用尺规作线段和角
用尺规作线段和角教学反思

用尺规作线段和角教学反思反思一:用尺规作线段和角>教学反思尺规作图七年级才开始接触的,有必要讲清他的意图,首先要强调直尺和刻度尺的不同,这样在讲画一条线段与已知线段相等的时候,学生就会明白为什么不能用尺子直接量出长度,而且也避免学生在以后的作图中,还是习惯性的用到刻度尺进行测量。
而教盲生画图,我在课前就预设了各种困难,针对盲生动手能力差,学生差异性大的特点做好准备,分成小组,让每个小组的小组长组织小组内学习。
譬如有的盲生不会用尺子画直线,主要存在问题是不懂得如何将尺子用手固定起来,固定起来之后如何沿着尺子的一边画直线,很多同学的手不知道是如何放在尺子上,例如用手按住的直尺的时候,手会挡住要画直线的笔,如果手不按那么多的话,很难将尺子固定住,所以我想下次教画直线的时候,可能借三角板给学生,他们手抓的地方更大,可能更容易操作。
而且胶纸都很难固定在胶版上,作图对盲生的难度还是远远大于正常学生的。
尺规作图,往往很枯燥。
要牢牢记住画图的步骤,否则就画不出你要的图形。
我反问了自己以下几个问题:但是通过本次尺规作图的教学,学生对尺规作图有了一个具体直观的认识,我觉得效果很是不错的。
反思二:用尺规作线段和角教学反思1.利用现实情景引入新课,既能体现数学知识与客观世界的良好结合,又能唤起学生的求知欲望和探求意识。
而在了解基础知识以后,将其进行一定的升华,也能使学生明白学以致用的道理、体会知识的渐进发展过程,增强思维能力的培养。
同时,在整个探究过程中,怎样团结协作、如何共同寻找解题的突破口,也是学生逐步提高的一个途径。
2. 虽然在教材当中只是提出了如何用尺规来作一个角等于已知角,但是对于教材的适当补充和拓展是十分有必要。
教材只是为教师提供了最基本的教学素材,教师完全可以根据学生的实际情况进行适当的调整,要学会创造性的使用教材。
对于本节课有关角的和、差、倍的补充,既是对于学生知识的补充,也是对于学生活动经验进一步积累的一种提高。
用尺规作线段和角→彩色袜子

彩色袜子
在衣柜抽屉中杂乱无章地放着10只红色的袜子和10只蓝色的袜子。
这20只袜子除颜色不同外,其他都一样。
现在房间中一片漆黑,你想从抽屉中取出两只颜色相同的袜子。
最少要从抽屉中取出几只袜子才能保证其中有两只配成颜色相同的一双?
答案
许多试图解答这道趣题的人会这样对自己说:“假设我取出的第一只是红色袜子。
我需要取出另一只红色袜子来和它配对,但是取出的第二只袜子可能是蓝色袜子,而且下一只,再下一只,如此取下去,可能都是蓝色袜子,直到取出抽屉中全部10只蓝色袜子。
于是,再下一只肯定是红色袜子。
因此答案一定是12只袜子。
”
但是,这种推理忽略了一些东西。
题目中并没有限定是一双红色袜子,它只要求取出两只颜色相同从而能配对的本文节选自(洁面皂 )袜子。
如果取出的头两只袜子不能配对,那么第三只肯定能与头两只袜子中的一只配对。
因此正确的答案是3只袜子。
沪教版七年级数学上册导学案 用尺规作线段与角

4.6 用尺规作线段与角 学习目标: 1、通过用尺规作一条线段等于已知线段、作一个角等于已知角的作图活动,初
步体会“尺规作图”的认识。 2、能用恰当的数学语言表达自己的操作过程。 3、在尺规作图的过程中,培养学生的动手实践技能积累数学活动经验。 学习重点:尺规作图的意义与两个基本作图 学习难点:作图题的几何语言表述
学习过程: 一、创设情境提出问题 你能用一支圆规和一把没有刻度的直尺做出一些美丽的图案吗?(结合课件展 示图案) 二、自主探究: 1、尺规作图的定义:
2、如何作一条线段等于已知线段? 已知,线段 AB.
