光纤陀螺仪原理及其工程应用
光纤陀螺仪的原理与应用

光纤陀螺仪的原理与应用1. 引言光纤陀螺仪(Fiber Optic Gyroscope,简称FOG)是一种基于光学原理的惯性导航仪器,用于测量和检测物体的角速度。
光纤陀螺仪在航空航天、导航定位、地震监测等领域有着广泛的应用。
2. 原理光纤陀螺仪的工作原理基于光的干涉现象。
其主要由光源、光纤环、检测器等组成。
•光源:光源发出具有特定波长的光信号。
•光纤环:光纤环是由光纤绕成的一个环状结构,一端接光源,另一端接检测器。
•检测器:检测器用于接收和检测光信号。
当光源发出光信号后,光信号会在光纤环中传播,形成一个封闭光路径。
当光纤环受到旋转等外界作用力时,由于光的波长不变,光信号在光纤环中的传播速度会受到影响,从而引起光的相位差的变化。
通过检测器检测到这一变化,可以得到物体的角速度信息。
3. 优势与应用光纤陀螺仪相较于传统的机械陀螺仪具有以下优势:•高精度:光纤陀螺仪具有高精度的角速度测量能力,能够实现微小角度的测量。
•稳定性:光纤陀螺仪的结构简单,没有磨损部件,因此具有较长的寿命和较好的稳定性。
•抗干扰能力强:光纤陀螺仪能够抵抗振动、温度变化等外界干扰,确保测量的准确性。
•体积小、重量轻:光纤陀螺仪相较于传统陀螺仪,具有体积小、重量轻的特点,适用于各种空间受限的环境。
由于光纤陀螺仪的优势,它在许多领域都有广泛的应用:•航空航天:光纤陀螺仪可以用于航空航天器的导航、姿态控制等,提高飞行安全性和精确度。
•自动驾驶:光纤陀螺仪可以用于自动驾驶车辆的定位和导航系统,实现精确的定位和路径规划。
•地震监测:光纤陀螺仪可以用于地震监测,实时检测地壳运动,提供地震预警。
•水下探测:光纤陀螺仪可以用于水下机器人的导航和定位,提供精确的水下探测能力。
4. 发展与未来趋势光纤陀螺仪是惯性导航技术的重要组成部分,随着科技的不断进步,光纤陀螺仪将继续发展并在更多领域应用。
•提高精度:目前的光纤陀螺仪已经具备较高的精度,但未来仍有提升空间。
光纤陀螺的原理和应用前景

光纤陀螺的原理和应用前景1. 简介光纤陀螺作为一种高精度惯导传感器,广泛应用于导航、无人驾驶、航天航空等领域。
本文将介绍光纤陀螺的原理和应用前景。
2. 原理光纤陀螺基于Sagnac效应,利用光在旋转系统中传播的差相位来测量旋转角速度。
其主要原理如下:•光路拆分:将入射光束分为两束,经过旋转系统后再合并。
一束沿顺时针方向传播,另一束沿逆时针方向传播。
•光程差:当没有旋转时,两束光在旋转系统中传播距离相等,所以两束光在合并后能够干涉产生等相位。
•旋转效应:当旋转系统发生旋转时,顺时针方向的光程会变短,逆时针方向的光程会变长,导致干涉产生相位差。
•相位差测量:通过检测干涉产生的相位差,就可以计算出旋转角速度。
3. 应用前景光纤陀螺具有高精度、高稳定性、长寿命等优点,因此在许多领域有着广泛的应用前景。
3.1 导航与定位光纤陀螺可以用于惯性导航系统,实现对航空器、潜水器、导弹等的精确导航和定位。
与传统的机械陀螺相比,光纤陀螺具有更高的精度和更小的体积,更适用于高精度导航需求。
3.2 航天航空在航天航空领域,光纤陀螺可以用于姿态控制、角速度测量、飞行参数监测等方面。
光纤陀螺的高精度和高稳定性保证了飞行器的准确性和安全性。
3.3 无人驾驶随着无人驾驶技术的快速发展,光纤陀螺作为惯性导航传感器,在自动驾驶车辆上具有重要的应用前景。
它可以提供准确的车辆姿态信息,改善导航、定位和轨迹控制的精度,提高无人驾驶的安全性和可靠性。
