高中数学必修辅导教学材料

合集下载

高中数学教案资料书

高中数学教案资料书

高中数学教案资料书
教案一:函数概念与性质
一、教学目标:
1. 掌握函数的概念。

2. 了解函数的性质,包括定义域、值域、奇偶性等。

二、教学重点:
1. 函数的定义。

2. 函数的性质。

三、教学内容:
1. 函数的定义:函数是一个或多个变元之间的一种关系,其中每个变元对应一个确定的数值。

2. 函数的性质:定义域、值域、奇偶性等。

四、教学步骤:
1. 引入函数的概念,让学生了解函数与方程的区别。

2. 解释函数的定义,让学生能够理解并举例说明。

3. 讲解函数的性质,引导学生思考函数的一些特点。

4. 练习与讨论:让学生练习不同类型的函数计算,并讨论函数的奇偶性等性质。

五、教学方法:
1. 课堂讲解结合实例分析。

2. 学生自主练习,老师引导辅导。

六、教学评估:
1. 在课堂进度中检测学生对函数概念的理解程度。

2. 课后布置作业,考察学生对函数性质的掌握情况。

七、教学反思:
通过这节课的教学,学生应该能够掌握函数的概念与性质,为之后更深入的函数学习打下基础。

同时,通过教学评估和反思,及时发现学生学习中存在的问题,引导学生加强巩固复习。

高中数学必修二教案6篇

高中数学必修二教案6篇

高中数学必修二教案6篇高中数学必修二教案(精选篇1)教学目标1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重难点1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的.最大值和最小值。

教学过程一、创设情景,提出问题;设计意图:数学教育必须基于学生的“数学现实”,现实情境问题是数学教学的平台,数学教师的任务之一就是帮助学生构造数学现实,并在此基础上发展他们的数学现实.基于此,设置如下情境:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式在此基础上,引导学生认识基本不等式。

三、理解升华:1、文字语言叙述:两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式已知a,b是正数,A是a,b的等差中项,G是a,b的正的等比中项,A与G有无确定的大小关系两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:4、探究基本不等式证明方法:[问]如何证明基本不等式(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。

人教a版高中数学必修第一册教师教学用书

人教a版高中数学必修第一册教师教学用书

人教a版高中数学必修第一册教师教学用书引言概述:人教A版高中数学必修第一册教师教学用书是一本专为高中数学教师编写的教学辅助资料。

本教材内容全面、结构清晰,旨在帮助教师更好地进行教学活动。

本文将从五个大点出发,详细阐述该教材的优势和特点。

正文内容:1. 教材内容丰富多样1.1 课程设置全面人教A版高中数学必修第一册教师教学用书根据国家课程标准,全面设置了必修一的内容,包括数学的基本概念、函数与方程、平面向量等。

这些内容涵盖了高中数学的基础知识和重要概念,有助于学生全面理解和掌握数学知识。

1.2 知识点详细讲解教材中对每个知识点都进行了详细的讲解,包括定义、性质、定理等。

教师可以根据教材的指导,有针对性地进行教学,帮助学生深入理解数学知识,提高解题能力。

2. 教学方法灵活多样2.1 启发式教学人教A版高中数学必修第一册教师教学用书提倡启发式教学方法,通过提问、引导等方式,激发学生的思维,培养他们的问题解决能力和创新思维。

教师可以根据教材的指导,设计各种启发式的教学活动,使学生在实践中掌握数学知识。

2.2 探究式学习教材中还提供了一些探究性学习的活动,让学生通过实际操作、观察、实验等方式主动探索数学问题,培养他们的观察力和动手能力。

教师可以结合教材中的示例,引导学生进行探究式学习,提高他们的学习兴趣和学习效果。

3. 教材结构清晰3.1 章节划分合理人教A版高中数学必修第一册教师教学用书的章节划分合理,每个章节都围绕一个主题展开,内容之间有着明确的逻辑关系。

教师可以根据章节划分,有目的地进行教学,帮助学生理解和掌握数学知识。

3.2 知识点层次清晰教材中的知识点层次清晰,从基础知识到深入应用,逐步展开。

教师可以根据知识点的层次,有条理地进行教学,帮助学生逐步提高数学水平。

总结:人教A版高中数学必修第一册教师教学用书是一本内容丰富、教学方法灵活、结构清晰的教材。

它能够帮助教师更好地进行教学活动,提高学生的数学水平和解题能力。

高中数学补课班教案

高中数学补课班教案

高中数学补课班教案时间:X月X日
教学内容:函数的概念及性质
一、教学目标:
1. 理解函数的概念,能够区分自变量和因变量;
2. 掌握函数的性质,包括奇函数、偶函数、周期函数等;
3. 能够用数学语言描述函数的特点;
4. 能够解决简单的函数题目。

