《圆锥的体积》教学课件

合集下载

北师大版数学第十二册《圆锥体积的应用》课件

北师大版数学第十二册《圆锥体积的应用》课件

二、判断:
1. 圆柱体的体积一定比圆锥体的体积大( × ) (√ )
1 2. 圆锥的体积等于和它等底等高的圆柱体的 3
3. 正方体、长方体、圆锥体的体积都等于底面积 ×高。 ( ×) 4. 等底等高的圆柱和圆锥,如果圆柱体的体积是 27立方米,那么圆锥的体积是9立方米。
(√Biblioteka )三、填表: 已知条 件
圆锥底面半径2厘米,高9厘米 圆锥底面直径6厘米,高3厘米
体积
37.68立方厘米 28.26立方厘米 6.28立方分米
圆锥底面周长6.28分米,高6分 米
有一根底面直径是6厘米,长是15厘米的圆 柱形钢材,要把它削成与它等底等高的圆锥形 零件。要削去钢材多少立方厘米?
6厘米
15厘米
一个用水泥筑成的圆锥形雕塑, 底面周长是18.84米,高是2.5米。如果 按每立方米水泥重1.5吨来计算,筑这 个雕塑大约用了多少吨水泥?
(6)求高粱的重量
将一个底面是15.7平方厘米,高 10厘米的圆柱形钢材锻造成一个与它 底面积相等的圆锥,圆锥的高是多少 分米?
一个圆锥形的沙堆,底面积是12.56 平方米,高1.2米。用这堆沙在10米宽的 公路上铺2厘米厚的路面,能铺多长?
1.8米
一、填空: 1. 圆锥的体积=( 1 用字母表示是(V= 3 s h 锥的体积相等。
1 3 ×底面积×高 ),
)。
1 2. 圆柱体积的 3 与和它( 等底等高)的圆
3. 一个圆柱和一个圆锥等底等高,圆柱的 体积是3立方分米,圆锥的体积是( 1 ) 立方分米。 4. 一个圆锥的底面积是12平方厘米,高是 6厘米,体积是( 24 )立方厘米。
教学目标
• 1.通过解决实际问题,使同学们进一步掌 握求圆锥体积的计算公式; • 2.能熟练应用圆锥体的体积计算公式解答 有关圆锥体体积的实际问题,提高同学们 解答实际问题的能力。

六年级下数学说课稿圆锥的体积_西师版

六年级下数学说课稿圆锥的体积_西师版

六年级下数学说课稿圆锥的体积_西师版《圆锥的体积》说课一、教材分析1、说课内容:《圆锥的体积》,西师版小学数学六年级下册第二单元《圆柱和圆锥》中《圆锥》的第二课时。

2、教材简析:圆锥是小学几何初步知识最后一个单元的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上又学习的一种新的立体图形,也是在此基础上的又一个延伸,同时为学生以后系统学习立体几何知识打下基础。

按编者意图《圆锥》(含“圆锥的认识”和“圆锥的体积”)新课为一课时,但我认为这样教学内容太多,时间不够充分,不能保证较好的教学效果,所以这部分内容我采用了两课时进行教学,先用《圆锥的认识》做准备和铺垫,再单独完成《圆锥的体积》教学,这样有利于更好地把握和突破教学重难点,使学生学习效果更明显。

3、教学重难点及关键:本课重点是能正确运用公式计算圆锥的体积,并能解决简单的实际问题。

教学难点是理解圆锥体积公式的推导考、讨论交流、归纳总结等活动探索理解圆锥的体积计算公式,充分展示数学知识的形成过程,发挥学生的主体作用,让学生积极主动地参与学习的全过程。

培养学生的动手操作能力和数学思维能力,使学生人人都能获得必要的数学,人人都能得到不同的发展。

三、教学流程本节课我设计了以下五个教学环节:即提出猜想、实验操作、讨论归纳、练习应用、质疑提高提出猜想:先出示复习题(幻灯片2),让学生口算圆柱的体积,回忆圆柱的有关知识和圆柱的体积体积计算公式,为本课的学习做好铺垫。