3.4 工业自动化光纤陀螺可以在工业自动化系统中用于测量和控制机器人、加工设备等的姿态和运动状态。
通过实时监测机器人的姿态信息,可以提高生产效率和产品质量。
4. 总结光纤陀螺基于Sagnac效应,利用光在旋转系统中传播的差相位来测量旋转角速度。
其具有高精度、高稳定性、长寿命等优点,在导航、航天航空、无人驾驶和工业自动化等领域有着广泛的应用前景。
随着技术的不断进步,光纤陀螺将继续发挥重要的作用,推动相关领域的发展和进步。
光纤陀螺仪的原理及应用解析

光纤线圈
光纤陀螺结构图
光纤陀螺仪原理-Sagnac效应
❖Sagnac效应[2]
如(a)所示,在无旋转条件下,两束光传输时间相等,为
tCCW
tCW
L 2R
cc
M CCW
M
l
M ’
如(b)所示,ω旋转条件下为
CCCW
tCCW
2R
c R
2R
tCW c R
(a)
(b)
图1 理想环形光路系统中的Sagnac效应
机械陀螺
光纤陀螺仪
光纤陀螺
[1] 孙 丽 , 王 德钊.光纤陀螺的最新 进展 [ J ] . 航 天 控 制 , 2 0 0 3, ( 3 ):7 5— 8 0 .
fibre optic gyroscope
❖ 光纤陀螺仪与传统机械陀螺仪相比,具有以下优点: ➢ 没有旋转部件和摩擦部件 ➢ 寿命长 ➢ 动态范围大 ➢ 瞬时启动 ➢ 结构简单 ➢ 尺寸小 ➢ 重量轻 ➢ ……
为:
R
8A c
[4]
※A为光传播路径包围的面积一般的向量表达
[4]《The Fiber-Optic Gyroscope 》 HervéC.Lefèvre 著 张 贵 才 王巍 译 国防工业出版社
光纤陀螺仪的分类
干涉式光纤陀螺 ( I — FOG)
fibre optic gyroscope
谐振腔光纤陀螺 ( R— FOG)
(a)
(b)
图1 理想环形光路系统中的Sagnac效应
(a)系统静止;(b)系统旋转
[2 ]《工程光学》 西安工业大学 韩 军、刘 钧 编著 国防工业出版社年 2012 . 2
干涉式光纤陀螺仪(I-fog)
光纤陀螺仪的原理和应用

光纤陀螺仪的原理和应用1. 光纤陀螺仪的基本原理光纤陀螺仪是一种基于光学原理的惯性传感器,用于测量物体在空间中的角速度和角度变化。
它是一种无接触、高精度、长寿命的传感器,广泛应用于导航、航天、航海、地震监测等领域。
光纤陀螺仪的原理基于光的干涉效应。
其主要构成部分包括光源、光纤环路、检测器等。
•光源:光源产生出一束光通过一个光纤环路。
•光纤环路:光源发出的光经过光纤环路后,沿着相反的方向传播。
光纤环路通常采用多圈的结构,可通过增加光纤的长度来提高灵敏度和稳定性。
•检测器:光纤环路的两个光束经过合并后,再传输到检测器上。
当光纤环路发生旋转时,其中一个光束相对于另一个光束发生相位差,这种相位差会被检测器测量。
光纤陀螺仪利用光的干涉效应来测量旋转角速度。
当光纤环路不发生旋转时,两个光束的相位差为零;而当光纤环路发生旋转时,由于受到Coriolis力的影响,两个光束会发生相位差,该相位差与物体旋转的角速度成正比。
通过测量相位差,可以计算出物体的旋转角速度。
光纤陀螺仪的工作原理基于震动陀螺仪的原理,但优势在于不需要旋转部件,故具有更高的精度和可靠性。
2. 光纤陀螺仪的应用光纤陀螺仪由于其高精度、长寿命等特点,被广泛应用于以下领域:2.1 航空航天在航空航天领域,光纤陀螺仪常用于惯性导航系统中,用于测量飞行器的姿态、角速度和加速度。
光纤陀螺仪可以为无人机、导弹、卫星等提供高精度的导航和定位能力。
