空间中直线与直线的位置关系
空间中直线与直线之间的位置关系

; 电竞
;
多了.有人在前方铺路,呐路自然就容易走得多.不过,鞠言の蓝槐果实却是不多了.当年,鞠言在界碑世界得到了大量の蓝槐果实,还将蓝槐树都移植到了自身の空间宝物中.蓝槐树上,足足有数万颗蓝槐果实.但蓝槐果实再多,也经不起鞠言呐样の消耗.呐数万颗蓝槐果实,大部分都被鞠言自 身使用了,少部分则是送给了亲眷使用.虽然有蓝槐树,但呐蓝槐果实,可不是随随便便就结出来の.即便结出新の果实,要成熟起来,也得等上极为漫长の事间.“蓝槐果实,越来越少,得省着点用了.”“没有蓝槐果实呐样の好东西,融合本源道则,可就要慢多了.”鞠言轻叹一声,摇了摇头.呐 也没办法,整个混元空间之中,蓝槐果实本就非常の稀有.而鞠言虽然也掌控了呐座混元,但也不能将全部の蓝槐果实都据为己有.他有能历做到呐一点,却不能呐么做,自身都过不起心中の那一关.如果能从其他混元空间获得蓝槐果实呐样の资源,那就容易接受多了.在雷霆善王の洞府居住了 一段事间后,鞠言便再度离开了,他回到了天庭.呐次,他要使用天庭秘境,进行较长事间の闭关.岁月悠悠!鞠言混元之外,呐一天,又一道人影接近了呐里.呐个人,正是从焦源混元而来の联盟军师,托连大王.“呐里,就是思烺大王所说の死月空间了.”托连大王,眯起眼睛,看着前方の一片朦 胧.托连大王也知道,呐座混元空间,在诞生の初期,最早是被联盟中の玄冥大王发现の.为了锻造那件武器,为了整个联盟着想,玄冥大王将呐座混元,送给了思烺大王.当然了,呐其中也有来自焦源盟主の压历,如果不是焦源盟主出面说话,那玄冥大王,恐怕是不会轻易将呐座混元空间送给思 烺大王.一座混元空间の价值,是无法估量の.哪怕是对于思烺大王、玄冥大王呐个层次の善王来说,也是无价之宝.“呐座混元空间之中,到底出了怎样の人物,竟是能让思烺大王麾下の易风大王,身陨此地?”“真是,有些迫不及待の,想要看看呐个人了.”托连大王,微微の点头.他闪身,身 体表面元祖道则显现,散发出无穷の威能.不久后,他进入了鞠言混元.正在天庭秘境之中闭关修行の鞠言,骤然睁开了眼睛.托连大王进入鞠言混元の第一事间,鞠言就感知到了,由于他虽然是处于闭关修行之中,但也留了个小小の手段,让自身能够在天庭秘境闭关之中,也能够立刻发现从混 元空间之外进来の异混元生灵.“来了!”“只有一个人从混元之外进来.”“不知道,是不是那位强大无比の思烺大王.”鞠言心中,也难免の有些紧罔心绪波动.如果真是思烺大王进入混元空间怎么办?自身现在,连第二条元祖道则都没有掌握!第三二一八章联盟军师第三二一八章联盟军 师(第一/一页)鞠言出天庭秘境.即便异混元来人是思烺大王,鞠言也决定要出面.在混元の虚空之中,鞠言与联盟军师托连大王相遇.“阁下如何称呼?”鞠言望着托连大王,直接开口询问.而听到鞠言の询问,托连大王琛琛の看了鞠言一眼.“俺名托连.”托连大王回答了鞠言の问题.“托连 大王?”鞠言心中微微一松.在看到托连大王の事候,鞠言其实就觉得自身所看到の呐个异混元生灵,应该不是思烺混元の主人思烺大王.由于,在呐个人の身上,并没有哪个杀气.如果是思烺大王亲自降临の话,恐怕眼申不会呐么平静.而听到对方报出名字,验证了鞠言の猜测.至于思烺大王会 不会故意报出一个假名字,呐显然不太可能,思烺大王那个层次の人物,降临一个土著混元空间,怎会将任何人放在眼里?也就不可能以假名字欺骗.“原来是托连大王!不知道托连大王来俺鞠言混元,是有哪个事吗?”鞠言对托连大王拱了拱手问道.“哦?鞠言混元?”“你知道俺是从其他混 元过来の?呐么说,你是专门来呐里等着俺の?”“不对,俺刚进入呐座混元空间不久,你就知道俺の进入.呐么说,你已经掌控了呐座混元空间?”托连大王连续の说出几句话.刚遇到鞠言の事候,托连大王并没有认为鞠言是在专门等他,还以为是碰巧遇到了呐个混元空间の一名修行者.“正是, 俺名鞠言,呐里是鞠言混元.托连大王你进入鞠言混元の同事,俺便已经察觉到了.”鞠言点头说道.托连大王目光微微闪了闪,盯着鞠言道:“易风大王,是死在你の手中?”鞠言沉默,没有立刻开口说话.而鞠言沉默の态度,让托连大王基本上确定,易风大王应该就是被呐个鞠言杀死了.“鞠 言大王,你不要误会.”“俺来到你の混元空间,并不是要对你或者你の混元空间不利.”托连大王笑了笑说道.虽然托连大王如此说,但鞠言心中可不敢有丝毫の大意.“托连大王来得很巧.从那易风死后到现在,过了不到三万年の事间,你就也到俺鞠言混元了.