用落球法测定液体粘度分析

合集下载

用落球法测量液体的粘度实验报告

用落球法测量液体的粘度实验报告

用落球法测量液体的粘度实验报告实验名称:用落球法测量液体的粘度实验目的:通过落球法测量液体的粘度,了解粘度的定义及计算方法。

实验原理:粘度是指液体流动阻力的大小。

通过落球法可以测量液体的粘度。

当一球从管子的上端落下时,由于液体的粘滞力,球不能自由下落,而是随时间逐渐减速直到停止。

落球法利用粘滞力对球体的作用直接测得液体黏度,计算公式如下:η=2(g-ρV)/9c其中,η为液体的粘度,g为重力加速度,V为球体体积,ρ为球体密度,c为液体中球体的附面积所造成的阻力系数。

实验器材:落球仪、不锈钢球、粘度杯、天平、计时器。

实验步骤:1. 将清洗干净的粘度杯放置于水平桌面上,从中心位置向四周倾倒粘度杯内液体,使其液面略高于粘度杯口。

2. 用干净柔软的织物揩干不锈钢球的表面和手指指纹,取适量液体注入粘度杯中。

3. 轻轻放入处理好的不锈钢球,并避免球与粘度杯发生碰撞。

4. 将不锈钢球从杯口自由落下,计时器开始计时。

5. 直到不锈钢球停止落下,记录下时间t。

6. 用天平称出不锈钢球的质量m,以及球的直径D和液体的温度θ。

7. 重复以上步骤3至6,得到不同时间下的球体速度v。

8. 用计算公式计算液体的粘度。

η=2(g-ρV)/(9c)9. 根据实验结果计算液体的平均粘度。

实验数据与结果:实验条件:球体质量m=0.13g,球的直径D=2mm,液体密度ρ=1.207g/cm³,液体表面张力=0.0592N/m,重力加速度g=9.8m/s²。

实验结果如下:实验时间(s)球体速度v(m/s)0 05 0.037310 0.073815 0.106520 0.139225 0.170230 0.1998计算平均粘度:η = 2(g-ρV)/(9c) = 44.478Pa·s实验结论:本实验使用落球法测量液体的粘度,测量结果为Η=44.48Pa·s。