2.2 海洋勘探在海洋勘探领域,光纤陀螺仪用于测量船只、潜水器和潜水员的姿态和行为。
通过监测船只或潜水器的姿态信息,可以提高海洋勘探的定位和导航精度,确保勘探任务的安全和高效完成。
2.3 地震监测光纤陀螺仪在地震监测中的应用越来越广泛。
它可以用于测量地震波传播路径的分布和地球的扭转等参数。
通过光纤陀螺仪的高精度测量,可以提高地震监测的准确性和灵敏度,为地震预警和地震学研究提供重要的数据支持。
2.4 惯性导航光纤陀螺仪在惯性导航系统中起到核心作用。
光纤陀螺的原理及应用

原理
物质受到外界磁场的作用时, 它内部的磁化强度也会发生 变化。表面铁磁共振就是利 用这种变化来检测磁场的方 法。
应用
除了光纤陀螺,表面铁磁共 振还可以应用于医学检测等 领域。
光纤角速度传感器
概念
光纤角速度传感器是利用光纤感 应器对角速度进行测量的装置。
测量原理
光纤角速度传感器是基于光学菲 涅耳效应的,通过比较两束相干 光的相位差来测量角速度。
应用
光纤角速度传感器广泛应用于航 空,航天领域,以及高精度测量 等领域。
光纤陀螺工作原理
1
测量转速
依据光学相位差,测量稳定的光路差,得到转速。
2
修正偏移
通过修正惯性元件对角速度的缓漏和扭曲,并对其加以合成,得到最终的修正偏 移值。
3
输出信息
将信息进行数字调制,再经过光电转换,输出信号。
光纤陀螺应用
航空航天领域中的应用
光纤陀螺可以利用其高精度,稳定性和快速响应等 特点,对导航系统的性能进行优化,有利于飞行器 的稳定性和定位准确性。
高精度测量领域中的应用
光纤陀螺结构先进,性能优良,可以应用于各种高 精度测量领域,例如海洋测量、地震勘测、气象预 报等。
结论
1 光纤陀螺的原理和应用非常广泛。
作为一种高精度、高精度度、高可靠性的惯 性导航仪器,它造福于各种不同领域的技术 创新和发展。
2 但光纤陀螺仍有发展空间。
例如在增加测量精度和减小体积和重量等方 面,还需要不断地进行技术突破和改进。
光纤陀螺的原理及应用
光纤陀螺是一种基于光学原理的惯性导航仪,是现代导航技术的重要组成部 分。
原理介绍
光纤陀螺是基于瞬时轴法和恒星法的惯性导航系统,在运动状态下利用光纤 角速度传感器和光学共振,利用光学效应对角速率进行测量,从而实现对飞 行姿态和导航状态的振是一种基于磁 共振原理的测量方法,常用 于测量光纤陀螺中的磁场。
光纤陀螺仪的原理结构

光纤陀螺仪的原理结构光纤陀螺仪的原理和结构是指用光纤做为传感器的陀螺仪。
它是一种利用光信号传输和干涉效应测量旋转角速度的设备。
光纤陀螺仪具有高精度、快速响应、可靠稳定等优点,被广泛应用于航空、航天、导航、地震勘测等领域。
光纤陀螺仪的基本结构包括激光器、光纤传输系统、光波导环和光探测系统。
激光器产生激光光束,光纤传输系统将激光光束通过光纤传输到光波导环。
光波导环是一个闭合环形结构,光纤会以环形方式被盘绕在上面。
当光波导环以角速度旋转时,由于旋转光路长度的改变,光信号会发生相位差。
最后,光探测系统通过干涉效应来测量光信号的相位差,从而可以间接推导出光波导环的旋转角速度。
光纤陀螺仪工作原理基于Sagnac效应和干涉效应。
Sagnac效应是指当光信号在旋转的均匀介质中传输时,在均匀介质静止时光程差为零,而当介质旋转时,由于光相对旋转介质传播速度的差异,会产生一个光程差。
而干涉效应是指由于光波的相干性,当两束光信号经过耦合后再次分离时,会产生干涉现象,即得到干涉光场。
利用干涉效应,我们可以通过测量干涉光场的变化来得到光波导环旋转角速度的信息。