二、教学重点:
1. 函数的概念和性质;
2. 函数的图像及特点;
3. 奇偶性和周期性的判断。

三、教学内容:
1. 函数的概念介绍及示例分析;
2. 函数的性质:奇函数、偶函数、周期函数等;
3. 函数的图像及特点;
4. 习题讲解及课堂练习。

四、教学方法:
1. 理论讲解结合示例分析;
2. 利用教学资源进行互动教学;
3. 师生互动讨论解题思路;
4. 课堂练习,巩固学习成果。

五、教学过程:
1. 引入:通过举例讲解函数的概念;
2. 理论讲解:介绍函数的性质及特点;
3. 讲解示例:展示几个典型函数的图像及特点;
4. 课堂练习:让学生自行解决几道函数题目;
5. 总结:回顾本节课的重点内容,梳理学习内容。

六、作业安排:
1. 完成课后习题,巩固学习成果;
2. 预习下节课内容。

七、教学反馈:
1. 学生的作业完成情况及理解程度;
2. 学生对函数概念及性质的掌握情况;
3. 对教学过程的评价建议。

八、教学资源:
1. 课本资料;
2. 多媒体教学资源;
3. 习题集。

以上为本次高中数学补课班教案范本,仅供参考。

高中数学辅导备课教案范文

高中数学辅导备课教案范文

高中数学辅导备课教案范文
一、教学目标:
1.掌握数学基本概念和方法,提高数学运算能力;
2.培养学生分析问题、解决问题的能力;
3.激发学生学习兴趣,提高学生学习动力。

二、教学内容:
本节课主要讲解平方根的概念和计算方法。

三、教学重难点:
1.平方根的定义和性质;
2.如何计算一个数的平方根。

四、教学准备:
1.教师:准备PPT课件、教材、教具等;
2.学生:课本、笔记本、铅笔等。

五、教学过程:
1.导入:通过实际例子引入平方根的概念,激发学生兴趣。

2.讲解:介绍平方根的定义和性质,讲解平方根的计算方法。

3.练习:让学生做一些简单的练习题,巩固所学内容。

4.讨论:与学生讨论平方根的应用和实际意义。

5.总结:对本节课所学内容进行总结,澄清学生对平方根的理解。

六、课后作业:
1.完成课后练习题;
2.预习下节课内容。

七、教学反思:
本节课教学过程中,学生积极参与,表现出较强的学习兴趣,但有些学生在计算平方根时存在困难,需要加强相关练习。

下节课将针对这一问题进行更多练习,提高学生的计算能力。

备课教案高中数学必修一

备课教案高中数学必修一

备课教案高中数学必修一
教学目标:
1. 了解数列的定义和基本性质。

2. 学会求等差数列的通项公式和前n项和公式。

3. 掌握等比数列的性质及通项公式。

4. 能够解决实际问题中的数列应用题。

教学重点:
1. 理解数列的定义和性质。

2. 求等差数列的通项公式和前n项和公式。

3. 等比数列的性质及通项公式。

教学难点:
1. 解决实际问题中的数列应用题。

教学准备:
1. 课本、教学PPT
2. 板书、彩色粉笔
3. 数列相关的练习题
教学过程:
一、复习导入(10分钟)
通过反馈上节课内容,复习数列的定义及基本性质。