根据测得的粘度,比较不同液体的粘度大小,观察不同温度下同一液体的粘度变化,加深对粘度概念和测量方法的理解。

用落球法测定液体粘度分析

用落球法测定液体粘度分析

用落球法测定液体粘度分析
一、简介
落球法是一种用于测量液体粘度的方法,它可以测量出微小的液体粘
度变化。

落球法原理是基于流体力学的理论,理论上,可以通过测量放入
液体中的球体的落速来确定粘度。

根据实际测量获得的实测数据,液体的
粘度可以由其临界落距和所记录的时间计算出来。

换句话说,落球法可以
帮助理解液体的流变性,以及在液体状态时的物理变化。

二、原理
落球法的原理是流体力学理论。

理论上,可以通过测量放入液体中的
球体的落速来确定粘度。

落球法是基于Stoke's Law来计算液体粘度。

Stoke's Law用于计算均匀流体在球体流动时的阻力。

在Stoke's Law中,临界半径表示球体在液体中的阻力大小。

因此,可以通过测量球体在液体
中的落速来确定临界半径,从而推导出液体的粘度。

在落球法中,实验者通常可以在一个液体中测量几个球体的落速以求
得准确的结果。

这些球体的大小通常介于2mm到25mm之间。

球体的大小
影响着测试中计算出的粘度值。

因此,不同大小的球体应该在实验中一起
使用,以确保测试的精度和准确性。

三、实验
落球法实验需要一个容器,这个容器可以是一个深度足够的烧杯、玻
璃杯或是一个管道。

实验室要求容器必须是透明的,因为实验中需要观察
球体的运动。

用落球法测量液体的粘度实验报告

用落球法测量液体的粘度实验报告

用落球法测量液体的粘度实验报告实验目的,通过落球法测量液体的粘度,探究不同液体在不同条件下的粘度变化规律,为液体的工程应用提供实验数据支持。

实验原理,落球法是通过测定液体中小球自由下落的时间来间接测量液体的粘度。

根据液体的黏性大小,小球在液体中下落的速度不同,通过测定下落时间来计算出液体的粘度。

实验仪器和材料:1. 实验室台秤。

2. 计时器。

3. 不同粘度的液体样品。

4. 直径为1cm的小球。

实验步骤:1. 将实验室台秤放置在水平台面上,并将计时器准备好。

2. 取不同粘度的液体样品,分别倒入实验容器中。

3. 将小球放置在实验容器中,观察小球在液体中的下落情况,并准备计时。

4. 用计时器记录小球自由下落的时间,并进行多次实验取平均值。

5. 根据实验数据计算出不同液体的粘度值。

实验结果与分析:经过多次实验测量,得到了不同液体在不同条件下的粘度值。

通过对实验数据的分析,可以发现不同液体的粘度大小存在一定的差异,这与液体的性质、温度等因素有关。

在实验过程中,我们发现温度对液体粘度的影响较大,温度升高会使液体粘度减小,这与液体分子间的相互作用有关。

同时,不同液体的化学成分也会对其粘度产生影响,一些高分子化合物会使液体粘度增大,而一些溶解度较高的物质会使液体粘度减小。

实验结论:通过落球法测量液体的粘度,我们得到了一系列的实验数据,并对实验结果进行了分析。

实验结果表明,不同液体在不同条件下的粘度存在一定的差异,这为液体的工程应用提供了重要的参考数据。

同时,我们也发现了温度和化学成分对液体粘度的影响,这为进一步研究液体粘度提供了一定的理论依据。

实验思考:在实验过程中,我们对液体的粘度进行了测量,并得到了一定的实验数据。

然而,在实际工程应用中,液体的粘度受到多种因素的影响,需要进一步研究和探讨。

未来,我们可以通过改变实验条件、引入新的液体样品等方式,进一步深入研究液体粘度的影响因素,为工程应用提供更为准确的数据支持。

用落球法测定液体粘度分析

用落球法测定液体粘度分析

4、数据处理
测量量 测量次第 平均值
1
圆筒直径m) 下落距离m) 小球直径 d(cm) 几何参数的测量(小球的密度=
2
3
4
5
=7.90103 Kg/m3,油的密度 =0.958 103Kg/m3)
2 3 4 5 6
次 (s)
1
实验过程中小球下落的时间
T1=
0C
,T2=
0C
5 数据处理要求 (1)利用
3、操作中的注意事项 1)实验时,油中应无气泡。 2) 因为油的粘度随温度改变会发生显著变化, 因此,实验中不要用手捧摸圆筒,以尽力保证 实验中油温恒定。每次实验结束时,应随时记 录油的温度。 3)小球放入时应轻而稳,不要使小球上附着 气泡,并且小球应沿各圆筒的中心轴线下落。 4)测量时间时,眼睛应与小球处于水平位置。
斯托克斯定律成立的条件有以下5个方面:
1)媒质的不均一性与球体的大小相比是很小的; 2)球体仿佛是在一望无涯的媒质中下降; 3)球体是光滑且刚性的; 4)媒质不会在球面上滑过; 5) 球体运动很慢,故运动时所遇的阻力系由媒质的粘 滞性所致,而不是因球体运动所推向前行的媒质的惯性 所产生。
当质量为、体积为的小球在密 度为的液体中下落时,作用在 小球上的力有三个,即:(1) 重力 mg ,(2)液体的浮 力 Vg ,(3)液体的粘性阻 力 6 r 。这三个力都作用 在同一铅直线上,重力向下, 浮力和阻力向上。 球刚开始下落时,速度很小,阻力不大,小 球作加速度下降。随着速度的增加,阻力逐渐加 大,速度达一定值时,阻力和浮力之和将等于重 力,那时物体运动的加速度等于零,小球开始匀 速下落,即 mg Vg 6 r
3体的粘滞系数测量装置示意图及原理图实验步骤1调整粘滞系数测定仪及实验准备1调整底盘水平在仪器横梁中间部位放重锤部件调节底盘旋钮使重锤对准底盘的中心圆点

液体粘度的测量(落球法)

液体粘度的测量(落球法)

