,低的输出抵抗和高的增益. 高增益通过使用强大的负反馈变为其他有用的特征.负反馈的全部好处被运算放大器电路利用了. 对那些早在这章里列举, 我们将为运算放大器电路还增加 3 个好处: 低扩张性, 便于设计,和简单的构造. (3) 这节的内容.我们首先分析两个普通运算放大器应用,反相和同相放大器.我们通过一个简单而有效对任何运算放大器电路使用的一种方法,推导出这些放大器的增益. 我们然后讨论有源滤波器.这是有(带了)增加了频率响应的电容器的运算放大器.然后我们简单讨论模拟计算机,以讨论运算放大器的一些非线性的应用来结束. 3.2.2 运算放大器(1) 反相放大器. 反相放大器,用图 3.3 显示,使用一个运算放大器和两个电阻. 运算放大器的输入是地(零信号) ; 负(-) 电源连接输入信号(通过Ri) 并且(通过RF) 反馈到输出信号.在下列讨论中容易混淆的是我们必须同时谈到两个放大器.运算放大器是在负反馈放大器里形成放大要素的一种放大器, 负反馈放大器包含运算放大器加上相关电阻. 为了减少混乱,我们保留术语" 放大器" 只用在反馈放大器的总体上.运算放大器绝不是一个放大器;而被叫为运算放大器.例如,如果我们对放大器提及输入电流,我们指通过R1 的电流,并非进运算放大器的电流. 我们在图里能求出 3.3 反相放大器的增益,通过求解基本的电路法则(KCL 和KVL) 或者通过试图把电路分成主要放大器和反馈系统模块.不过,我们将提出另一方法,这种方法基于运算放大器增益很高,接近无限.在如下内容里,我们将给一般的假设,这可提供给任何运算放大器电路;然后我们将把特定假设用于目前的电路.因此,我们将建立反相放大器的增益和输入电阻. (1) 我们假定输出表现良好不试图达到无限.因此我们假定负反馈使放大器稳定, 因此适度的输入电压产生适度的输出电压.如果电源是+ 10 和-10 V,例如,那些输出必须位于这些有限值之间. (2)因此,运算放大器的输入电压非常小,基本上零,因为它是输出电压除以运算放大器的大的电压增益U+-U _ =0 = 》U+= U _ 例如,如果lUol<10 V 并且A= l05, 然后我u+ u _ l<10 /lOs = 100 UV. 因此对任何运算放大器电路通常u + 和u _ 在100 uV 或更少内相等. 对在图3.3 的反相放大器来说, u+接地; 因此,u _ =0. 从而,放大器的输入电流将为Ui-u _ Ui 见(3.1) il = Ri ~ R 1 (3) 因为u+=u _ 并且Ri 很大,进入放大器的+极和-极的运算放大器的输入电流将非常小,基本上零见(3.2) 例如, Ri = 100 k, {i _ }<10-4 /lOs = 10-9 A. 对于反相放大器,公式(3.2) 暗示输入端的电流I 流过RF, 如图。