接着出示圆锥(幻灯片3),让学生猜一猜怎样计算圆锥的体积,对学生的猜想不急于做出评价。

通过交流使学生得到两点认识:①我们可以通过实验进行探索。

②圆锥体积可能与它的底面积和高有关。

实验操作:先展示幻灯片4-45,介绍等底等高的圆柱和圆锥,这是本课的重要前提和铺垫。

接着学生4-6人分组实验,1-2人共同操作,用等底等高的圆锥形容器装满水倒入圆柱形容器中。

全体成员观察思考:①实验中的圆锥形和圆柱形容器有什么关系?②倒了几次水刚好把圆柱形容器装满?③通过实验你发现了什么?3、讨论归纳:针对以上实验和问题,让学生先在小组内讨论,再进行全班交流。

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。

2.能运用圆锥的体积计算公式解决有关的实际问题。

过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。

情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。

重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。

难点:理解圆锥的体积计算公式的推导过程。

课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。

把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。

2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。

生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。

生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。

生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。

3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。

(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。

板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。

8.3.2 圆柱、圆锥、圆台、球的表面积和体积(课件)【大单元教学】2022-2023学年高一数学同

8.3.2 圆柱、圆锥、圆台、球的表面积和体积(课件)【大单元教学】2022-2023学年高一数学同

1
2
所以( )2 +3 = 2 ,解得 = 2,
4
3
因此球的体积 = ⋅ 3 =
故选:.
32

3
解题技巧
与球有关问题的注意事项
1.正方体的内切球
球与正方体的六个面都相切,称球为正方体的内切球,此时球的半径


为r1= ,过在一个平面上的四个切点作截面如图(1).
2.球与正方体的各条棱相切
水.现在容器上口放置一个铁球,若球体没入水中部分的深
度恰为四分之一直径,则球的体积为(
A.


B.


C.


D.
)


【解答】根据题意可得该正三棱柱的底面正三角形的内切
圆的半径为 3,
设该球体的半径为,因为球体没入水中部分的深度恰为
四分之一直径,
1
2
所以球心到水平面的距离ℎ = ,
22 + 22 + (4 2)2 = 2 10,即为球的直径,
∴球的半径为 10,∴球的表面积为4 × ( 10)2 = 40,故选.
变式训练
2
3

3
1.某圆锥的侧面展开图是一个圆心角为 ,面积为 的扇形,
则该圆锥的外接球的表面积为(
A.
27 2
64
B.
27
16
C.
9
8
)
D.
3
2
【解答】设圆锥的母线长为,底面半径为,
2.球的表面积公式S= .
典例分析
题型一 圆柱、圆锥、圆台的表面积
例1.面积为的正方形,绕其一边旋转一周,则所得旋转体的表面积为(
A.

圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册

圆柱、圆锥、圆台、球的表面积和体积 课件-高一下学期数学人教A版(2019)必修第二册
3
1
= h(r 2 rr r 2 )
3
(五)布置作业
1、课本P119练习1-4题
2、阅读121-123探究与发现,思考如何利用祖暅原理
推导球的体积
(1)如何根据圆柱的展开图,求圆柱的表面积?
圆柱的侧面展开图是矩形,长是圆柱底面圆周长,宽是圆柱的高(母
线).设圆柱的底面半径为r,母线长为l,
则S圆柱侧=2πrl,S圆柱表=2πr(r+l),其中r为圆柱底面半径,l为母线长.
(2)如何根据圆锥的展开图,求圆锥的表面积?
圆锥的侧面展开图为一个扇形,半径是圆锥的母线长,弧长等于圆锥底面
.
答案:20π
1
2
2×3=20π.
解析:圆柱的底面半径是2,高为4,圆锥底面半径是2,高为3,则V=π×2 ×4+ ×π×2
3
3、球的表面积、体积
设球的半径为R,它的表面积只与半径R有关,是以R为自变量的函数.
事实上,如果球的半径为R,那么它的表面积是
问题8:小学,我们学习了圆的面积公式,你还记得是如何求得的吗?类比这种方法
1
周长,侧面展开图扇形面积为 2×2πrl=πrl,
∴S圆锥侧=πrl,S圆锥表=πr(r+l),其中r为圆锥底面半径,l为母线长.
(3)如何根据圆台的展开图,求圆台的表面积?
圆台的侧面展开图是一个扇环,内弧长等于圆台上底周长,外弧长
l'
等于圆台下底周长
xl r