二、讲解数列的概念和分类(15分钟)
1. 数列的定义和性质。

2. 等差数列的概念及通项公式。

3. 等比数列的概念及通项公式。

三、练习与讨论(20分钟)
教师出示练习题,让学生在小组内讨论解题思路,并进行归纳总结。

四、解答疑惑(10分钟)
学生提出问题,教师解答疑惑并进行相关知识的拓展。

五、课堂小结(5分钟)
对本节课所学内容进行总结,并展望下节课内容。

六、作业布置(5分钟)
布置相关作业,要求学生巩固所学知识,并预习下节课内容。

教学反思:
本节课主要介绍了数列的概念及分类,通过讲解和练习,学生对等差数列和等比数列有了一定的了解。

在接下来的教学中,需要更多的实际应用题,帮助学生更好地理解和应用数列的知识。

同时,要注重激发学生的兴趣,培养其数学思维能力和解决问题的能力。

最新版-高中数学必修一教案【优秀4篇】

最新版-高中数学必修一教案【优秀4篇】

高中数学必修一教案【优秀4篇】高中数学必修一教案篇一重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

一。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

二。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数()fx和它对应,那么称:fAB为从集合A到集合B 的一个函数(function),记作:(),yfxxA其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fxxA叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3.映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法高中数学必修一教案篇二一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

高中数学必修4复习教案

高中数学必修4复习教案

高中数学必修4复习教案
第一部分:向量与空间解析几何
1. 向量的概念与运算
- 向量的定义:大小和方向确定的量
- 向量的运算:加法、减法、数乘、数量积、向量积
2. 向量的数量积
- 定义:两个向量的数量积等于两个向量的模的乘积与夹角的余弦值的乘积- 性质:交换律、分配律、数量积为零的条件
3. 向量的向量积
- 定义:两个向量的向量积是一个垂直于这两个向量构成的平面的向量
- 性质:满足右手定则、交换律、分配律等
4. 空间直线和平面
- 空间直线的方程:点向式、对称式、参数式等
- 空间平面的方程:点法式、一般式等
第二部分:概率与统计
1. 概率的基本概念
- 概率的定义:某一事件发生的可能性大小
- 概率的性质:介于0和1之间、互斥事件、独立事件等
2. 随机事件与概率
- 随机事件的分类:必然事件、不可能事件、对立事件等
- 求概率的方法:古典概型、几何概型、统计概型等
3. 统计的基本概念
- 统计的定义:收集、整理、分析和解释数据的方法
- 数据的统计特征:均值、中位数、众数等
4. 统计图的作画
- 直方图、饼图、散点图等的绘制方法
- 图形的解读:分布情况、相关性等
以上是高中数学必修4的复习教案范本,希望对你的复习有所帮助。

祝学习顺利!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一第1章 集 合§1.1 集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.考纲要求:①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.经典例题:若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件? 当堂练习:1.下面给出的四类对象中,构成集合的是( )A 2A C 3. A 4A 5. A 60__________{0}, a __________{a },π__________Q ,2__________Z ,-1__________R , 0__________N , 0Φ.7.由所有偶数组成的集合可表示为{x x = }.8.用列举法表示集合D={2(,)8,,x y y x x N y N =-+∈∈}为 . 9.当a 满足 时, 集合A ={30,x x a x N +-<∈}表示单元集. 10.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________.11.数集{0,1,x 2-x }中的x 不能取哪些数值? 12.已知集合A ={x ∈N|126x-∈N},试用列举法表示集合A .13.已知集合A={2210,,x ax x a R x R ++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围. 14.由实数构成的集合A 满足条件:若a ∈A, a ≠1,则11A a∈-,证明:(1)若2∈A ,则集合A 必还有另外两个元素,并求出这两个元素; (2)非空集合A 中至少有三个不同的元素。