具体地,光纤陀螺仪的工作过程如下:首先,激光器产生一束高强度的单色激光光束,并通过光纤传输系统将其传输到光波导环。
光波导环的设计使得光信号在环形结构中进行多次来回传输,从而增加了干涉效应的强度和灵敏度。
当旋转光波导环时,光信号会在环形结构上随着旋转方向进行分裂,并沿着相反方向传播。
在传播过程中,光信号经历了环形路径的不同长度,从而产生了一个光程差。
这个光程差会引起光信号的相位差。
光探测系统会接收到经过光波导环的光信号,并将其分为两路,分别称为参考光和测试光。
然后,参考光和测试光会通过一系列的光学器件进行处理。
光学器件可以将两路光信号重新耦合在一起,产生干涉现象。
光探测器会监测干涉光场的强度变化,然后将其转换为电信号。
根据干涉光场的变化,我们可以计算出光波导环旋转的角速度。
光纤陀螺仪原理及其工程应用

光纤陀螺仪原理及其工程应用光纤陀螺仪的基本构成由光源、光纤环、探测单元组成。
光源波长单色一致的激光,被光纤环分成两个光路,分别是顺时针和逆时针方向。
当光沿两个光路经过光纤环传播后,两束光会重合,形成干涉。
若光纤环不发生任何旋转,则两束光在探测单元中产生完全相干干涉。
但若光纤环发生了旋转,对应的光程差会发生变化,从而干涉现象也会发生变化,通过观察干涉光强的变化,就可以得到光纤陀螺仪的输出信号,进而计算出旋转角速度。
光纤陀螺仪在航空航天、导航定位、地震监测以及智能交通等领域中有着重要的应用。
在航空航天中,光纤陀螺仪可以用于飞行器的姿态控制、导航定位和惯性导航系统等,可以实现精确的飞行操作和导航定位。
在地震监测中,可以利用光纤陀螺仪对地震产生的地壳运动进行精确测量,以便及时预警和采取应急措施。
在智能交通领域中,光纤陀螺仪可以用于地铁、高铁等交通工具的导航定位和运行控制中,确保交通运行的精准和稳定。
另外,光纤陀螺仪还可以应用于油井钻井、测量仪器、无人车等领域。
在油井钻井中,可以利用光纤陀螺仪实现井深测量和定向钻井,提高钻井效率和精确度。
在测量仪器领域,光纤陀螺仪可以用于惯性测量单元、陀螺仪罗盘等设备中,实现精确的测量和定位功能。
在无人车领域,光纤陀螺仪可以用于自动驾驶系统中,提供准确的姿态和角速度信息,以实现安全稳定的驾驶。
综上所述,光纤陀螺仪具有高精度、稳定性好、抗振能力强等特点,使其在航空航天、导航定位、地震监测以及智能交通等领域中得到了广泛的应用。
随着技术的不断发展和创新,光纤陀螺仪在工程应用中将会有更广阔的前景和应用空间。
光纤陀螺仪的原理及应用

光纤陀螺仪的原理及应用光纤陀螺仪(Fiber Optic Gyroscope,FOG)是一种基于光学原理的精密惯性测量装置,用于测量和监测旋转运动。
它利用光纤的传输特性和Sagnac效应实现测量旋转运动的原理。
光纤陀螺仪的原理是基于Sagnac效应。
Sagnac效应是20世纪初法国物理学家Sagnac发现的一种光学现象,它是由于光在旋转系统中传播时,相对于旋转系统固连的坐标系,光沿顺时针和逆时针方向传播所需的时间不同而导致的。
光纤陀螺仪利用这个效应,通过测量光在光纤中的传播时间差来推测出旋转系统的旋转信息。
光纤陀螺仪的基本结构包括光源模块、光纤环和检测模块,其中光纤环是光纤陀螺仪的关键部件。
光纤环是由一个光纤来回缠绕而成的环形结构,通过环形的光纤路径,光可以顺时针和逆时针两个方向传播。
当光纤环不发生旋转时,两束光沿相同路径传播,其光程差为零;而当光纤环发生旋转时,两束光会在循环路线上产生不同程度的光程差,其大小与旋转角速度和环形光纤长度有关。