电气自动化专业英语1,2,3,5,8,13章翻译

电气自动化专业英语1,2,3,5,8,13章翻译

第一章电子测量仪表电子技术人员使用许多不同类型的测量仪器。

一些工作需要精确测量面另一些工作只需粗略估计。

有些仪器被使用仅仅是确定线路是否完整。

最常用的测量测试仪表有:电压测试仪,电压表,欧姆表,连续性测试仪,兆欧表,瓦特表还有瓦特小时表。

所有测量电值的表基本上都是电流表。

他们测量或是比较通过他们的电流值。

这些仪表可以被校准并且设计了不同的量程,以便读出期望的数值。

1.1安全预防仪表的正确连接对于使用者的安全预防和仪表的正确维护是非常重要的。

仪表的结构和操作的基本知识能帮助使用者按安全工作程序来对他们正确连接和维护。

许多仪表被设计的只能用于直流或只能用于交流,而其它的则可交替使用。

注意:每种仪表只能用来测量符合设计要求的电流类型。

如果用在不正确的电流类型中可能对仪表有危险并且可能对使用者引起伤害。

许多仪表被设计成只能测量很低的数值,还有些能测量非常大的数值。

警告:仪表不允许超过它的额定最大值。

不允许被测的实际数值超过仪表最大允许值的要求再强调也不过分。

超过最大值对指针有伤害,有害于正确校准,并且在某种情况下能引起仪表爆炸造成对作用者的伤害。

许多仪表装备了过载保护。

然而,通常情况下电流大于仪表设计的限定仍然是危险的。

1.2基本仪表的结构和操作许多仪表是根据电磁相互作用的原理动作的。

这种相互作用是通过流过导体的电流引起的(导体放置在永久磁铁的磁极之间)。

这种类型的仪表专门适合于直流电。

不管什么时候电流流过导体,磁力总会围绕导体形成。

磁力是由在永久磁铁力的作用下起反应的电流引起。

这就引起指针的移动。

导体可以制成线圈,放置在永久磁铁磁极之间的枢钮(pivot中心)上。

线圈通过两个螺旋型弹簧连在仪器的端子上。

这些弹簧提供了与偏差成正比的恢复力。

当没有电流通过时,弹簧使指针回复到零。

表的量程被设计来指明被测量的电流值。

线圈的移动(或者是指针的偏移)与线圈的电流值成正比。

如果必须要测量一个大于线圈能安全负载的电流,仪表要包含旁路或者分流器。

电气自动化专业英语3

电气自动化专业英语3
=ICE×RC, the voltage across the load (the lamp with
resistance Rc) URC +UCE =UCC, the supply voltage shown as 6V If UCE could fall to 0 (perfect closed switch) then IC could go no higher than UCC/Rc , even with higher base voltage and current. The transistor is then said to be saturated. Hence, values of input voltage can be chosen such that the output is either completely off, or completely on. The transistor is acting as a switch, and this type of operation is common in digital circuits where only "on" and "off" values are relevant.
Unit3 Transistor
Transistor as a switch Transistors are commonly used as electronic switches, for both high power applications including switched-mode power supplies and low power applications such as logic gates. In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises the base and collector current rise exponentially, and the collector voltage drops because of the collector load resistor. The relevant equations:

自动化专业英语unit3

自动化专业英语unit3

原句中没有行为主体,可适当添加, 原句中没有行为主体,可适当添加,如“人 有人” 我们” 们”、“有人”、“我们”等 。 A few years ago it was thought unbelievable that the computer could have so high speed as well so small volume. 几年前,人们还认为计算机具有如此高的运行 几年前,人们还认为计算机具有如此高的运行 速度和如此小的体积是一件难以置信的事。 速度和如此小的体积是一件难以置信的事。 不需要或无法讲出动作发出者,译成无主句。 不需要或无法讲出动作发出者,译成无主句。 What kind of device is needed to make the control system simple? 需要什么装置使控制系统简化? 需要什么装置使控制系统简化?
我要指出一点,这种模型的寻找、 我要指出一点,这种模型的寻找、行为特征及行为 特征与他们试图表示的实际环境间的关系的研究, 特征与他们试图表示的实际环境间的关系的研究, 以及为获得可靠的预测连同接下来采取行动而进行 的重要的修正, 的重要的修正,如果没有计算机及技术人员为研究 人员的帮助是不可能的, 人员的帮助是不可能的,这些技术人员已经成功地 把科学创意转化为稳定、可靠、经济的电子装置。 把科学创意转化为稳定、可靠、经济的电子装置。 我要指出一点,模型的建立、 我要指出一点,模型的建立、对行为特征及其所表 示的实际情形之间关系的研究, 示的实际情形之间关系的研究,以及一些重要的修 其目的是为了获得可靠预测以及制定决策, 正,其目的是为了获得可靠预测以及制定决策,这 一切如果没有计算机及技术人员为研究人员提供帮 一切如果没有计算机及技术人员为研究人员提供帮 助是不可能的, 助是不可能的,这些技术人员把科学创意成功地转 化为稳定、可靠、经济的电子装置。 化为稳定、可靠、经济的电子装置。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业英语第三单元3 Analog Electronics3.1 INTRODUCTION3.1.1 The Contrast between Analog and Digital ElectronicsWe have already explored how transistors and diodes are used as switching devices to process information which is represented in digital form. Digital electronics uses transistors as electrically controlled switches: transistors are either saturated or cut off. The active region is used only in transition from one state to the other.By contrast, analog electronics depends on the active region of tran sistors and other types of amplifiers. The Greek roots of “analog” mean “in due ratio”, signifying in this usage that information is encoded into an electrical signal which is proportional to the quantity being represented.713宿舍In Fig.3.1 our information is some sort of music, originating physically in the excitation and resonance’s of a musical instrument. The radiated sound consists in the ordered movement of air molecules and is best understood ad acoustic waves. These produce motion in the diaphragm of a microphone, which in turn produces an electrical signal. The variation in the electrical signal are a proportional representation of the sound waves. The electrical signal is amplifiedelectronically, with an increase in signal power occurring at the expense of the input AC power to the amplifier. The amplifier output drives a recording head and produces a wavy groove on a disk. If the entire system is good, every acoustic variation of the air will be recorded on the disk and, when the record is played back through a similar system and the signal reradiated ad sound energy be a loudspeaker, the resulting sound should faithfully reproduce the original music.Electronic systems based on analog principles form an important class of electronic devices. Radio and TV broadcasting are common examples of analog systems, as are many electrical instruments used in monitoring deflection(strain gages, for example), motion (tachometers), and temperature (thermocouples).Many electrical instruments-voltmeters, ohmmeters, ammeters, and oscilloscopes-utilize analog techniques, at least in part.Analog computers existed before digital computers were developed. In an analog computer, the unknowns in a differential equation are modeled with electrical signals. Such signals are integrated, scaled, and summed electrically to yield solutions with modes effort compared with analytical or numerical techniques.3.1.2 The Contents Of This ChapterAnalog techniques employ the frequency-domain viewpointextensively. We begin by expanding our concept of the frequency domain to include periodic, nonperiodic, and random signals. We will see that most analog signals and processes can be represented in the frequency domain. We shall introduce the concept of a spectrum, that is, the representation of a signal as the simultaneous existence of many frequencies. Bandwidth (the width of a spectrum) in the frequency domain will be related to information rate in the time domain.714宿舍This expanded concept of the frequency domain also helps us distinguish the effects of linear and nonlinear analog devices. Linear circuits are shown to be capable of “filtering” out unwanted frequency components. By contrast, new frequencies can be created by nonlinear devices such as diodes and transistors. This property allows us to shift analog signals in the frequency domain through AM and FM modulation techniques, which are widely used in public and private communication systems. As an example we shall describe the operation of an AM radio.Next we study the concept of feedback, a technique by which gain in analog systems is exchanged for other desirable qualities such as audio amplifiers or TV receivers would at best offer poor performance. Understanding of the benefits of feedback provides the foundation for appreciating the many uses of operational amplifiers in analog electronics.Operational amplifiers (op amps, for short) provide basic building blocks for analog circuits in the same way that NOR and NAND gates are basic building blocks for digital circuits. We will present some of the more common applications of op amps, concluding with their use in analog computers.3.3.2 OPERATIONAL-AMPLIFIER CIRCUITS3.2.1 Introduction(1) The Importance of OP Amps. An operational amplifier is a high-gain electronic amplifier which is controlled by negative feedback to accomplish many functions or “operations” in analog circuits. Such amplifiers were developed originally to accomplish operations such as integration and summation in analog computers for the solving of differential equations. Applications of op amps have increased until, at the present time, most analog electronic circuits are based on op amp techniques. If, for example, you required an amplifier with of 10, convenience, reliability, and cost considerations would dictate the use of an op amp. Thus op amp from the basic building blocks of analog circuits much as NAND and NOR gates provide the basic building blocks of digital circuits.