§1.2 子集、全集、补集重难点:子集、真子集的概念;元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解;补集的概念及其有关运算.考纲要求:①理解集合之间包含与相等的含义,能识别给定集合的子集;②在具体情景中,了解全集与空集的含义;③理解在给定集合中一个子集的补集的含义,会求给定子集的补集.经典例题:已知A ={x |x =8m +14n ,m 、n ∈Z },B ={x |x =2k ,k ∈Z },问:(1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何?当堂练习:1.下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( ) A .0个B .1个C .2个D .3个2.若M ={x |x >1},N ={x |x ≥a },且N ⊆M ,则( ) A .a >1 B .a ≥1 C .a <1 D .a ≤1 3.设U 为全集,集合M 、NU ,且M ⊆N ,则下列各式成立的是( )A .M C U ⊇ N C UB .MC U ⊆M C .M C U ⊆N C UD . M C U ⊆N4. 已知全集U ={x |-2≤x ≤1},A ={x |-2<x <1 },B ={x |x 2+x -2=0},C ={x |-2≤x <1},则( )A .C ⊆AB .C ⊆A C U C .B C U =CD .A C U =B 5.已知全集U ={0,1,2,3}且A C U ={2},则集合A 的真子集共有( ) A .3个 B .5个 C .8个 D .7个6.若A B ,A C ,B ={0,1,2,3},C ={0,2,4,8},则满足上述条件的集合A 为________.7.如果M ={x |x =a 2+1,a ∈N*},P ={y |y =b 2-2b +2,b ∈N +},则M 和P 的关系为M _________P . 8.设集合M ={1,2,3,4,5,6},A ⊆M ,A 不是空集,且满足:a ∈A ,则6-a ∈A ,则满足条件的集合A 共有_____________个.9.已知集合A={13x -≤≤}, A C U ={|37x x <≤},B C U ={12x -≤<},则集合B= . 10.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 . 11.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形}; (2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=}; (3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥}; (4)11{|,},{|,}.2442k k A x x k Z B x x k Z ==+∈==+∈12. 已知集合{}2|(2)10A x x p x x R =+++=∈,,且⊆A {负实数},求实数p 的取值范围.13..已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},其中6,12z ≠,若A=B, 求A C U .14.已知全集U ={1,2,3,4,5},A ={x ∈U |x 2-5qx +4=0,q ∈R}. (1)若A C U =U ,求q 的取值范围;(2)若A C U 中有四个元素,求A C U 和q 的值; (3)若A 中仅有两个元素,求A C U 和q 的值.§1.3 交集、并集重难点:并集、交集的概念及其符号之间的区别与联系.考纲要求:①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;②能使用韦恩图(Venn )表达集合的关系及运算. 经典例题:已知集合A={}20,x x x -= B={}2240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.当堂练习: 1.已知集合{}{}{}2220,0,2Mx xpx N x xx q M N =++==--=⋂=且,则q p ,的值为 ( ). A .3,2p q =-=- B .3,2p q =-= C .3,2p q ==- D .3,2p q ==2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是( ). A .0B .1C .2D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且, B φ≠,则实数a 的取值范围是( ).4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N xg x g x =====则方程的解集是( ).A .MB . M ∩(NC U ) C . M ∪(N C U )D .M N ⋃5.有关集合的性质:(1) U C (A ⋂B)=( A C U )∪(B C U ); (2) U C (A ⋃B)=(A C U )⋂(BC U (3)A ⋃ (A C U )=U (4) A ⋂ (A C U )=Φ 其中正确的个数有( )个. A.1B . 2C .3D .467 8则910.(C U 1112(C U 14.1 (A ) {a} A (B )a ⊆A (C ){a}∈A (D )a ∉A 2.若{1,2} A ⊆{1,2,3,4,5},则集合A 的个数是( ) (A )8 (B )7 (C )4 (D )3 3.下面表示同一集合的是( )(A )M={(1,2)},N={(2,1)} (B )M={1,2},N={(1,2)} (C )M=Φ,N={Φ} (D )M={x|2210}x x -+=,N={1}4.若P ⊆U ,Q ⊆U ,且x ∈C U (P ∩Q ),则( )(A )x ∉P 且x ∉Q (B )x ∉P 或x ∉Q (C )x ∈C U (P ∪Q) (D )x ∈C U P 5. 若M ⊆U ,N ⊆U ,且M ⊆N ,则( )≠(A )M ∩N=N (B )M ∪N=M (C )C U N ⊆C U M (D )C U M ⊆C U N 6.已知集合M={y|y=-x 2+1,x ∈R},N={y|y=x 2,x ∈R},全集I=R ,则M ∪N 等于( ) (A ){(x,y)|x=21,,}22y x y R ±=∈, (B ){(x,y)|x 21,,,}22y x y R ≠±≠∈(C ){y|y ≤0,或y ≥1} (D ){y|y<0, 或y>1}7.50名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )(A )35 (B )25 (C )28 (D )15 8.设x,y ∈R,A={}(,)x y y x =,B= {}(,)1y x y x=,则A 、B 间的关系为( )(A )A B (B )B A (C )A=B (D )A ∩B=Φ9. 