x r'
r'
x
l
r r'
体”,则它的体积是
VO ABCD
1
S ABCD R .
3

六年级下册数学教案-2.2圆锥的体积︳西师大版

六年级下册数学教案-2.2圆锥的体积︳西师大版

六年级下册数学教案 2.2 圆锥的体积︳西师大版我今天要为大家带来的是六年级下册数学教案 2.2 圆锥的体积,这一课我们将学习圆锥体积的计算方法。

一、教学内容我们使用的教材是西师大版,本节课主要学习圆锥体积的计算方法。

根据教材,我们知道圆锥的体积是底面积与高的乘积再除以三。

具体来说,圆锥体积的计算公式为:V=1/3πr²h,其中V表示体积,r表示圆锥底面半径,h表示圆锥的高。

二、教学目标通过本节课的学习,我希望学生们能够掌握圆锥体积的计算方法,并能够运用到实际问题中。

三、教学难点与重点本节课的重点是圆锥体积公式的记忆和应用,难点是理解圆锥体积公式的推导过程。

四、教具与学具准备为了帮助学生们更好地理解圆锥体积的计算,我准备了几个实体的圆锥模型,以及一些纸张和彩笔,供学生们画图和计算使用。

五、教学过程我会通过一个实践情景引入:给学生们几个不同大小的圆锥,让他们猜猜这些圆锥的体积是多少。

然后,我会带领学生们通过实际测量和计算,得出每个圆锥的体积,并引导学生发现圆锥体积与底面半径和高之间的关系。

在讲解完公式后,我会给学生们一些例题,让他们通过计算,巩固对圆锥体积公式的理解和记忆。

我会给学生们一些随堂练习,让他们在实践中运用圆锥体积的计算方法。

六、板书设计板书设计主要包括圆锥体积的计算公式,以及一些关键的步骤和概念。

七、作业设计作业主要包括一些计算题和应用题,比如计算给定底面半径和高的圆锥的体积,或者根据给定的体积,求解圆锥的底面半径和高。

八、课后反思及拓展延伸课后,我会反思本节课的教学效果,看看学生们是否掌握了圆锥体积的计算方法,以及他们在实践中是否能够灵活运用。

同时,我也会引导学生进行拓展延伸,比如研究圆锥体积与圆锥形状之间的关系。

重点和难点解析一、实践情景引入二、圆锥体积计算公式的讲解在讲解圆锥体积的计算公式时,我会用简洁明了的语言阐述公式的含义和推导过程。

我会强调圆锥体积是由底面积与高的乘积再除以三得到的,即V=1/3πr²h。

小学六年级课件:《圆锥的体积》

小学六年级课件:《圆锥的体积》

小学六年级课件:《圆锥的体积》小学六年级课件篇一:《圆锥的体积》教学目标:1、学问与技能理解圆锥体积公式的推导过程,初步把握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

2、过程与方法通过操作、试验、观看等方式,引导学生发展比拟、分析、综合、猜想,在感知的根抵上加以判断、推理来获取新学问。

3、情感态度与价值观渗透学问是“相互转化”的辨证思想,养成擅长猜想的习惯,在探索合作中感受教学与我的生活的亲密联系,让学生感受探索胜利的欢乐。

教学重点:把握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

教学难点:理解圆锥体积公式的推导过程。

教具学具:不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

教学流程:一、创设情境,提出问题师:五一节放假期间,教师带着自己的小外甥去商场购物,正好商场在搞冰淇淋促销活动。

促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮教师参考一下买哪一种合算?生:我选择底面的;生:我选择高是的;生:我选择介于二者之间的。

师:每一个人都认为自己选择的哪种最合算,那末谁的意见正确呢? 生:只要求出冰淇淋的体积就可以了。

师:冰淇淋是个什么外形?(圆锥体)生:你会求吗?师:通过这节课的学习,信任这个问题就很简单解答了。

下面我们一起来讨论圆锥的体积。

并板书课题:圆锥的体积。

二、设疑激趣,探求新知师:那末你能想方法求出圆锥的体积吗?(学生猜测求圆锥体积的方法。

)生:我们可以利用求不规章物体体积的方法,把它放进一个有水的容器里,求出上升那局部水的体积。

师:假如这样,你觉得行吗?教师依据学生的答复做出最终的评价;生:教师,我们前面学过把圆转化成长方形来讨论,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的依据是什么? 小组中大家商议。