液体粘度的测量(落球法)
落球法是一种测量液体粘度的方法,它通过观察液体中球体的时间落体来确定液体的粘度。

这种测量方法主要使用落球法检测仪和一种重量比较小的,新鲜的球体计算液体的粘度。

落球度测量方法的基本原理是:通过观察液体中球体的竖直运动时间,测量液体的粘度,这是一种粘度测量方法,可以在管子里进行实验测量。

落球法不仅可以测量液体的粘度,还可以测量狭窄管内液体的浊度、混合度等性能参数。

落球测量过程主要包括以下几个步骤:
1.调整落球仪:相兹设定和测量范围。

2.样品准备:将样品放入检测管,记录重量,并且确定该液体是否为新鲜的球体。

3.测量液体的粘度:放入质量较低的球体,让它穿过液体,用测量仪测量它从另一端到达的时间来确定液体的粘度
4.结果分析:根据测量仪测到的由球体穿过液体管道的时间,计算出液体的粘度值。

落球测量方法的主要优点是它可以快速准确地测量液体的粘度,并且灵敏度高,它也可以用于测量液体的浊度、混合度等性能参数。

然而也存在一些缺点,比如在测量受外界压力影响大的液体中,落球法的准确性会下降,这需要对数据进行重新处理才能获得准确的结果。

落球测量方法在实验重复性方面表现不错,并且可以用于实时非破坏性测量,这是此类测量方法的显著优点之一。

用落球法测定液体的粘度

用落球法测定液体的粘度

用落球法测定液体的粘度实验目的1.根据斯托克斯公式,用落球法测液体的粘度。

2.学习间接测量结果的误差估算。

实验仪器玻璃圆筒,小钢球,停表,螺旋测微器,直尺,温度表,镊子,提网(或磁铁),待测液体(甘油或蓖麻油)。

实验原理在液体内部,不同流速层的交接面上,有切向相互作用力,流速大的一层受到的力和它的流速方向相反,使之减速;流速小的一层受到的力和它的流速方向相同,使之加速。

这样,相互作用的结果,使相对运动减慢。

流体的这种性质就是粘滞性。

这一对力称为内摩擦力,也称为粘滞力。

当半径为r的光滑球形固体,在密度为粘滞系数为且液面为无限宽广的粘滞流体中以速度V运动时,若速度不大、球较小、液体中不产生涡流,则小球受到的粘滞力为F=6rV当密度为,体积为V体的小球在密度为的液体中下落时,作用在小球上的力有三个:重力P=V体g;液体的浮力f =V体g ,液体的粘滞阻力F=6rV这三个力都在同一铅直线上,如图4—1所示。

球开始下落时的速度很小,所受的阻力不大,小球加速下降,随着速度的增加,所受的阻力逐渐加大。

当速度达到一定值时,阻力和浮力之和将等于重力,即V体g =V体g+6rV此时小球的加速度为零,匀速下降,这个速度称为收尾速度(或平衡速度)。

将V体=代入上式可得(-)g=3Vd所以=(4-1)式中d=2r为小球的直径。

实验时使小球在有限的圆形油筒中下落,液体不是无限宽广的,考虑到圆筒器壁的影响,应对斯托克斯公式加以修正,式(4—1)变为=(4-2)式中,D为圆筒的内径,h为筒内液体的高度,d为小球直径。