求作:线段 A′B′,使 A′B′=AB. 作法:(1)作射线 A′C′. (2)以点 A′为圆心,以 AB 的长为半径画弧,交射线 A′C′于点 B′. A′B′就是所求的线段.
2、已知:∠AOB。 求作: ∠A’O’B’ 使∠A’O’B’=2∠AOB。 四、小结与反思: 尺规作图要注意什么? 五、作业 课本 P154 第 1、2 题
2
3、如何作一个角等于已知角呢? 已知:∠AOB。 求作: ∠A’O’B’ 使∠A’O’B’=∠AOB。
1
(1) 作射线 O’A’; (2) 以点 O 为圆心,任意长为半径,交 OA 于点 C,交 OB 于点 D; (3) 以点 O’为圆心,同样(OC)长为半径画弧交 O’A’于点 C’; (4)以点 C’为圆心,CD 长为半径画弧,交前面的弧于点 D’ , 过点 D’作射线 O’B’. ∠A’O’B’就是所求的角. 三、随堂练习: 1、已知线段 a,求作一条线段 b,使 b=2a.
华师版八年级数学尺规作图线段、角

1. 画线段
已知:线段MN=a,求作一条线段等于a.
a
M
N
(1)先画射线AC; (2)用圆规量出线段MN 的长;
(3)在射线AC 上截取AB =a ,则线段 AB 就是所要画的线段.
a
M
NA
B
C
练习1: 任意画出两条线段AB和CD,再作
一条线段,使它等于AB-2CD。
练习2: 任意画出两条线段AB和CD,再作一
(2)作AG 平分∠EAF ; (3)在AG 上截取AD =h ;
E
A
h D
F G
(4)过D 作AD 的垂线分别交AE 于B ,AF 于C ; 则 △ABC 就是所求的等腰三角形.
A
BD
C
E
F
G
(3)连结AB(或AB′);
则 △ABC(或△AB′C)的所求,
a
A
b
hb
h
BD
C
B′
∵点B 可能与D 在AC 同侧,也可能与D 在AC 的两侧;
∴此三角形不惟一; ∴有两边和一边上的高对应相等的两个三角
形不一定全等.
已知底边上的高h 和顶角 ,求作等腰三角形,使它们顶角为 Nhomakorabea,高为h.
h
(1)作∠EAF =∠ ;
华师大版八年级下册
尺规作图
在几何作图中,我们把没有刻度 的直尺和圆规作图。简称尺规作图。
据传为了显示谁的逻辑思维能力更强, 古希腊人限制了几何作图的工具,结果一些 普通的画图题让数学家苦苦思索了2000多年。
尺规作图特有的魅力,使无数人沉湎其 中。
尺规作图:
作图时限定使用的工具只能是圆
规和没有刻度的直尺.
条线段,使它等于AB + 2CD。
七年级数学上册《用尺规作线段与角》教案、教学设计

c.开展小组讨论和分享,促进学生之间的交流与合作,提高学生的沟通能力。
4.关注个体差异,因材施教:
a.对基础薄弱的学生,进行个别辅导,帮助他们掌握基本的尺规作图方法。
b.对学有余力的学生,提供拓展性学习资源,提高他们的几何作图技能。
5.融入情感态度与价值观教育:
2.尺规作线段的方法:
a.作给定长度的线段:利用尺子和圆规,按照步骤进行操作,边讲解边示范。
b.作等分线段:介绍等分线段的原理,演示等分线段的尺规作图方法。
3.尺规作角的方法:
a.作直角:利用圆规和直尺,按照步骤作出直角。
b.作等角:以已知的角为基准,利用圆规和直尺作出与之相等的角度。
4.结合实际例子,讲解尺规作图在实际问题中的应用。
1.引入:教师出示一张白纸,提出问题:“如何用最简单的方法在纸上画出一条指定长度的线段?”引导学生思考并回答。
2.背景知识:简要介绍尺规作图的历史和在实际生活中的应用,让学生了解尺规作图的价值和意义。
3.导入新课:通过以上铺垫,引出本节课的主题——《用尺规作线段与角》。
(二)讲授新知
1.尺规作图的基本概念:介绍尺子和圆规在几何作图中的作用,讲解基本的作图方法。
4.能够运用尺规作图方法探索数学规律,发现几何图形中的对称美和几何关系。
(二)过程与方法
1.通过观察、实践、探索,让学生掌握尺规作图的基本方法和技巧。
2.培养学生的动手操作能力,提高空间想象力和逻辑思维能力。
3.引导学生运用尺规作图方法解决实际问题,培养学生分析问题、解决问题的能力。
4.鼓励学生在尺规作图过程中,积极与他人交流与合作,提高沟通能力。
4.6用尺规作线段与角-沪科版七年级数学上册教案

4.6 用尺规作线段与角-沪科版七年级数学上册教案一、知识点概述本节课主要涉及到用尺规作线段与角的知识点。
在本节课中,学生将学会如何使用尺规作线段、正交平分线段和等分角。
二、教学目标1.掌握使用尺规作线段的方法;2.能够使用尺规作出正交平分线段;3.能够使用尺规将角等分。
三、教学重难点本节课的重点是如何使用尺规作线段、正交平分线段和等分角的方法;难点在于如何将所学的方法应用到实际问题中去。
四、教学步骤及内容1. 预习(5分钟)师生共同检查上节课的课后作业,让学生讲解其中的难题。
2. 课堂讲解(20分钟)1.尺规的使用方法教师介绍尺规的使用方法,并现场演示,让学生跟着做一遍。
2.用尺规作线段(1)使用尺规作线段的定义教师讲解使用尺规作线段英文单词的含义,并举例说明。
(2)案例分析教师给出一组数据,让学生使用尺规作出相应的线段,并检查答案。
(3)练习让学生自己练习使用尺规作线段。
3.正交平分线段(1)正交平分线段的定义及性质教师讲解正交平分线段的概念,并介绍其性质。
(2)案例分析教师给出一组数据,让学生使用尺规和直尺作出正交平分线段,并检查答案。
(3)练习让学生练习使用尺规和直尺作出正交平分线段。
4.将角等分(1)将角等分的定义及方法教师讲解如何使用尺规将角等分,并介绍其方法。
(2)案例分析教师给出一组数据,让学生使用尺规将角等分,并检查答案。
(3)练习让学生自己练习使用尺规将角等分。
3. 课堂综合练习(30分钟)让学生自己练习以上三个知识点的综合运用,解决实际问题,并让学生在黑板上展示答案。
4. 课堂小结(5分钟)讲解本堂课的重点难点和易错点,并概括所学的知识点。
五、课后作业1.完成课本上关于尺规作线段、正交平分线段和将角等分的各项练习;2.总结今天所学的知识点;3.如有疑问,可以在下节课上询问老师。
六、教学反思本节课主要介绍了尺规作线段、正交平分线段和将角等分的方法。
整节课程由浅入深,循序渐进,涵盖了基础、中等和高级的应用,让学生逐步掌握了尺规作线段、正交平分线段和将角等分的方法。
4.6 用尺规作线段与角-课件

⑶以点D为圆心,PQ长为半
F
径画弧交第⑵步中的弧于点F;
⑷作射线EF(图4.6-5),
则∠DEF就是所求作的角.
E
DG
图4.6-5
小练习二
如图4.6-6,已知∠1 、∠2,且∠1 > ∠2,用直尺和圆规作∠AOB等于
⑴ ∠1 + ∠2; ⑵ ∠1 - ∠2.
1
2
图4.6-6
课堂总结: 通过这节课学习,你有什么收获?
4.6 用尺规作线段与角
做一条线段等于 已知线段
Hale Waihona Puke 作一个角等于已 知角A
B
A
O
B
作业布置
1.练习 第2、3题 2.习题4.6 第1、2题
a
b
2a - b
b
a
a
做一条线段等于 已知线段
A
B
作一个角等于已 知角
A
O
B
作一个角等于已知角。
已知:∠AOB 求作:∠DEF,使∠DEF= ∠AOB.
A
O
B
作法:
A
Q
⑴在∠AOB上,以点O为圆
心,任意长为半径画弧,分别交
OA,OB与点P,Q[图4.6-4];
O
PB
⑵作射线EG,并以点E为圆心, 图4.6-4
a
图4.6-1
求作:线段AB,使AB= a .
作法: ⑴作一条直线 l ;
A
B
图4.6-2
l
⑵在l上任取一点A,以点A为圆心,以线段a的
长度为半径画弧,交直线l于点B[图4.6-2] .
线段AB就是所求作的线段.
小练习一
市优质课《2.4用尺规作线段和角(1)》教学实录

市优质课《2.4用尺规作线段和角(1)》教学实录作者:文/金秀霞来源:《新课程·上旬》2014年第05期一、创设情境,导入新课师:(用多媒体展示一组图片。
)师:这些图案漂亮吗?生:漂亮!师:有了它们的点缀,我们的世界才会丰富多彩,你想不想自己也能设计出如此漂亮的图案呢?生:想。
师:让我们从最基本的尺规作图:用尺规作线段和角(1)开始(板书课题)。
师:所谓尺规作图,就是限定用没有刻度的直尺和圆规的作图,利用没有刻度的直尺和圆规可以作出很多图形,大家还记得我们是如何用刻度尺画一条线段等于已知线段的吗?请和老师完成以下作图。
二、正确作图,规范表达师:展示问题:一条线段等于已知线段。
已知:如图,线段a求作:线段AB,使AB=a师:请同学们在学案上完成。
师:哪位同学愿意把自己的作法与大家分享?生1:我是先用直尺量取线段a的长度为5cm,然后再画出线段AB为5cm。
师:很好,如果我们手中只有无刻度的直尺和圆规该如何作图呢?哪位同学有好的办法?生2:老师,可以先画一条直线,然后再用圆规“量取”线段的a长就可以了;生3:不对,老师,圆规没法“量取”线段!生4:可以张开圆规的角度“量取”!生5:老师,先画一条线段也可以!生6:先画一条射线!师:同学们说得都非常好,但是我的意见更倾向于第一步先画射线,大家能明白为什么吗?生1:线段本身无法延伸,而直线没有端点。
师:对,我们画射线的目的是为了定所画线段的位置和端点;第二步可以用圆规量取线段a的长度的(演示),第三步以A为圆心,以a的长为半径画弧交AC于点B。
我们第三步的目的是定另一个端点。
画完后我们再写出结论:线段AB就是所求的线段。
好,请同学们尝试口述作法,并在草纸上完成作图。
生:口述作法并作图。
三、明确步骤,熟记要点师:让我们回顾刚才的作图过程,明确作图步骤,熟记作图要点。
(在屏幕上用动画展示作图过程)师:作图步骤:(1)画射线目的:定位置,定端点;(2)画弧目的:定长度,定另一端点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A’ AO
B’ B
D’ D
图2-13
哈哈,是一个正方形,你对了吗?
随堂随练堂习练习
p 75
1、如图,已知线段a和b,直线AB与CD垂直且相交于点O. 利用尺规,按下列要求作图:
(1) 在射线OA , OB , OC上作线段O A’,OB’ ,OC’, 使它们分别与线段a 相等;
C
a
C’
b
(2) 在射线OD上作线段 OD’,使OD’ 等于b;
的训练.
用直尺
(1) 请过C点画出与AB平行的另一条边。与三角板你
(2) 如
果你只有
B
画得出来吗? D 试一试.
一个圆规
和一把没
有刻度的
直尺,
你能解决
A
C
这个问题
吗?
问题的本质
B
D
A
C
E
上述问题: 用尺规(无刻度的直尺和圆规)”
“过直线外一点作已知直线的平行线”
相当于 “过点C作∠ECD 等于已知角∠CAB.”
做一做 3、“作一个角等于已知角”
已知: ∠AOB。 求作: ∠A’O’B’ 使∠A’O’B’=∠AOB。
作
法
(1) 作射线Βιβλιοθήκη ’A’;(2) 以点O为圆心, 任意长为半径 画弧,
交OA于点C,交OB于点D;
(3) 以点O’为圆心, 同样(OC)长为半径 画弧,
交O’A’于点C’;
(4) 以点C’为圆心, CD长为半径画弧, 交前面的弧于点D’ ,
教材p.79 习题2.6 。
本节课你的收获是什么?
本节课主要学习了用无刻度的直尺和圆规作一线段等 于已知线段及作一角等于已知角, 不要看似简单, 它却 是最基本的几何作图的方法. 数学中历史称之为几何基 本作图法(一); 课外还要加强基本作图工具的使用, 特别是圆规的使 用要领与技巧要勤加操练.
练习中还要注意 几何语言表述的规范、 书写格式的规范
回回顾顾与&思思考☞考 1、作一条线段等于已知线段
利用没有刻度的直尺和圆规可以作出很多几何图形, 你还记得我们是如何用圆规和直尺作一条线段等于已知线 段的吗?
已知:线段AB.
求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
B
作
法
示
范
(1) 作射线A’C’ ;
(2) 以点A’为圆心,
以AB的长为半径画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’ C’
做做一一做做
如图2-13,已知 线段a 和两 条互相垂直的直线AB,CD。
a C C’
(1) 利用圆规,在射线OA,OB, OC,OD上作线段O’A’,O’B’,O’C’, O’D’,使它们分别与 线段a 相等。
(2) 依次连接A’,C’ ,B’,D’,A’. 你得到了一个怎样的图形? 与同伴进行交流。
A A’ O
B B’
(3) 依次连接A’,C’,
B’,D’,A’.
D’
你得到了一个怎样的图形?
D
与同伴进行交流.
练作习业
教材p.75 习题2.5 。
2、过直线外一点作已知直线的平行线
如图2—14,要在长方形木板上截一个平行四边形,
使它的一组对边在长方形木板的边缘上,另一组对边中的
一条边缘为AB。
B H
A
G
F D
C G’ E
随堂练习
p 78
1、已知: ∠AOB。 利用尺规作: ∠A’O’B’ 使∠A’O’B’=2∠AOB。
作法一:
B’ CB
独立思考、合作交流; 口述作法、保留作图痕迹。
法二: D B
C
O
A
B’
E
O
A’ A
∠A’O’B’为所求.
C’
O’
A
∠A’O’B’为所求.
试一试 用尺规作优美的图案
(5) 过点D’作射线O’B’.
示
范
DB
O
CA
BB’
D’
O’
C’
AA’’
∠A’O’B’就是所求的角.
4、通过作同位的等角来作平行线
随堂练习
p 78—2
请用没有刻度的直尺和圆规, 在p76的 木板上, 过点C作AB的平行线.
分析:若以点C为顶点 作一个 与∠BAC既同位又相等 的角∠FCE, 则∠FCE的边CF 所在的直线即为所求.
右面的“邹菊图案”漂亮吗? 你想自己画出它来吗? 那就让我们从最初的步骤开始吧!
1、以点O为圆心, r 为半径作圆O;
2、以圆O上任意一点为圆心, r 为半径作圆,与圆O交于两点;
3、 分别以两个交点为圆心, r 为半径作圆;
4、继续作下去, 在适当的区域涂上颜色, 你作出美丽的“邹菊图案” 吗
作作业业