(2) An OP-Amp Model Typical Properties. The typical op amp is a sophisticated transistor amplifier utilizing a dozen or more transistors,several diodes, and many resistors. Such amplifiers are mass produced on semiconductor chips and sell for less than $1 each. These parts are reliable, rugged, and approach the ideal in their electronic properties.Fig.3.2 shows the symbol and the basic properties of op amp. The two input voltages, u+and u-, are subtracted and amplified with a large voltage gain, A, typically 105~106. The input resistance, Ri, is large, 100KΩ~100MΩ. The output resistance, Ro, is small, 10~100Ω. The amplifier is often supplied with DC power from positive (+Ucc)and negative(﹣Ucc) power supplies. For this case, the output voltage lies between the power supply voltages, ﹣Ucc﹤Uo﹤+Ucc. Sometimes one power connection is grounded (i.e., “﹣Ucc”=0). In this case the output lies in the range, 0﹤Uo﹤+Ucc. The power connections are seldom drawn in circuit diagrams; it is assumed that one connects the op amp to the appropriate power source. Thus the op amp approximates an ideal voltage amplifier, having high input resistance, low output resistance, and high gain.The high gain is converted to other useful features through the use of strong negative feedback.All the benefits of negative feedback are utilized by op-amp circuits. To those listed earlier in this chapter, we would for op-amp circuits add three more: low expanse, ease of design, and simple construction.(3)The Contents of This Section. We begin by analyzing two commonop-amp applications, the inverting and uninverting amplifiers. We derive the gain of these amplifiers by a method that may be applied simple and effectively to any op-amp circuit. We then discuss active filters, which are op amp amplifiers with capacitors added to shape their frequency response. We then deal briefly with analog computers and conclude by discussing some nonlinear application of op-amp.3.2.2 Op-amp Amplifiers712宿舍(1) The Inverting Amplifier. The inverting amplifier, show in Fig.3.3, use an op-amp plus two resistors. The positive (+)input to the op-amp is grounded (zero signal); the negative (﹣)input is)and to the feedback signal from the connected to the input signal (via R1output (via R). One potential source of confusion in the followingFdiscussion is that we must speak of two amplifiers simultaneously. The op amp is an amplifier which forms the amplifying element in a feedback amplifier which contains the op amp plus associated resistors. To lessen confusion, we shall reserve the term “amplifier”to apply only to the overall, feedback amplifier. The op-amp will never be call ed an amplifier; it will be called the op-amp. For example, if we refer to the input current to the amplifier, we are referring to the current through Ri, not the current into the op-amp.We could solve for the gain of the inverting amplifier in Fig.3.3 either by solving the basic circuit laws (KCL and KVL) or byattempting to divide the circuit into main amplifier and feedback system blocks. We shall, however, present another approach based on the assumption that the op-amp gain is very high, effectively infinite. In the following, we shall give a general assumption, which may be applied to any op-amp circuit; then we will apply this assumption specifically to the present circuit. As a result, we will establish and input resistance of the inverting amplifier.We assume that the output is well behaved and does not try to go to infinity. Thus we assume that the negative feedback stabilizes the amplifier such that moderate input voltages produce moderate output voltages. If the power supplies are +10 and﹣10V, for example, the output would have to lie between these limits.Therefore, the input voltage to the op-amp is very small, essentially zero, because it is the output voltage divided by the large voltage gain of the op-ampu+﹣u_≈0⇒u+≈u_For example, if ∣Uo∣﹤10V and A=105, then ∣u+﹣u_∣﹤10\105=1+and u_ are equal with 100μV or less,for any op-amp circuit. For the inverting amplifier in Fig.3.3, u+is ground;therefore, u_≈0. Consequently, the current at the input to the amplifierwould bei 1= 1_R u Ui - ≈1R Ui (3.1) Because u +≈u_ and Ri is large, the current into the + and – op-ampinputs will be very small, essentially zero∣i +∣=∣i -∣=||RiU U +--≈0 (3.2) For example, for Ri =100KΩ, |i_|﹤104-/105=109-A.For the inverting amplifier, Eq. (3.2) implies that the current at the input, i i , flows through R f , as shown in Fig.3.4. This allows us to compute the output voltage. The voltage across R F would be i i R F and, because one end of R F is connected to u_≈0Uo=-i i R F =-1R U i R F Thus the voltage gain would beA u =Ui Uo =1R R F - (3.3) The minus sign in the gain expression means that the output will be inverted relative to the input: a positive signal at the input: a positive signal at the input will produce a negative signal at the output, Eq. (3.3) shows the gain to depend o the ratio R F to R 1. This would imply that onlythe ratio and not the individual values of R F to R 1 matter. This would betrue if the input resistance to the amplifier were unimportant, but