生:我们组认为可以将圆锥转化成长方体或者正方体,比方:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或者正方体。

圆锥的表面积和体积高级课件

圆锥的表面积和体积高级课件

A. a÷3 C. 3a
B. 2a D. a3
精选医学
29
二、填空:
用字1、母圆表锥示的是体(V积==13(s13
×底面积×高 h )。
),
2、圆柱体积的13 与和它(等底等高 )的
圆锥的体积相等。
3、一个圆柱和一个圆锥等底等高,圆柱 的体积是3立方分米,圆锥的体积是( 1 ) 立方分米。
4、一个圆锥的底面积是12平方厘米,高
A
B
C
精选医学
20
小结:
1.圆锥的侧面积和全面积
S侧 S扇形 rl
S全 S侧 S底 rl r2
2. 展开图中的圆心角n与r、R之间的关系:
360 l
n
r精选医学
21
童心玩具厂欲生产一种圣诞老人的帽子,其圆 锥形帽身的母线长为15cm,底面半 径为5cm,生产这种帽身10000个,你 能帮玩具厂算一算至少需多少平方 米的材料吗(不计接缝用料和余料, π取3 )?
意一点的线段叫做圆锥的母线。
Or
精选医学
8
1、圆锥有一个尖点,我们称它为 ( 顶点 ) 。
2、圆锥的底面是个( 圆 )形。
3、圆锥的侧面是个( 曲 )面,
4、从圆锥的顶点到底面圆心的距离 是圆锥的( 高 )。
精选医学
9
说一说下面哪些是圆锥,为什么?


×
×
精选医学

10
精选医学
11
探究新知 圆锥的底面半径、高线、母线长 三者之间的关系:
l
r
精选医学
22
圆锥体积
精选医学
23
等底等高的圆柱和圆锥, 圆锥的体积是圆柱
体积的三分之一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 × 19 × 12=76(立方厘米) 3
答:这个零件的体积是76立方厘米。
例2、工地上有一些沙子,堆起来近似于 一个圆锥,测得底面直径是4米,高是1.2 米。这堆沙子大约多少立方米?(得数保 留两位小数)
1.2米 4米
达标检测: 1、 填空 (1)圆柱的体积是9 立方厘米,与它等底等高的圆锥 体积是____。 (2)圆锥底面积5.4平方米,高21米,体积是___ _。 (3)一个圆锥的体积是141.3立方厘米, 与它等底等 高的圆柱体体积是( )立方厘米。 2、计算 (1)、一堆圆锥形沙堆,底面周长是62.8米,高是3 米,这堆沙子有多少立方米? (2)、一堆圆锥形沙堆,它的占地面积为12平方米, 高是1.5米,每立方米沙重1.7吨。用载重为2吨的汽车 把这堆沙运走,几次才能运完?
圆锥的体积
复习:
1、圆柱的体积公式是什么? 2、圆柱体与圆锥体的特征有哪些 相同的地方? 引入:你有办法知道圆锥形铅锤的 体积吗?
学习目标:
1、通过探索与发现,推导出圆锥体积 计算方法,并能解决简单的实际问题。 2、经历探索圆锥有关知识的过程,进 一步发展空间观念。 3、在观察与实验、猜测与验证、交流 与反思等活动中,体会数学知识的产 生过程,体验数学活动充满着探索与 创造,初步了解并掌握一些数学思想 方法。
我们已学习了哪些立体图形体积的计算方法?思 考圆锥的体积可能和什么图形的体积有关呢? 探究活动一: 研究圆柱和圆锥的底面积和高 比一比,量一量,圆柱和圆锥的底面积有什么 关系?高呢? 探究活动二:研究圆柱和圆锥体积之间的关系 问题: (1)用空圆锥装满沙,倒进空圆柱中,可 以倒几次?每次结果怎样? (2)通过实验你发现了什么?
你发现了什么?
圆柱的体积是与它等底等高 圆锥体积的3倍。
高圆柱 1 体积的 3 。
推导公式:
等等 高底
V柱=Sh 1 V锥= 3 Sh
例 1 、一个圆锥形的零件,底面积是 19平方厘米,高是12厘米。这个零件 的体积是多少?
相关文档
最新文档