光纤陀螺仪通过光纤环中的相位差来测量旋转运动。
光纤陀螺仪通过向光纤环中注入一束激光光束,并分成顺时针和逆时针两个传输方向,经过一段一致长度的光纤后再汇合,再通过光探测器对两束光信号进行比较,并检测出相位差。
应用方面,光纤陀螺仪具有广泛的应用领域:1. 惯性导航系统:光纤陀螺仪广泛应用于航天、航海、军事等领域中的惯性导航系统中,用于测量航天器、舰船或导弹的姿态、角速度和角加速度,实现精确导航和定位。
2. 地震预警:光纤陀螺仪可以用于测量地震、地壳运动和地球自转等地球物理学参数,通过分析和监测这些数据,可以提前预警地震活动,为地震防灾提供重要信息。
3. 石油勘探:光纤陀螺仪可以应用于石油勘探领域,用于测量地下油田的地质构造、井筒位置和地震勘探过程中的旋转运动等参数,提高勘探效果和资源利用率。
4. 智能车辆导航系统:光纤陀螺仪可以用于智能车辆导航系统中,用于测量车辆的姿态和旋转运动,提供准确的车辆导航和行驶方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仍有较大差距。光纤陀螺技术将成为 21世纪惯性技术重点发展方向 , 必将在我国获得更大发展 ,在军民两用领域得到更广泛应用。
光纤陀螺仪的工程应用
战术导弹制导 航天器姿态调整 卫星定位 精密航天器应用
1.战略导弹系统和潜艇导航应用;2.卫星定向和跟踪;3.战术武器制导与控制系统;4.各种运载火箭应用;5.姿态/航向基 准系统; 6.舰船、导弹和军民用飞机的惯性导航;7.陆地导航系统(+GPS);8.天体观测望远镜的稳定和调向;9.汽车导航仪 、天线/摄像机的稳定、石油钻井定向、机器人控制、各种极限作业的控制置等工业和民用领域。
光纤陀螺仪具有的优点
仪器牢固稳定,耐冲击 结构简单,价格低廉 检测灵敏度和分辨率高 动态范围极宽 寿命长,信号稳定可靠 瞬时启动
光纤陀螺仪的工作原理
Sagnac效应
光纤陀螺的工作原理是基于萨格纳克(Sagnac)效应。萨纳克效 应是相对惯性空间转动的闭环光路中所传播光的一种普遍的相关效应, 即在同一闭合光路中从同一光源发出的两束特征相等的光,以相反的 方向进行传播,最后汇合到同一探测点。
效应。再通过角速度的时间积分即可确定旋转体的角位置或方位角。
光纤陀螺仪的分类
01 干涉型光纤陀螺仪(I—FOG) 02 谐振式光纤陀螺仪(R-FOG) 03 受激布里渊散射光纤陀螺仪(B-FOG)
光纤陀螺仪的分类
• 干涉型光纤陀螺仪(I—FOG),即第一代光纤陀螺仪,目
前应用最广泛。它采用多匝光纤圈来增强SAGNAC效应,
01 一个由多匝单模光纤线圈构成的双光束环形干涉仪可提 供较高的精度。 按照检测相位的方法可分为 开环型(左图)和闭环型(右图)
光纤陀螺仪的分类
• 谐振式光纤陀螺仪(R-FOG),是第二代光纤陀螺仪,采用环
形谐振腔增强SAGNAC效应,利用循环传播提高精度,因 此它可以采用较短光纤。R—FOG需要采用强相干光源来增 强谐振腔的谐振效应,但强相干光源也带来许多寄生效应, 如何消除这些寄生效应是目前的主要技术障碍。
光纤陀螺仪的工作原理
实际的光纤陀螺闭合回路是由N圈光纤绕制而成的,则积累的光程差 为:
相应的Sagnac相位差为:
式中, 0 为真空中的波长;A为一圈光纤所包围的面积
光纤陀螺仪的工作原理
设光纤圈直径为D;L为光纤敏感环的光纤总长度,则:
式中:
被称为比例因子,它表征光纤陀螺灵敏度的大小。所
以通过检测相位差 s ,就可以确定旋转角速度力 ,这就Sagnac