the input resistance to an amplifier is often critical. The input resistance to the inverting amplifier would follow from Eq. (3.1);R i =i i i U ≈R 1 (3.4)For a voltage amplifier, the input resistance is an important factor, for if R i were too low the signal source (of U i ) could be loaded down by R i . Thus in a design, R 1 must be sufficiently high to avoid his loadingproblem. Once R 1 is fixed, R F may be selected to achieve the requiredgain. Thus the values of individual resistors become important because they affect the input resistance to the amplifier.Let us design an inverting amplifier to have a gain of ﹣8. The input signal is to come from a voltage source having an output resistance of 100Ω. To reduce loading, the input resistor, R 1, must be much larger than100Ω. For a 5﹪ loading reduction, we would set R 1=2000Ω. To achievea gain of -8(actually 95﹪ of -8, considering loading ), we require that R F =8×2000=16KΩ.Feedback effects dominate the characteristics of the amplifier. When an input voltage is applied, the value of u_ will increase. This will cause U 0 to increase rapidly in the negative direction . This negative voltagewill increase to the value where the effect of U 0 on the – input via R F cancels the effect of U i through R 1. Put another way, the output willadjust itself to withdraw through R F any current that U i injects through R 1, since the input current to the op-amp is extremely small. In this waythe output depends only R F and R 1.711宿舍 The Noninverting Amplifier. For thenoninverting amplifier show in Fig.3.5 the input is connected to the +input. The feedback from the output connects still to the – op amp input, as required for negative feedback. To determine the gain, we apply the assumptions outlined above.①Because u +≈u_, it follows thatu_ ≈U i (3.5)②Because i ≈0, R F and R 1 carry the same current. Hence U 0 is related to u_ through a voltage-divider relationshipu i =U 0 FR R R +11(3.6) Combining Eqs. (3.5) and (3.6), we establish the gain to beU i =U 0F R R R +11=A u =+(1+1R R F ) (3.7) The + sign before the gain expression emphasize that the output of the amplifier has the same polarity as the input: a positive input signal produces a positive output signal. Again we see that the ratio of R F and R 1 determines the gain of the amplifier.When a voltage is applied to the amplifier, the output voltage increase rapidly and will continue to rise until the voltage across R 1 reaches theinput voltage. Thus little input current will flow into the amplifier, and the gain depends only on R F and R 1. The input resistance to the noninvertingamplifier will be very high because the input current to the amplifier is also the input current to the op-amp, i +, which must be extremely small.Input resistance values exceeding 1 000 MΩ are easily achieved with this circuit. This feature of high input resistance is an important virtue of the noninverting amplifier.3.2.3 Active Filters(1)What Are Active Filters? An active filter combines amplification with filtering. The RC filters we investigated earlier are called passive filters because they provide only filtering. An active filter uses an op-amp to furnish gain but has capacitors added to the input and feedback circuits to shape the filter characteristics.We derived earlier the gain characteristics of an inverting amplifier in the time domain. In Fig.3.6 we show the frequency-do-main version. We may easily translate the earlier derivation into the frequency domainU i ⇒U i (ω) U 0⇒U 0(ω)A u =﹣1R R F ⇒F u (ω)=﹣)()(1ωωZ Z F The filter function, F u (ω), is thus the ratio of the two impedances,and in general with give gain as well as filtering. We could have written the minus sign as 180°, for in the frequency domain the inversion is equivalent to a phase shift of 180°.(2) Low-pass Filter. Placing a capacitor in parallel with R F (seeFig.3.7) will at high frequencies tend to lower Z and hence the gain of the amplifier; consequently, this capacitor an inverting amplifier into a low-pass filter with gain. We may writeF Z (ω)=R F ∣∣F C j ω1=F F C j R ω+)/1(1=FF F C R j R ω+1(3.8) Thus the gain would be)/(11111c u F F F u j A C R j R R F ωωω+=+-=(3.9) Where 1/R R Au F -=, the gain without the capacitor, andF C C R R /1=ωwould be the cutoff frequency. The gain of the amplifier isapproximately constant until the frequency exceeds C ω, after which thegain decreases with increasing ω. The Bode plot of this filter function is shown in Fig.3.8 for the case where R F =10K ωΩ, R 1=1KΩ, and C F =1μF.(3) High-pass filter. The high-pass filter show in Fig.3.9 uses a capacitor in series with R 1 to reduce the gain at low frequencies. Thedetails of the analysis will be left to a problem. The gain of this filter isu c c F u A j j R R F =+-=)/(1)/()(1ωωωωω)/(1)/(c c j j ωωωω+ Where 1/R R Au F -= is the gain without the capacitor and 11/1C R c =ω is the cutoff frequency, below which the amplifier gain is reduced. The Bode plot of this filter characteristic is show in Fig.3.10.(4) Other Active Filter. By using more advanced techniques, one can simulate RLC narrowband filters and, by using additional op-amps, many sophisticated filter characteristics can be achieved. Discussion of such applications lies beyond the scope of this text, but there exist many handbooks showing circuits and giving design information about active filters.3. 2. 