算事间,托连大王应该是刚刚知 道易风身死,便向鞠言混元出发了吧?”鞠言笑着说道.“呐一点,倒是没错.”托连大王点头.“呐么说,托连大王也是思烺大王の人了.”鞠言眼申一凝道.“呵呵,呐倒不是.”托连大王摆了摆手,也没理会鞠言の敌意,继续说道:“思烺大王在知道麾下易风大王身陨之后,倒是想亲自来呐个 混元空间看看.不过,被俺劝阻了.俺知道易风大王身陨鞠言大王你の混元空间,便想亲自来看看.毕竟,呐一混元空间比较特殊.”“鞠言大王,你の呐个混元空间,在之前の事间里,应该是本源道则分隔の吧?”托连大王缓缓说道.“没错,以前本源道则确实分隔,整个混元一分为二.一面只有 白色本源道则,一面则只有黑色本源道则.不过,现在混元空间已经合二为一了.”鞠言点头说道.“托连大王竟然能劝阻思烺大王?”鞠言抬目.“还是能说上话の,毕竟同属联盟.哦,你可能对联盟还比较陌生.呐样,俺先与你介绍一下联盟.”“俺们の联盟,盟主为焦源混元の焦源大王,联盟 之中一共有拾三个混元空间.以前是拾四个,不过有一个混元空间已经不存在了,只剩下拾三个混元空间.思烺大王の思烺混元,便是拾三个混元空间之一.而俺,则是联盟の军师,属于焦源盟主の下属.”托连大王比较简短の说了一下联盟の主要构成.“鞠言大王.”“联盟想要锻造一件特殊 の武器,呐件武器,需要以炼化の混元空间为支点.而此事の主导者,就是思烺大王.你の混元,属于武器支点之一.也正由于如此,思烺大王一直控制着你の混元空间.只是思烺大王也没有想到,你の混元竟是出了变数.”“按道理,呐一混元空间是无法诞生出大王层次善王の.你の出现,确实令 人感到不可思议.”托连大王冲着鞠言笑了笑.“托连大王の意思,俺大致上是明白了.那么现在,联盟是哪个意思呢?”鞠言出声问道.“嗯……”托连大王沉吟,似乎是在思考.过了片刻,他才说道:“鞠言大王の实历,达到了哪个样の层次?你杀死易风大王,是否凭借自身の实历?”“呐样关 系吗?”鞠言脸色微微一沉.“当然,关系很大.”托连大王眼申眯了眯,继续说道:“先不说呐一混元,本是武器中の一个支点,便是没有呐件事,鞠言大王你杀死了易风大王,思烺大王也不会善罢甘休.若不是思烺大王目前实在是无法抽身,那现在你见到の人,必定是思烺大王.”“而俺在知 道呐一混元,诞生出大王,尤其是在见到你之后,俺有了一个新の想法.若能实现,倒是能够保住你の混元空间不被毁掉.”托连大王笑道.“哪个?有哪个办法?”鞠言眼申一亮.如果能够化解呐次危机,鞠言当然是拾万个愿意の.“呐个办法の成功率,与你の个人实历有关.俺想向盟主提出申请, 将你の混元,纳入联盟之中.你の实历越强,焦源盟主同意の希望就越大.”托连大王继续道:“易风大王,是你全部凭借自身实历杀死の吗?”“呐……当事の俺,实历与易风大王相比,并无优势.杀死易风大王,是由于俺有一件强大の武器.”鞠言也考虑过欺骗托连大王,不过最终还是实话实 说.呐位托连大王,是联盟の军师,其影响历肯定不低.而且从目前来看,托连大王有意保住鞠言混元,所以鞠言觉得,还是不要在托连大王面前撒谎为好.第三二一九章联盟一员第三二一九章
212空间中直线与直线之间的位置关系共31张PPT

第二章 点、直线、平面之间的位置关系
跟踪训练
3.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB, E、F分别是BD1和AD中点,则异面直线CD1,EF所成的 角的大小为________.
栏目 导引
第二章 点、直线、平面之间的位置关系
解析:取 CD1 的中点 G,连接 EG,DG, ∵E 是 BD1 的中点,∴EG∥BC,EG=12BC.
栏目 导引
第二章 点、直线、平面之间的位置关系
做一做 3.若正方体ABCD-A1B1C1D1中∠BAE=25°, 则异面直线AE与B1C1所成的角的大小为________.
答案:65°
栏目 导引
第二章 点、直线、平面之间的位置关系
典题例证技法归纳
【题型探究】 题型一 直线位置关系的判定
例1 a,b,c是空间中的三条直线,下面给出的几 种说法:①若a∥b,b∥c,则a∥c; ②若a⊥b,b⊥c,则a∥c; ③若a与b相交,b与c相交,则a与c相交; ④若a,b与c成等角,则a∥b. 其中正确的是________(只填序号)
E,F
分别是另外两条对边
AD,BC
上的点,且AE=BF ED FC
=12,EF= 5,求 AB 和 CD 所成的角的大小.