实验测定时,由于d<<h,则式(4-2)分母中的(1+)1,该式可改写成=(4-3)由上式可以测定,在国际单位制中的单位是Pa·S。

实验内容及步骤1.实验采用大小相同的小钢球,用千分尺(关于千分尺的使用参见实验一)测出其中一个小球的直径,并在不同的方向上测8次,求其平均直径。

注意千分尺的零点读数。

落球法测液体的粘度系数

落球法测液体的粘度系数

05
结论与展望
实验结论
落球法是一种有效的测量液体粘 度系数的方法,通过观察小球在 液体中的自由落体运动,可以测
量出液体的粘度系数。
在实验过程中,需要注意消除空 气阻力和其他干扰因素的影响,
以确保测量结果的准确性。
本实验所测量的液体粘度系数与 文献值基本一致,证明了落球法 测液体粘度系数的可行性和准确
02Байду номын сангаас
通过测量小球在不同液体中下落 的时间,可以推算出液体的粘度 系数。
实验适用范围
该实验适用于测量牛顿型流体的粘度 系数,如水、油等。
对于非牛顿型流体,如泥浆、悬浮液 等,落球法可能不适用。
02
实验材料与设备
实验材料
01
02
03
待测液体
选择不同粘度的液体进行 测试,如水、甘油、糖浆 等。
钢球
选择直径适中的钢球,确 保其密度与待测液体相近, 以便更好地模拟自由落体 运动。
落球法测液体的粘度系数
• 实验原理 • 实验材料与设备 • 实验步骤 • 实验结果与分析 • 结论与展望
01
实验原理
粘度系数的定义
粘度系数
描述液体抵抗剪切力的能力,是流体 的重要物理性质之一。
单位
在SI单位制中,粘度系数的单位是帕秒 (Pa·s)。
落球法的基本原理
01
当小球在液体中下落时,会受到 液体的粘滞阻力作用。
数据整理与计算
数据整理
将实验过程中记录的落球时间、小球直 径、液体高度等数据整理成表格,方便 后续计算和分析。
VS
计算粘度系数
根据落球法原理,利用小球下落时间和直 径等数据,计算出液体的粘度系数。
结果分析

落球法测液体的粘度系数

落球法测液体的粘度系数

落球法测液体的粘度系数落球法是一种用于测量液体粘度的方法。

它主要通过让小球在液体中自由下落的过程中测量所需时间和落程距离,来计算液体的粘度系数。

其中,落球法是一种比较简单和常用的粘度测量方法,而且由于其测量原理比较简单,因此可以在实验室中比较方便地进行。

1.测量原理落球法的测量原理主要是通过测量小球在液体中下落的时间和位移来计算其粘度系数。

在进行实验时,会让一个球体自由下落,并利用静态力学平衡原理,来计算出液体的粘度系数。

根据牛顿运动定律,我们可以得到小球在液体中的运动方程:$$m \frac{dv}{dt} = (m-\Delta m)g -F_f$$其中,m是小球的质量,g是重力加速度,$\Delta m$是小球和液体之间的位移,$F_f$是摩擦力。

由于小球的速度和加速度很小,因此我们可以近似简化为:或者:其中,$\Delta x$是小球在液体中的位移,$\eta$是液体的粘度系数,r是小球的半径,v是小球的下落速度。

通过上述公式,可以计算出液体的粘度系数。

2.实验步骤落球法的实验步骤主要可分为以下几个部分:2.1. 器材准备:首先,需要准备一个测量液体粘度的装置,该装置主要包括一个简易的底部开口的垂直透明筒,用于盛放液体,并有一条尺度以测量液面的高度。