4 Analog ComputerOften a differential equation is Fig.3.10 solved by integration. The integration may be accomplished by analytical methods or by numerical methods on a digital computer. Integration may also be performed electronically with an op-amp circuit. Indeed, op-amps were developed initially for electronic integration of differential equations.⑴ An Integrator . The op-amp circuit in Fig.3.11 uses negative feedback through a capacitor to perform integration.We have charge the capacitor in the feedback path to an initial value of U 1, and then removed this prebias(预偏置)voltage at t=0. Let usexamine the initial state of the circuit before investigating what will happen after the switch is opened. Since +u is approximately zero, sowill be _u , and hence the output voltage is fixed at ﹣1U . The inputcurrent to amplifier, R U i /, will flow through the 1U voltage will remainat ﹣1U until the switch is opened.After the switch is opened at t=0, the input current will flow through the capacitor and hence the U C will be,0,0)()0()(dt RC t U U t Uc ti ⎰+= Thus the output voltage of the circuit is0)(1)()(,,010≥--=-=⎰t dt t U RC U t U t U ti c (3.10) Except for the minus sign, the output is the integral of U i scaled by1/RC, which may be made equal to any value we wish by proper choiceof R and C.⑵ Scaling and Summing . We need two other circuits to solve simple differential equations by analog computer methods. Scaling refers to multiplication by a constant, such as12KU U ±=Where K is a constant. This is the equation of an amplifier, and hence we would use the inverting amplifier in Fig.3.5 for the – sign or the noninverting amplifier in Fig.3.5 for the + sign.A summer produces the weighted sum of two or more signals.Fig.3.12 shows a summer with two inputs. We may understand the operation of the circuit by applying the same reasoning we used earlier to understand the inverting amplifier. Since 0≈-u , the sum of the currents through 1R and 2R is22111R U R U i +=(3.11) The output voltage will adjust itself to draw this current through RF, and hence the output voltage will be)(221110R R U R R U R i U F F F ∙+∙-=-= The output will thus be sum of 1U and 2U , weighted by the gainfactors, 1/F R R and 2F R R , respectively. If the inversion produced by thesummer is unwanted, the summer can followed by an inverted, a scalier with a gain of -1. Clearly, we could add other inputs in parallel withR R and 21. In the example to follow, we shall sum three signals to solve a second order differential equation.(3) Solving a DE. Let us design an analog computer circuit tosolve the differential equation t u dt du dtu d 10cos 65222=++ t>0 U(0)=﹣2 and at dtdu 3+= t=0 (3.12) Moving everything except the highest-order derivative to the right side yields t u dt du dtu d 10cos 32222+--=(3.13) 女生宿舍The circuit which solves Eq. (3.12) is shown in Fig.3.13. The circuit consists of two integrators to integrate the left side of Eq. (3.13), a summer to represent the right side, and two inverts to correct the signs. The noninverting inputs are grounded, and the inputs and feedback are connected to the inverting input of the op-amps. Hence we have shown only the inverting inputs. With 22/dt u d the input to the integrators, the output of the first integrator will be-du/dt [with the battery giving the initial condition of 3V , as in Eq. (3.13)], and hence the output of the second integrator will be +u (with an initial condition of -2 V ). This output is fed into the summer, along with du/dt after inversion, and the driving function cos10 t, which must also be inverted to cancel the inversion in the summer. The input resistors connecting the three signals into the summer produce the weighting factors in Eq. (3.13), and hence the output of the summer represents the right side of Eq. ( 3.13 ). Wetherefor e connect that output to our “input” of 22/dtd to satisfy Eq.u(3.12 ). To observe the solution to Eq. (3.12 ), we merely open the switches at t=0.Clearly, these techniques can be applied to higher-order equations. Sophisticated use of analog computer requires a variety of refinements. Often, the equations being solved are scaled in time (time is sped up or slowed down on the computer) to accommodate realistic resistor and capacitor values. Also, voltage and current values can be scaled to bring the unknowns within the allowable range of the computer. In the next section we show how nonlinear operations can be introduced to solve nonlinear differential equations by analog methods.3. 2. 5 Nonlinear Applications of Op-ampsOp-amps can be combined with nonlinear circuit elements such as diodes and transistors to produce a variety of useful circuits. Below we discuss a few such applications. Many more circuits are detailed in standard handbooks and manufacturers’ application literature for their products.An Improved Half-Wave Rectifier. The op-amp in Fig 3.14 drives a half-wave rectifier. When the input voltage is negative the output of the op-amp will be OFF; hence the output will be zero. When the output is positive the diode will turn ON and the output will be identical to the input, because the circuit will perform as a non-inverting amplifier shownin Fig.3.5 with R F=0. Use of the op-amp effectively reduces the diode turn-on voltage. If the input voltage is greater than 0.7/A, where A is the voltage gain of the op-amp, the output voltage exceed 0.7V and turn on the diode. Hence the turn-on voltage is effectively reduced from 0.7~0.7/A.This circuit would not be used in a power supply circuit; rather, it would be used in a detector or other circuit processing small signals, where the turn-on voltage of the diode would be a problem.。

相关文档
最新文档