栏目 导引
第二章 点、直线、平面之间的位置关系
解:如图,过 E 作 EO∥AB,交 BD 于点 O,连接 OF, ∴AEED=BOOD.又∵AEED=BFFC,∴BOOD=BFFC, ∴OF∥CD,∴∠EOF(或其补角)是 AB 和 CD 所成的角. 在△EOF 中,OE=23AB=2,OF=13CD=1. 又 EF= 5,∴EF2=OE2+OF2,∴∠EOF=90°, 即异面直线 AB 和 CD 所成的角为 90°.
【高中数学人教A版必修】22. 空间中直线与直线之间的位置关系课件

一作(找):作(或找)平行线--单移、双 移
D1
二证:证明所作的角为所求的异 A1
面直线所成的角。
三求:在一恰当的三角形中求出角
常见的平行关系: 1.中位线原理 2.平行四边形 3.对应边成比例
D A
C1 B1
C B
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
4.异面直线所成的角
(1)复习回顾
O
在平面内,两条直线相交成四个角, 其中 不大于90度的角称为它们的夹角, 用以刻画 两直线的错开程何 找
出这个夹角?
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
3.异面直线的画法
为了表示异面直线 a,b不共面的特点,作图时, 通常用一个或两个平面衬托.
b
A
a
(1)
b
a
(2)
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件 高中数学 人教A版 必修22 . 空间 中直线 与直线 之间的 位置关 系课件
(2)直线BA′和CC′的夹角是多少? (3)哪些棱所在的直线与直线AA′垂直?
解:(1)由异面直线的定义可知, 与直线BA′成异面直线的有直线B′C′, AD,CC′,DD′,DC,D′C′. (2)由 BB / /C可C知, 为B异BA面 直线 与 的BA夹 角C,C BB=A45°所以,直线 与BA的夹C角C为45°.
高二-06-直线与直线的位置关系

知识点一、公理4 平行于同一条直线的两条直线平行(传递性);符号表示:a ∥b ,b ∥c ⇒a ∥c .作用:判断或证明空间中两条直线平行.知识点二、 等角定理 如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等.注:等角定理实质上是由如下两个结论组合成的:①若一个角的两边与另一个角的两边分别平行且方向都相同(或方向都相反),则这两个角相等;②若一个角的两边与另一个角的两边分别平行,有一组对应边方向相同,另一组对应边方向相反,则这两个角互补.推论:1. 如果一个角的两边和另一个角的两边分别平行,那么这两个角相等或者互补.2. 如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角) 相等.知识点三、空间中两条直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点;平行直线:在同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.题型一、平行线的传递性【例1】如图,△ABC 的各边对应平行于△111A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,则EF 与11B C 的位置关系是________. 第6讲 直线与直线的位置关系 知识梳理例题分析模块一:空间直线的位置关系 ~~~~~~~~~~~~~~~~~~~~~~~~~【难度】★题型二、等角定理【例1】已知AB ∥PQ ,BC ∥QR ,若∠ABC =30°,则∠PQR 等于( )A .30°B .30°或150°C .150°D .以上结论都不对【难度】★【例2】给出下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等; ③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补.其中正确的命题有( )A .0个B .1个C .2个D .3个 【难度】★【例3】若111AOB A O B ∠=∠,且11OA O A ∥,OA 与11O A 方向相同,则下列结论正确的有( )A .11OB O B ∥且方向相同B .11OB O B ∥,方向可能不同C .OB 与11O B 不平行D .OB 与11O B 不一定平行 【难度】★题型三、空间直线的位置关系【例1】已知三条直线1l ,2l ,3l 满足12l l ∥且23l l ⊥,则1l 与3l ( )A .平行B .垂直C .共面D .异面【难度】★【例2】若直线//a b ,直线c a A =,则直线b 、c 的位置关系为______.(用文字表述)【难度】★【例3】若直线a 与直线b ,c 所成的角相等,则b ,c 的位置关系为( )A .相交B .平行C .异面D .以上答案都有可能【难度】★★【例4】如图,点P ,Q ,R ,S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是平行直线的图是________(填序号).【难度】★★【例5】如图,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为( )A .③④B .①②C .①③D .②④【难度】★★【例6】如图是正方体的平面展开图,在原来的正方体中(1)BM 与ED 平行; (2)CN 与BE 是异面直线; (3)CN 与BM 成60︒; (4)DN 与BM 垂直其中正确的序号是_____________.【难度】★★知识点一、异面直线的定义把不同在任何一个平面内的两条直线叫做异面直线;画法:(通常用平面衬托)知识点二、异面直线的判定1. 判定定理:过平面外一点与平面上一点的直线,和此平面上不经过该点的任何一条直线都是异面直线.符号表示:A α∉, B α∈,B a ∉,a AB α⊂⇒与l 是异面直线(如图).2. 异面直线的判定方法①定义法:由定义判断两直线不可能在同一平面内;②反证法:证明两线不可能平行、相交或证明两线不可能共面;③判定定理法知识点三、异面直线所成的角1. 定义:两条异面直线平移到相交位置时所得到的锐角或直角,称为这两条异面直线所成的角.2. 范围:两条异面直线所成角的范围是0,2πθ⎛⎤∈ ⎥⎝⎦(090θ︒<≤︒). 3. 异面垂直:如果两条异面直线所成的角是直角,那么我们就说这两条直线互相垂直.记作a ⊥b .模块二:异面直线 ~~~~~~~~~~~~~~~~~~~~~~~~~ 知识梳理4. 平移法求异面直线所成角①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②证明:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,取它的补角.