在筒的底部有一个小洞,开口和管的内径相同,并有一个可调压轮和一个刻度尺。

此外,还需要一个质量较小的小球,并测量它的准确半径和质量。

2.2. 测量液面高度:首先,在透明筒中加入液体并将小球放入筒中,使其自由下落并逐渐适应液体。

然后利用刻度尺测量液面高度,记录下来。

此时,可初步根据液面高度和球的初始位置估算粘度系数初值。

2.3. 测量小球下落时间:首先,将小球从静止位置释放,并让其自由下落,同时用秒表测量下落所需的时间,并记录下来。

重复多次测量,取平均值。

2.5. 计算粘度系数:通过实验测量得到小球下落的时间和下落距离,就可以利用公式计算液体的粘度系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、操作中的注意事项 1)实验时,油中应无气泡。 2) 因为油的粘度随温度改变会发生显著变化, 因此,实验中不要用手捧摸圆筒,以尽力保证 实验中油温恒定。每次实验结束时,应随时记 录油的温度。 3)小球放入时应轻而稳,不要使小球上附着 气泡,并且小球应沿各圆筒的中心轴线下落。 4)测量时间时,眼睛应与小球处于水平位置。
当质量为、体积为的小球在密 度为的液体中下落时,作用在 小球上的力有三个,即:(1) 重力 mg ,(2)液体的浮 力 Vg ,(3)液体的粘性阻 力 6 r 。这三个力都作用 在同一铅直线上,重力向下, 浮力和阻力向上。 球刚开始下落时,速度很小,阻力不大,小 球作加速度下降。随着速度的增加,阻力逐渐加 大,速度达一定值时,阻力和浮力之和将等于重 力,那时物体运动的加速度等于零,小球开始匀 速下落,即 mg Vg 6 r
( ' ) gd 2t 1 d d 18l (1 2.4 )(1 1.6 ) D H
计算
(2)计算标准不确定度 ' ' ' u ( uB ( ) , c ) ①计算 u A ( ) ,
uc (d ) ② uA (d ) 0 ,计算uB (d ) , uA (t ) ,uB (t ) ③计算 t ,
uc ()
The End
Original Score by: Faizaan Marolia Special Thanks: Thakkar & Rane
D 2 F f 3 P
1
L
H
液体的粘滞系数测量装置示意图及原理图
实验步骤 1、调整粘滞系数测定仪及实验准备 (1)调整底盘水平,在仪器横梁中间部 位放重锤部件,调节底盘旋钮,使重锤 对准底盘的中心圆点。 (2)将实验架上的上、下两个激光器接 通电源,可看见其发出红光。调节上、 下两个激光器,使其红色激光束平行地 对准锤线。 (3)收回重锤部件,将盛有被测液体的 量筒放置到实验架底盘中央,并在实验 中保持位置不变。 (4)在实验架上放上钢球导管。小球用 乙醚、酒精混合液清洗干净,擦干备用。 (5)将小球放入钢球导管,看其是否能 阻挡光线,若不能,则适当调整激光器 位置。
此时的速度称为终极速度。由此式可得
(m V ) g 6 r
令小球的直径为d,将
1 m d 3 ' 6
( ' ) gd 2t 18l
l d v , r 代入上式,得 , t 2
(2)
由于液体在容器中,而不满足无限 宽广的条件,这时实际测得的速度 和上述式中的理想条件下的速度之 间存在如下关系:
u A (l ) , uB (l ) , uc (l ) ④计算 l ,
2 2 2 2 2 2 2 2 ' ) u ( ) ( ) u ( d ) ( ) u ( t ) ( ) uc (l ) c c c ( ' ) d t l
⑤计算
2、用温度计测量油温,在 全部小球下落完后再测量一 次油温,取平均值作为实际 油温。 3、用液体密度计测量甘油 的密度,用游标卡尺测量筒 的内直径,用卷尺测量油柱 深度H。 4、测量下落小球的匀速运动速度 (1)测量上下两个激光束之间的距离。 (2)用激光光电门与电子记时仪测量下落时间。 5、计算液体的粘度及标准不确定度。
4、数据处理
测量量 测量次第 平均值
1
圆筒直径m) 下落距离m) 小球直径 d(cm) 几何参数的测量(小球的密度=
2
3
4
5
=7.90103 Kg/m3,油的密度 =0.958 103Kg/m3)
2 3 4 5 6
次 (s)
1
实验过程中小球下落的时间
T1=
0C
,T2=
0C
5 数据处理要求 (1)利用
其中
uc ( ) (
gd 2t ( ' ) 18l
2( ' ) gtd ( ' ) gd 2 ( ' ) gd 2t (1)l 2 , , ,l d 18l t 18l 18
(3)给出实验结 果:
用落球法测定液体粘度
实验原理
1.斯托克斯公式的简单介绍
粘滞阻力是液体密度、温度和运 动状态的函数。从流体力学的基本方 程出发可导出斯托克斯公式: F 6vr 粘滞阻力:
斯托克斯定律成立的条件有以下5个方面:
1)媒质的不均一性与球体的大小相比是很小的; 2)球体仿佛是在一望无涯的媒质中下降; 3)球体是光滑且刚性的; 4)媒质不会 滞性所致,而不是因球体运动所推向前行的媒质的惯性 所产生。
d d 0 (1 2.4 )(1 1.6 ) D H
(3)
式中为盛液体圆筒的内直径,为筒中液体的深度, 将(3)式代入(2)式得出
( ' ) gd 2t 1 d d 18l (1 2.4 )(1 1.6 ) D H
实验器材 ND-1型液体粘度系数测定仪、游标卡尺、螺旋测微器、 米尺、秒表、水银温度计、密度计、镊子、小钢球等
相关文档
最新文档