设全集为R ,若M={}1x x ≥ ,N= {}05x x ≤<,则(C U M )∪(C U N )是( ) (A ){}0x x ≥ (B ) {}15x x x <≥或 (C ){}15x x x ≤>或 (D ) {}05x x x <≥或10.已知集合{|31,},{|32,}M x x m m Z N y y n n Z ==+∈==+∈,若00,,x M y N ∈∈ 则0与集合,M N 的关系是 ( )(A )00y x M ∈但N ∉(B )00y x N ∈但M ∉(C )00y x M ∉且N ∉(D )00y x M ∈且N ∈ 11.集合U ,M ,N ,P 如图所示,则图中阴影部分所表示的集合是( )(A )M ∩(N ∪P ) (B )M ∩C U (N ∪P )(C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P ) 12.设I 为全集,A ⊆I,B A,则下列结论错误的是( )(A )C I AC I B (B )A ∩B=B (C )A ∩C I B =Φ (D ) C I A ∩B=Φ13.已知x ∈{1,2,x 2},则实数x=__________.14.已知集合M={a,0},N={1,2},且M ∩N={1},那么M ∪N 的真子集有 个.15.已知A={-1,2,3,4};B={y|y=x 2-2x+2,x ∈A},若用列举法表示集合B ,则B= .16.设{}1,2,3,4I =,A 与B 是I 的子集,若{}2,3A B =,则称(,)A B 为一个“理 想配集”,那么符合此条件的“理想配集”的个数是 .(规定(,)A B 与(,)B A 是两个不同的 “理想配集”)17.已知全集U={0,1,2,…,9},若(C U A)∩(C U B)={0,4,5},A ∩(C U B)={1,2,8},A ∩B={9}, 试求A ∪B .18.设全集U=R,集合A={}14x x -<<,B={}1,y y x x A =+∈,试求C U B, A ∪B, A ∩B,A ∩(C U B), ( C U A) ∩(C U B).19.设集合A={x|2x 2+3px+2=0};B={x|2x 2+x+q=0},其中p ,q ,x ∈R ,当A ∩B={}12时,求p 的值和A∪B .20.设集合A={(x,y)642++=x x y },B={}(,)2x y y x a =+,问:(1) a 为何值时,集合A ∩B 有两个元素; (2) a 为何值时,集合A ∩B 至多有一个元素. 21.已知集合A={}1234,,,a a a a ,B={}22221234,,,a a a a ,其中1234,,,a a a a均为正整数,且1234a a a a <<<,A∩B={a 1,a 4}, a 1+a 4=10, A ∪B 的所有元素之和为124,求集合A 和B .22.已知集合A={x|x 2-3x+2=0},B={x|x 2-ax+3a -5},若A ∩B=B ,求实数a 的值.NU P M第2章 函数概念与基本初等函数Ⅰ§2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y =f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用;经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域:(1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0). 当堂练习:1. 下列四组函数中,表示同一函数的是( ) A .2(),()f x x g x x ==B .2(),()()f x x g x x ==C .21(),()11x f x g x x x -==+- D .2()11,()1f x x x g x x =+⋅-=-2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上 3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A .5[,)4+∞ B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述: ( ) (1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去; (2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量; (4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R →=+∈∈中,若25→,则2-→ , →6.7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则(2)f = .8.规定记号“∆”表示一种运算,即a b ab a b a b R +∆=++∈,、. 若13k ∆=,则函数()f x k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 . 10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)0(1)()x f x x x+=-12.求函数y x =-13.已知f(x)=x 2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14沿折线(1(2 )上)1f (1)等于 (2A .3.已知函数(1)()11f x x x =++-, (2)()f x =2()33f x x x =+(4)0()()1()Rx Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .44.奇函数y =f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x -1,则函数f (x -1)的图象为 ( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a ,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 . 7. 已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是.8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y =f (x +1)是偶函数,那么函数y =f (x )的图象关于_________对称. 10.点(x,y)在映射f 作用下的对应点是33(,)22x y y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13. 已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。

相关文档
最新文档