题型一、异面直线的判定【例1】正方体1111ABCD A B C D −中,M 、N 分别是棱BC ,CC 1的中点,则直线MN 与D 1C 的位置关系是_________.【难度】★【例2】若a ,b 是异面直线,b ,c 是异面直线,则( )A .a ∥cB .a ,c 是异面直线C .a ,c 相交D .a ,c 平行或相交或异面【难度】★★【例3】如图所示,在正方体1111ABCD A B C D −中,E F 、分别是1AB AA 、的中点.求证: (1)1CE D F DA 、、三线共点;(2)直线BC 和直线1D F 是异面直线.【难度】★★例题分析【例4】已知:平面α平面a β=,b α⊂,b a A ⋂=,c β⊂且c ∥a ,求证:b 、c 是异面直线.【难度】★★题型二、异面直线所成的角【例1】如图,在正方体1111ABCD A B C D −中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是_________.【难度】★【例2】在正方体1111ABCD A B C D −中,AC 与BD 相交于点O ,则异面直线1B O 与1A D 所成的角的大小为( )A .30°B .45°C .60°D .90°【难度】★★【例3】已知,点A 是BCD △所在平面外一点,且AB AD AC BC BD CD =====,点E 是边BC 的中点,则异面直线AE 与BD 所成角的余弦值为___________.【难度】★★【例4】在正方体1111ABCD A B C D −中,与1AD 成60°角的面对角线的条数是________【难度】★★【例5】已知点M 是正方体1111ABCD A B C D −的与1BB 上的中点,求异面直线1MD 与1A B 所成的角.【难度】★★题型三、空间四边形【例1】如图所示,已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则MN 12(AC +BD ).【难度】★【例2】已知空间四边形ABCD ,连接AC 和BD ,且1AB AC AD BC CD BD ======,点N 是线段AD 的中点,则异面直线BD 和CN 所成的角的余弦值是______.【难度】★★【例3】如图,在空间四边形ABCD 中,E ,G 分别为,AB CD 的中点且6,8===EG AC BD ,则异面直线AC 和BD 所成角是_________.【难度】★★题型四、综合问题【例1】如图所示,在正方体ABCD -A 1B 1C 1D 1中.(1)求A 1C 1与B 1C 所成角的大小;(2)若E ,F 分别为AB ,AD 的中点,求A 1C 1与EF 所成角的大小;【难度】★★【例2】如图,已知正方体ABCD A B C D −''''的棱长为1.(1)正方体ABCD A B C D −''''中哪些棱所在的直线与直线A B '是异面直线?(2)若,M N 分别是A B ',BC '的中点,求异面直线MN 与BC 所成角的大小.【难度】★★【例3】如图所示,点A 是△BCD 所在平面外一点,AD =BC ,E ,F 分别是AB ,CD 的中点,当EF =22AD 时,求异面直线AD 和BC 所成的角. 【难度】★★师生总结1. 空间中有两个角α、β,且角α、β的两边分别平行.若60α=,则β=________.【难度】★2. 如图,在正方体中,A 、B 、C 、D 分别是顶点或所在棱的中点,则A 、B 、C 、D 四点共面的图形______(填上所有正确答案的序号).【难度】★3. 如图是正方体的表面展开图,E ,F ,G ,H 分别是棱的中点,则EF 与GH 在原正方体中的位置关系为______.【难度】★4. 若a ,b 为两条异面直线,α,β为两个平面,a α⊂,b β⊂,l αβ=,则下列结论中正确的序号是 .①l 至少与a ,b 中一条相交②l 至多与a ,b 中一条相交③l 至少与a ,b 中一条平行④l 必与a ,b 中一条相交,与另一条平行【难度】★5. 在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为 .【难度】★★巩固练习6. 如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,并且异面直线AC 与BD 所成的角为90°,则MN =________.【难度】★★7. 在空间中,直线AB 平行于直线EF ,直线BC EF 、为异面直线,若120ABC ∠=︒,则异面直线BC EF 、所成角的大小为______.【难度】★★8. 如图所示,在正方体1111ABCD A B C D −中,E 、F 分别是AB 、AD 的中点,则异面直线1B C 与EF 所成的角的大小为_________.【难度】★★9. 设A 、B 、C 、D 是某长方体四条棱的中点,则直线AB 和直线CD 的位置关系是( ).A .相交B .平行C .异面D .无法确定 【难度】★★10. 已知直线a、b是正方体上两条面对角线所在的直线,且a、b是异面直线,则直线a、b所成的角的大小为_____.【难度】★★11. 已知a,b是异面直线,直线//c a且c不与b相交,求证:b、c是异面直线.【难度】★★12. 如图,P是平行四边形ABCD所在平面外一点,E、F分别是PC、PD的中点,已知=.PD CDPD CD⊥,且2(1)求证:A、B、E、F在同一平面上;(2)求异面直线PC与AB所成角的大小.【难度】★★13. 已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点, (1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【难度】★★14. 如图,在正方体1111ABCD A B C D −中,E 为AB 中点,F 为1AA 中点,(1)求证:E 、C 、D 1、F 四点共面;(2)求异面直线1C E 与1CD 所成的角.【难度】★★1. 正方形ABCD中,E、F分别是AB、CD的中点,G为BF的中点,将正方形沿EF折成120 的二面角,则异面直线EF与AG所成角的正切值为()A.32B.34C.72D.74【难度】★★★能力提升。
空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。
2.1.2_空间中直线与直线之间的位置关系

求证:直线AB和a是异面直线。
证明:(反证法)
A
假设直线AB和a不是异面直线。
则直线AB和a一定共面,设为
B, a 又 B a,
a
B
a与B确定一平面(公理2的推论1)
与重合, A,这与已知A∉α矛盾,
所以直线AB和a是异面直线。
2 、空间中直线与直线之间的位置关系
按平面基本性质分
同在一个平面内
H E
D A
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考: 这个长方体的棱中共有多少对异面直线?
G F
C B
巩固:
1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
巩固: 1. 画两个相交平面,在这两个平面内各画 一条直线,使它们成为: ⑴平行直线;⑵相交直线;⑶异面直线.
面直线所成的角。 三求:在一恰当的三角形中求出角
D1
C1
(1)如图,观察长方体
A1
ABCD-A1B1C1D1,有没有两条棱
D
所在 的直线是相互垂直的异面直线? A
B1 C
B
(2)如果两条平行线中的一条与某一条直线垂直, 另一条直线是否与这条直线垂直?
(3)垂直于同一条直线的两条直线是否平行?
例3
直线有 (C)
(A)2对 (B)3对
(C)6对 (D)12对
3、两条直线a,b分别和异面直线c,d都相交,则 直线a,b的位置关系是(D) (A)一定是异面直线(B)一定是相交直线 (C)可能是平行直线 (D)可能是异面直线,也可能是相交直线 4、一条直线和两条异面直线中的一条平行,则它 和另一条的位置关系是( D)
空间中直线与直线之间的位置关系

与直线BA′成异面直线的有直线B′C′,AD,CC′,DD′,DC,D′C′.
√ (与2直)线那直线垂B么A直′和. 这CC′的两夹角是组多少直? 线所成的锐角(或直角)相等.(
)
同理,FG∥BD,且FG= BD.
理解空间两直线的位置关系,并掌握异面直线的
2.填空: (1) 空间两条不重合的直线的位置关系有 平行 、
=
5+5-4 2× 5×
5
=
3 5
.
F E
5.如图,已知长方体ABCD-EFGH中, AB=2 3 ,AD=2 3 , AE=2. (1)求BC和EG所成的角是多少度? (2)求AE和BG所成的角是多少度?
H
G
E
2 2 3D
A
23
F C
B
解答:
(1)因为GF∥BC, 所以∠EGF(或其补角)为所求. H
(4)直线 AB 与直线 B1C 的位置关系是________.
相交 异面
问题探究
例2在如图同,已一知正方平体A面BCD内-A′B,′C′D′.如果两条直线都与第三条直线平行,那
有且仅有一个公共点——相交直线
若两条异面直线所成的角为90°,则称它们互相垂直.
么这两条直线互相平行.在空间中,是否有类似的规律? 公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.
证明:连接BD. 因为 EH是△ABD的中位线, 所以EH∥BD,且EH=1 BD.
21 同理,FG∥BD,且FG= BD.
2 因为EH∥FG,且EH =FG,
A
H
E
D G
B
F
C
所以四边形EFGH是平行四边形.
[拓展1] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,则四边形EFGH为 菱形 . [拓展2] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC⊥BD,则四边形EFGH为 矩形 . [拓展3] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,AC⊥BD,则四边形EFGH 为 正方形 . (以上三个问题你会证明吗?不妨一试)
2.1.2空间中直线与直线之间的位置关系

2、空间中直线和直线之间的位置关系【主要知识】(一)空间两条直线的位置关系(1)相交直线——在同一平面内,有且仅有一个公共点; (2)平行直线——在同一平面内,没有公共点;(3)异面直线——不同在任何一个平面内,没有公共点。
若从有无公共点的角度看,可分两类: ①有且仅有一个公共点——相交直线②没有公共点——⎩⎨⎧异面直线平行直线若从是否共面的角度看,也可分两类:①在同一平面内——⎩⎨⎧平行直线相交直线②不在同一平面内——异面直线(三)异面直线1、异面直线的画法:aba bαα2、异面直线所成角(1)异面直线所成角的范围:____________(2)两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算【习题讲解】1、异面直线是( )A 、同在某一个平面内的两条直线B 、某平面内一条直线和这个平面外的一条直线C 、分别位于两个不同平面内的两条直线D 、无交点且不共面的两条直线2、分别在两个平面内的两条直线间的位置关系是( ). A 、异面 B 、平行 C 、相交 D 、以上都有可能3、下列说法中,正确的有( )①空间中,两个角的两边分别平行,则这两个角相等或互补。
②垂直于同一条直线的两条直线平行。
③分别和两条异面直线都相交的两条直线一定是异面直线。
④若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线。
A 、1个 B 、2个 C 、3个 D 、4个4、把两条异面直线称作“一对”,在正方体的十二条棱中,异面直线的对数为( ). A 、12 B 、24 C 、36 D 、48【变式】若把两异面直线看成“一对”,则六棱锥的棱所在12条直线中,异面直线共有( ) A 、12对 B 、24对 C 、36对 D 、48对5、如图,正方体1111D C B A ABCD -,E 、F 分别是AD 、AA 1的中点. (1)求直线AB 1和CC 1所成的角的大小;(2)求直线AB 1和EF 所成的角的大小.【变式】5-1、如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为______度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间中直线与直线之间的位置关系[新知初探]1.异面直线(1)定义:不同在任何一个平面内的两条直线.(2)异面直线的画法:2.空间两条直线的位置关系位置关系特点相交同一平面内,有且只有一个公共点平行同一平面内,没有公共点异面直线不同在任何一个平面内,没有公共点[点睛](1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a⊂α,b⊂β,即a,b分别在两个不同的平面内,但是因为a∩b=O,所以a与b不是异面直线.3.平行公理(公理4)(1)文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.a∥b b∥c⇒a∥c.(2)符号表述:}4.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.5.异面直线所成的角(1)定义:已知两条异面直线a,b,经过空间任一点O作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°.(3)当θ=90°时,a与b互相垂直,记作a⊥b.[点睛](1)异面直线所成角的范围是0°<θ≤90°,所以垂直有两种情况:异面垂直和相交垂直.(2)公理4也称为平行公理,表明空间的平行具有传递性,它在直线、平面的平行关系中得到了广泛的应用.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)两条直线无公共点,则这两条直线平行()(2)两直线若不是异面直线,则必相交或平行()(3)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线()(4)和两条异面直线都相交的两直线必是异面直线()答案:(1)×(2)√(3)×(4)×2.如果两条直线a和b没有公共点,那么a与b的位置关系是()A.共面B.平行C.异面D.平行或异面解析:选D空间中两直线的位置关系有:①相交;②平行;③异面.两条直线平行和两条直线异面都满足两条直线没有公共点,故a与b的位置关系是平行或异面.3.已知AB∥PQ,BC∥QR,若∠ABC=30°,则∠PQR等于()A.30°B.30°或150°C.150°D.以上结论都不对解析:选B由等角定理可知∠PQR与∠ABC相等或互补,故∠PQR=30°或150°.两直线位置关系的判定[典例]如图,在长方体ABCD-A1B1C1D1中,(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.[解析](1)在长方体ABCD-A1B1C1D1中,A1D1綊BC,∴四边形A1BCD1为平行四边形,∴A1B∥D1C.(2)直线A1B与直线B1C不同在任何一个平面内.(3)直线D1D与直线D1C相交于点D1.(4)直线AB与直线B1C不同在任何一个平面内.[答案](1)平行(2)异面(3)相交(4)异面(1)判定两条直线平行或相交的方法判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线的方法①定义法:由定义判断两直线不可能在同一平面内.②重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直线(如图).[活学活用]1.在空间四边形ABCD中,E,F分别为对角线AC,BD的中点,则BE与CF() A.平行B.异面C.相交D.以上均有可能解析:选B假设BE与CF是共面直线,设此平面为α,则E,F,B,C∈α,所以BF,CE⊂α,而A∈CE,D∈BF,所以A,D∈α,即有A,B,C,D∈α,与ABCD为空间四边形矛盾,所以BE与CF是异面直线,故选B.2.若a,b为异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交解析:选D由空间直线的位置关系,知c与b可能异面或相交.平行公理与等角定理的应用[典例]如图,在正方体ABCD-A1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.[证明](1)在正方形ADD1A1中,M,M1分别为AD,A1D1的中点,∴A1M1綊AM,∴四边形AMM1A1是平行四边形,∴A1A綊M1M.又∵A1A綊B1B,∴M1M綊B1B,∴四边形BB1M1M为平行四边形.(2)由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.(1)空间两条直线平行的证明:①定义法:即证明两条直线在同一个平面内没有公共点;②利用公理4找到一条直线,使所证的直线都与这条直线平行.(2)“等角”定理的结论是相等或互补,在实际应用时,一般是借助于图形判断是相等,还是互补,这是两种情况都有可能.[活学活用]如图,已知在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别是棱CD,AD的中点.求证:(1)四边形MNA1C1是梯形;(2)∠DNM=∠D1A1C1.证明:(1)如图,连接AC,在△ACD中,∵M,N分别是CD,AD的中点,∴MN是△ACD的中位线,∴MN∥AC,MN=12AC.由正方体的性质得:AC∥A1C1,AC=A1C1.∴MN∥A1C1,且MN=12A1C1,即MN≠A1C1,∴四边形MNA1C1是梯形.(2)由(1)可知MN∥A1C1.又∵ND∥A1D1,∴∠DNM与∠D1A1C1相等或互补.而∠DNM与∠D1A1C1均为锐角,∴∠DNM=∠D1A1C1.异面直线所成角[典例] 在正方体ABCD-A1B1C1D1中,E,1111的中点,求异面直线DB1与EF所成角的大小.[解] 法一:如图1所示,连接A1C1,B1D1,并设它们相交于点O,取DD1的中点G,连接OG,A1G,C1G,则OG∥B1D,EF∥A1C1,∴∠GOA1为异面直线DB1与EF所成的角(或其补角).∵GA1=GC1,O为A1C1的中点,∴GO⊥A1C1.∴异面直线DB1与EF所成的角为90°.图1法二:如图2所示,连接A1D,取A1D的中点H,连接HE,则HE綊12DB1,于是∠HEF为异面直线DB1与EF所成的角(或其补角).连接HF,设AA1=1,则EF=22,HE=32,取A1D1的中点I,连接HI,IF,则HI⊥IF,∴HF2=HI2+IF2=5 4,∴HF2=EF2+HE2,∴∠HEF=90°.∴异面直线DB1与EF所成的角为90°.图2法三:如图3,连接A1C1,分别取AA1,CC1的中点M,N,连接MN. ∵E,F分别是A1B1,B1C1的中点,∴EF∥A1C1,又MN∥A1C1,∴MN∥EF.连接DM,B1N,MB1,DN,则B1N綊DM,∴四边形DMB1N为平行四边形,∴MN与DB1必相交,设交点为P,则∠DPM为异面直线DB1与EF所成的角(或其补角).设AA1=k(k>0),则MP=22k,DM=52k,DP=32k,∴DM2=DP2+MP2,∴∠DPM=90°.∴异面直线DB1与EF所成的角为90°.法四:如图4,在原正方体的右侧补上一个全等的正方体,连接B1Q,易得B1Q∥EF,∴∠DB1Q就是异面直线DB1与EF所成的角(或其补角).设AA1=k(k>0),则B1D=3k,DQ=5k,B1Q=2k,∴B1D2+B1Q2=DQ2,∴∠DB1Q=90°.∴异面直线DB1与EF所成的角为90°.求两异面直线所成的角的三个步骤(1)作:根据所成角的定义,用平移法作出异面直线所成的角;(2)证:证明作出的角就是要求的角;(3)计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角范围是0°<θ≤90°.[活学活用]如图所示,点A是△BCD所在平面外一点,AD=BC,E,F分别是AB,CD的中点,当EF=22AD时,求异面直线AD和BC所成的角.解:如图所示,设G为AC的中点,连接EG,FG. ∵E,F,G分别为AB,CD,AC的中点.∴EG∥BC,且EG=12BC;FG∥AD,且FG=12AD.又AD=BC,∴EG=FG=12AD.∴EG与GF所成的锐角(或直角)即为AD与BC所成的角.在△EFG中,∵EG=FG=12AD,又EF=22AD,∴EG2+FG2=EF2,即EG⊥FG.∴∠EGF=90°.故AD与BC所成角为90°.层级一学业水平达标1.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c()A.一定平行B.一定相交C.一定是异面直线D.一定垂直解析:选D因为a⊥b,b∥c,则a⊥c,故选D.2.一条直线与两条平行线中的一条成为异面直线,则它与另一条()A.相交B.异面C.相交或异面D.平行解析:选C如图所示的长方体ABCD-A1B1C1D1中,直线AA1与直线B1C1是异面直线,与B1C1平行的直线有A1D1,AD,BC,显然直线AA1与A1D1相交,与BC异面.3.在正方体ABCD-A1B1C1D1中,E,F分别是平面AA1D1D、平面CC1D1D的中心,G,H分别是线段AB,BC的中点,则直线EF与直线GH的位置关系是() A.相交B.异面C.平行D.垂直解析:选C如图,连接AD1,CD1,AC,则E,F分别为AD1,CD1的中点.由三角形的中位线定理,知EF∥AC,GH∥AC,所以EF∥GH,故选C.4.已知直线a,b,c,下列三个命题:①若a与b异面,b与c异面,则a与c异面;②若a∥b,a和c相交,则b和c也相交;③若a⊥b,a⊥c,则b∥c.其中,正确命题的个数是()A.0 B.1C.2 D.3解析:选A①不正确如图;②不正确,有可能相交也有可能异面;③不正确.可能平行,可能相交也可能异面.5.异面直线a,b,有a⊂α,b⊂β且α∩β=c,则直线c与a,b的关系是()A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交解析:选D若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.6.如图,正方体ABCD-A1B1C1D1中,AC与BC1所成角的大小是________.解析:连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD-A1B1C1D1中,AC=AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.答案:60°7.如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS是异面直线的一个图是________(填序号).解析:①中PQ∥RS,②中RS∥PQ,④中RS和PQ相交.答案:③8.如图,在正方体ABCD-A1B1C1D1中,M,N分别是棱CD,CC1的中点,则异面直线A1M与DN所成的角的大小是________.解析:如图,过点M作ME∥DN交CC1于点E,连接A1E,则∠A1ME为异面直线A1M与DN所成的角(或其补角).设正方体的棱长为a,则A1M=32a,ME=54a,A1E=414a,所以A1M2+ME2=A1E2,所以∠A1ME=90°,即异面直线A1M与DN所成的角为90°. 答案:90°9.如图所示,E,F分别是长方体A1B1C1D1-ABCD的棱A1A,C1C的中点.求证:四边形B1EDF是平行四边形.证明:设Q是DD1的中点,连接EQ,QC1.∵E是AA1的中点,∴EQ綊A1D1.又在矩形A1B1C1D1中,A1D1綊B1C1,∴EQ綊B1C1(平行公理).∴四边形EQC1B1为平行四边形.∴B1E綊C1Q.又∵Q,F是DD1,C1C两边的中点,∴QD綊C1F.∴四边形QDFC1为平行四边形.∴C1Q綊DF.∴B1E綊DF.∴四边形B1EDF为平行四边形.10.如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E,F分别为BC,AD的中点,求EF和AB所成的角.解:如图所示,取BD的中点G,连接EG,FG.∵E,F分别为BC,AD的中点,AB=CD,∴EG∥CD,GF∥AB,且EG=12CD,GF=12AB.∴∠GFE就是EF与AB所成的角,EG=GF.∵AB⊥CD,∴EG⊥GF.∴∠EGF=90°.∴△EFG为等腰直角三角形.∴∠GFE=45°,即EF与AB所成的角为45°.层级二应试能力达标1.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,C1D的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A如图所示,连接BD1,CD1,CD1与C1D交于点F,由题意可得四边形A1BCD1是平行四边形,在平行四边形A1BCD1中,E,F分别是线段BC,CD1的中点,所以EF∥BD1,所以直线A1B与直线EF相交,故选A.2.在三棱锥A-BCD中,AC⊥BD,E,F,G,H分别是AB,BC,CD,DA的中点,则四边形EFGH 是( )A .菱形B .矩形C .梯形D .正方形解析:选B 如图,在△ABD 中,点H ,E 分别为边AD ,AB 的中点,所以HE 綊12BD ,同理GF 綊12BD ,所以HE 綊GF ,所以四边形EFGH 为平行四边形.又AC ⊥BD ,所以HG ⊥HE ,所以四边形EFGH 是矩形,故选B.3.在正三棱柱ABC -A 1B 1C 1中,若AB =2BB 1,则AB 1与BC 1所成的角的大小是( )A .60°B .75°C .90°D .105°解析:选C 设BB 1=1,如图,延长CC 1至C 2,使C 1C 2=CC 1=1,连接B 1C 2,则B 1C 2∥BC 1,所以∠AB 1C 2为AB 1与BC 1所成的角(或其补角).连接AC 2,因为AB 1=3,B 1C 2=3,AC 2=6,所以AC 22=AB 21+B 1C 22,则∠AB 1C 2=90°.4.在正方体ABCD -A 1B 1C 1D 1中,点P 在线段AD 1上运动,则异面直线CP 与BA 1所成的角θ的取值范围是( )A .0°<θ<60°B .0°≤θ<60°C .0°≤θ≤60°D .0°<θ≤60°解析:选D 如图,连接CD 1,AC ,因为CD 1∥BA 1,所以CP 与BA 1所成的角就是CP 与CD 1所成的角,即θ=∠D 1CP .当点P 从D 1向A 运动时,∠D 1CP 从0°增大到60°,但当点P 与D 1重合时,CP ∥BA 1,与CP 与BA 1为异面直线矛盾,所以异面直线CP 与BA 1所成的角θ的取值范围是0°<θ≤60°.5.如图所示,正方体ABCD -A 1B 1C 1D 1中, E ,F 分别是棱BC ,CC 1的中点,则异面直线EF 与B 1D 1所成的角为__________.解析:连接BC 1,AD 1,AB 1,则EF 为△BCC 1的中位线,∴EF ∥BC 1.又∵AB 綊CD 綊C 1D 1,∴四边形ABC 1D 1为平行四边形.∴BC 1∥AD 1.∴EF ∥AD 1.∴∠AD 1B 1为异面直线EF 和B 1D 1所成的角或其补角.在△AB 1D 1中,易知AB 1=B 1D 1=AD 1,∴△AB 1D 1为正三角形,∴∠AD 1B 1=60°.∴EF 与B 1D 1所成的角为60°.答案:60°6.如图,空间四边形ABCD 的对角线AC =8,BD =6,M ,N 分别为AB ,CD 的中点,并且异面直线AC 与BD 所成的角为90°,则MN 等于________.解析:取AD 的中点P ,连接PM ,PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5. 答案:57.在三棱柱ABC -A 1B 1C 1中,AA 1与AC ,AB 所成的角均为60°,∠BAC =90°,且AB =AC =AA 1,求异面直线A 1B 与AC 1所成角的余弦值.解:如图所示,把三棱柱补为四棱柱ABDC -A 1B 1D 1C 1,连接BD 1,A 1D 1,AD , 由四棱柱的性质知BD 1∥AC 1,则∠A 1BD 1就是异面直线A 1B 与AC 1所成的角.设AB =a ,∵AA 1与AC ,AB 所成的角均为60°,且AB =AC =AA 1,∴A 1B =a ,BD 1=AC 1=2AA 1·cos 30°=3a .又∠BAC =90°,∴在矩形ABCD 中,AD =2a ,∴A 1D 1=2a ,∴A 1D 21+A 1B 2=BD 21,∴∠BA 1D 1=90°, ∴在Rt △BA 1D 1中,cos ∠A 1BD 1=A 1B BD 1=a 3a =33.8.正三棱锥S -ABC 的侧棱长与底面边长都为a ,E ,F 分别是SC ,AB 的中点,求直线EF 和SA 所成的角.解:如图,取SB 的中点G ,连接EG ,GF ,SF ,CF .在△SAB 中,F ,G 分别是AB ,SB 的中点,∴FG ∥SA ,且FG =12SA . 于是异面直线SA 与EF 所成的角就是直线EF 与FG 所成的角.在△SAB 中,SA =SB =a ,AF =FB =12a ,∴SF⊥AB,且SF=3 2a.同理可得CF⊥AB,且CF=3 2a.在△SFC中,SF=CF=32a,SE=EC,∴FE⊥SC且FE=SF2-SE2=2 2a.在△SAB中,FG是中位线,∴FG=12SA=a2.在△SBC中,GE是中位线,∴GE=12BC=a2.在△EGF中,FG2+GE2=a22=FE2,∴△EGF是以∠FGE为直角的等腰直角三角形,∴∠EFG=45°.∴异面直线SA与EF所成的角为45°.。