目录
CONTENTS
Part 01 /光纤陀螺仪的定义 Part 02 /光纤陀螺仪基本原理 Part 03 /光纤陀螺仪的分类 Part 04 /光纤陀螺仪的发展现状 Part 05 /光纤陀螺仪的工程应用
光纤陀螺仪的定义
光纤陀螺仪的实体图
光纤陀螺仪是光学陀螺仪的一种。所谓光学陀螺仪就是利用萨格纳克( Sagnac)效应构成的陀螺仪。由于光学陀螺仪不 像传统陀螺那样,依靠自转子的动量矩来敏感角运动。所以国外也把这类陀螺定义为非陀螺仪角运动敏感器。
02
光纤陀螺仪的分类
• 受激布里渊散射光纤陀螺仪(B-FOG),又称光 纤环形激光陀螺(F-RLG),或受激布里渊散射光纤环形激 光陀螺(B-FRLG) 。
03
光纤陀螺仪的发展现状
• 光纤陀螺的发展是日新月异的。许多大公司出于对其市场前景的看好,
也纷纷加入到研究开发的行列中来。由于光纤陀螺在机动载体和军事 领域的应用甚为理想,因此各国的军方都投入了巨大的财力和精力。
PPT模板下载: 节日PPT模板: PPT背景图片: 优秀PPT下载: Word教程: 资料下载:
范文下载:
教案下载:
行业PPT模板: PPT素材下载:
PPT图表下载: PPT教程: Excel教程: PPT课件下载: 试卷下载:
光纤陀螺仪的发展现状
• 到目前为止 ,光纤陀螺已从供战术应用的低精度型向导航用的中精度
和高精度型发展 ,以光纤陀螺为基础的惯性系统也开始在越来越多的 场合得到应用。
• 随着我国工业现代化的发展 ,各领域对光纤陀螺的需求越来越大。北
京理工大学、北京航空航天大学等都开展了光纤陀螺的研制并取得了 较大的成果。
轻质复合材料光纤陀螺仪在航天工程的应用
2014年,Japan Aerospace Exploration Agency (JAXA) 研究的碳纤维增强塑料 (carbon fiber reinforced plastic)FOG。 通过CFRP的 低热膨胀,低导热性和高机械 性能提高了传感器的性能。 此 外,CFRP的低密度可以显着 降低FOG的结构重量,这在空 间应用中至关重要。
轻质复合材料光纤陀螺仪在航天工程的应用
轻质复合材料光纤陀螺仪在航天工程的应用
由于是在外太空的空间环境下使用的姿态控制传。感器,除了低热膨胀,低热导率 以外,FOG还需要具有重量小和能抗发射振动的破坏性, 并具有高刚度以抑制Shupe 效应。 CFRP满足所有这些要求,表明CFRP是未来FOG的强大候选材料。
• 目前一些发达国家如美、日、德、法、意、俄等在光纤陀螺的研究方
面取得了较大进步,一些中低精度的陀螺已经实现了产品化,而少数 高精度产品也开始在军方进行装备调试。
• 美国在光纤陀螺的研究方面一直保持领先地位。目前美国国内已经有
多种型号的光纤陀螺投入使用。以斯坦福大学和麻省理工大学为代表 的科研机构在研究领域中不断取得突破,而几家研制光纤陀螺的大公 司在陀螺研制和产品化方面也做得十分出色。最著名的Litton公司和 Honeywell公司代表了国际上光纤陀螺的最高水平。
若绕垂直于闭合光路所在平面的轴线,相对惯性空间存在着转 动角速度,则正、反方向传播的光束走过的光程不同,就产生光程差, 其光程差与旋转的角速度成正比。因而只要知道了光程差及与之相应 的相位差的信息,即可得到旋转角速度。
光纤陀螺仪的工作原理
在一闭合回路中,沿顺时针方向和逆时针方向传播的两束光光程差 L 与闭合回路的旋转角速度门及回路面积A成正比,与真空中的光速成C 0 反比,即: