高中数学直线与圆及其方程

合集下载

直线方程和圆的方程概念及知识点拓展(高中数学)

直线方程和圆的方程概念及知识点拓展(高中数学)

直线与圆的概念公式及拓展一.直线的倾斜角与斜率1.直线的倾斜角α的范围[)π,0。

当直线l 与x 轴重合或平行时,规定倾斜角为0。

注意几种角的范围:异面直线所成的角⎥⎦⎤ ⎝⎛2,0π; 直线和平面所成角⎥⎦⎤⎢⎣⎡20π,; 二面角[]π,0; 两向量的夹角[]π,0;2.斜率定义:倾斜角不是90°的直线,它的倾斜角α的正切值叫做这条直线的斜率k , 即k=tan α(α≠90°);倾斜角为90°的直线没有斜率。

直线方程:Ax+By+C=0的斜率BAk -=。

方向向量:若()n m a ,=为直线的方向向量,则直线的斜率mn k =。

已知直线上两点:过两点()),(,,2211y x y x 的直线的斜率1212x x y y k --=。

二.直线方程的五种形式:1.点斜式:已知直线过点(x 0,y 0),斜率为k ,则直线方程)(00x x k y y -=-,它不包括垂直于x 轴的直线。

2.斜截式:已知直线斜率为k ,在y 轴上的截距b ,则直线方程为y =kx +b ,它不包括垂直于x 轴的直线。

3.两点式:已知直线过了P 1(x 1,y 1),P 2(x 2,y 2) (x 1≠x 2,y 1≠y 2)两点,则直线方程为121121x x x x y y y y --=--,它不包括垂直于x 轴的直线。

4.截距式:已知直线在x ,y 轴上的截距分别为a ,b ( a ≠0,b ≠0)则直线方程为1=+bya x ,它不包括垂直于坐标轴的直线和过原点的直线。

5.直线的一般式方程:任何直线都可以写成Ax +By +C =0(其中A ,B 不同时为0)的形式。

拓展:1.直线在坐标轴上的截距可正,可负,也可为0。

直线的斜率为1或直线过原点,则直线两截距互为相反数; 直线的斜率为-1或直线过原点,则直线两截距相等。

2.设直线方程的一些常用技巧:(1)已知直线y 轴截距b ,常设其方程为y =kx +b 。

圆的方程专题2:直线系与圆系方程-高二数学上学期同步知识点剖析精品讲义 (解析版)

圆的方程专题2:直线系与圆系方程-高二数学上学期同步知识点剖析精品讲义 (解析版)

直线系与圆系方程1 直线系方程(1)过点(x0 ,y0)的直线系方程为A(x−x0)+B(y−y0)=0(其中A ,B不全为零)(2)平行于直线Ax+By+C=0的直线系方程Ax+By+C0=0(C≠C0);(3)垂直于直线Ax+By+C=0的直线系方程Bx−Ay+C0=0;(4)过两条已知直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0交点的直线系方程A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R , 这个直线系下不包括直线l2:A2x+B2y+C2=0,解题时注意检验l2是否满足题意)【例】写出与直线x−2y+1=0平行、垂直的直线系方程.解与直线x−2y+1=0平行的直线系方程分别为x−2y+m=0,与直线x−2y+1=0垂直的直线系方程分别为2x+y+m=0.2 圆系方程(1)以(a ,b)为圆心的同心圆圆系方程:(x−a)2+(y−b)2=λ(λ>0);(2)与圆x2+y2+Dx+Ey+F=0同心圆的圆系方程为x2+y2+Dx+Ey+λ=0;(3)过直线Ax+By+C=0与圆x2+y2+Dx+Ey+F=0交点的圆系方程为x2+y2+Dx+Ey+F+λ(Ax+By+C)=0(λ∈R);(4)过两圆C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0交点的圆系方程为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠−1 , 此圆系不含C2:x2+y2+D2x+E2y+F2=0)特别地,当λ=−1时,上述方程为一次方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.【例】直线l:x−2y+1=0,圆C1:x2+y2+2x−2y+1=0,圆C2:x2+y2+x+y= 0,写出过直线l与圆C1交点的圆系方程,过圆C1与圆C2交点的曲线方程,过圆C1与圆C2交点的公共弦方程.解过直线l与圆C1交点的圆系方程为x2+y2+2x−2y+1+λ(x−2y+1)=0,化简为x2+y2+(2+λ)x−(2+2λ)y+1+λ=0;过圆C1与圆C2交点的曲线方程x2+y2+2x−2y+1+λ(x2+y2+x+y)=0,化简为(1+λ)x2+(1+λ)y2+(2+λ)x+(λ−2)y+1=0,令λ=−1,得过圆C1与圆C2交点的公共弦方程x−3y+1=0.3 过圆上一点的切线方程过圆上一点P(x0 ,y0)作圆⨀M:(x−a)2+(y−b)2=r2的切线l方程为(x0−a)(x−a)+(y0−b)(y−b)=r2证明 向量法 向量PM ⃗⃗⃗⃗⃗⃗ =(a −x 0 ,b −y 0),设切线上任意一点B(x ,y),∵l ⊥PM ,∴PM ⃗⃗⃗⃗⃗⃗ ⊥PB ⃗⃗⃗⃗⃗ ,即PM ⃗⃗⃗⃗⃗⃗ ∙PB ⃗⃗⃗⃗⃗ =0,∴(a −x 0 ,b −y 0)(x −x 0 ,y −y 0)=0⇒(a −x 0)(x −x 0)+(b −y 0)(y −y 0)=0即切线l 方程为(a −x 0)(x −x 0)+(b −y 0)(y −y 0)=0.∵(a −x 0)(x −x 0)+(b −y 0)(y −y 0)=0⇒(a −x 0)(x −a +a −x 0)+(b −y 0)(y −b +b −y 0)=0⇒(a −x 0)(x −a )+(a −x 0)2+(b −y 0)(y −y 0)+(b −y 0)2=0⇒(a −x 0)(x −a )+(b −y 0)(y −y 0)+r 2=0⇒(x 0−a)(x −a)+(y 0−b)(y −b)=r 2∴切线l 方程也可以写成(x 0−a)(x −a)+(y 0−b)(y −b)=r 2.【例】 求过点(1,−2)作圆(x +2)2+(y +1)2=1的切线方程.解 切线方程为(1+2)(x +2)+(−2+1)(y +1)=1,化简为3x −y +4=0.【题型一】直线系方程【典题1】求过两条直线y =2x +3与3x −y +2=0的交点,且分别满足下列条件的直线方程:(1)斜率为−12; (2)过点P(2,3); (3)平行于直线3x +y =1.解析 直线y =2x +3与3x −y +2=0的交点为(1,5),方法一(1)当斜率为−12时,由直线的点斜式方程得:直线方程为y −5=−12(x −1).直线方程为x +2y -11=0.(2)过点P(2,3)时,由两点式得:y -5=3−52−1(x -1)即为y =−2x +7.直线方程为2x +y −7=0.(3)平行于直线3x +y =1时,得直线斜率为k =-3,直线方程为y −5=−3(x -1), 即直线方程为3x +y −8=0.方法二 由直线系方程可设所求直线为2x +3−y +λ(3x −y +2)=0(1) 2x +3−y +λ(3x −y +2)=0⇒(2+3λ)x −(λ+1)y +2λ+3=0直线的斜率为−12时,2+3λλ+1=−12,解得λ=−57, 故所求直线方程为x +2y -11=0.(2) 过点P(2,3)时,代入方程得4+5λ=0⇒ λ=−45,故所求直线方程为2x +y -7=0.(3) 平行于直线3x +y =1时,2+3λλ+1=−3,解得λ=−56,故所求直线方程为3x +y -8=0.点拨 此题是直线系问题.从本题来看,用直线系方程的方法求解对于一般的解法也没有优势,这里只是拓展大家的思路.【巩固练习】1.求过两直线x −2y +4=0和x +y −2=0的交点P ,且分别满足下列条件的直线l 的方程.(1)过点(2 ,1); (2)和直线3x −4y +5=0垂直.答案 (1) x +2y −4=0 (2) 4x +3y −6=0解析 由{x −2y +4=0x +y −2=0 解得{x =0y =2,∴P(0 ,2).(1)设过点P 的直线方程为x −2y +4+λ(x +y −2)=0,∵过点(2 ,1),∴2−2+4+λ=0⇒λ=−4,故所求直线方程为x −2y +4−4(x +y −2)=0⇒x +2y −4=0.(2) 设所求直线为4x +3y +λ=0,∵过点P(0 ,2),∴0+6+λ=0⇒λ=−6,故所求直线方程为4x +3y −6=0.【题型2】过圆上一点的切线方程【典题1】求过点P(−1 ,4),圆(x −2)2+(y −3)2=1的切线l 的方程.解析 方法一 当直线l 斜率不存在时,方程为x =−1,显然不是切线,故可设切线方程为y =k (x +1)+4,∵直线l 与圆相切,∴圆心(2 ,3)到直线l 的距离等于半径1,故√1+k 2=1,解得k =0或−34,故所求直线l 的方程为y =4或3x +4y −13=0.方法二 如方法一,设切线方程为y =k (x +1)+4,由{y =k (x +1)+4(x −2)2+(y −3)2=1得(1+k 2)x 2+(2k 2+2k −4)x +k 2+2k −4=0其判别式∆=(2k 2+2k −4)2−4(1+k 2)(k 2+2k −4)=0 , 解得k =0或−34 ,故所求直线l的方程为y=4或3x+4y−13=0.方法三因为切线过点P(−1 ,4),故可设所求直线的方程为A(x+1)+B(y−4)=0(其中A ,B不全为零),∵直线l与圆相切,=1∴圆心(2 ,3)到直线l的距离等于半径1,故√A2+B2,B≠0.整理,得A(4A−3B)=0,即A=0(这时B≠0)或A=34故所求直线l的方程为y=4或3x+4y−13=0.点拨本题的方法很多,这里利用了直线系方程,过点(x0 ,y0)的直线系方程为A(x−x0)+ B(y−y0)=0(其中A ,B不全为零) , 它比起斜截式y=kx+b的设法好在不用对k的存在进行讨论.【巩固练习】1.求过点P(1 ,3)且与圆(x+1)2+y2=4的相切的直线l的方程.答案x=1或5x+12y+31=0解析因为切线过点P(1 ,3),故设所求直线的方程为A(x−1)+B(y−3)=0(其中A ,B不全为零),=2,∵直线l与圆相切,∴圆心(−1 ,0)到直线l的距离等于半径2,故√A2+B2,≠0,整理得B(5B+12A)=0,即B=0(这时A≠0)或A=−512故所求直线l的方程为x=1或5x+12y+31=0.2. 求过点P(0,√3)且与圆(x+1)2+y2=4的相切的直线l的方程.答案x+√3y−3=0.解析易发现点P(0,√3)在圆(x+1)2+y2=4上,故直线l的方程为(0+1)(x+1)+√3y=4,化简得x+√3y−3=0,即所求直线l的方程为x+√3y−3=0.【题型3】圆系方程【典题1】经过直线2x−y+3=0与圆x2+y2+2x−4y+1=0的两个交点,且面积最小的圆的方程是.解析方法一(面积最小的圆是以两个交点为直径的圆)∵圆x2+y2+2x−4y+1=0的方程可化为(x+1)2+(y−2)2=4.∴圆心坐标为(−1 ,2),半径为r=2;∴圆心到直线2x−y+3=0的距离为d=,√5设直线2x−y+3=0和圆x2+y2+2x−4y+1=0的交点为A ,B,则|AB|=2√r 2−d 2=2√4−15=√19√5,∴过点A ,B 的最小圆半径为√19√5,联立{2x −y +3=0x 2+y 2+2x −4y +1=0得5x 2+6x −2=0,故x 1+x 2=−65,则圆心的横坐标为:12(x 1+x 2)=−35,纵坐标为2×(−35)+3=95,∴最小圆的圆心为(−35 ,95),∴最小圆的方程为(x +35)2+(y −95)2=195.方法二 依题意,可设过点A 、B 两点圆的方程为x 2+y 2+2x -4y +1+λ(2x −y +3)=0,(利用圆系方程把满足题意的所有圆表示出来,再用代数的方法求面积最小的圆) 整理得(x +λ+1)2+(y −4+λ2)2=54λ2+λ+4 若要使得圆的面积最小,则只需半径最小,即54λ2+λ+4取到最小值,而54λ2+λ+4=54(λ+25)2+195≥195,当λ=−25时取到最小值,此时圆的方程为(x +35)2+(y −95)2=195.点拨 本题是过直线与圆交点的圆系问题.方法一可以说是从几何的角度得出思路求解,而方法二算是“代数法”,略显简洁些.【典题2】 已知圆C 1:x 2+y 2=10与圆C 2:x 2+y 2+2x +2y −14=0.(1)求证:圆C 1与圆C 2相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线x +y −6=0上的圆的方程.解析 (1)证明:(圆心距C 1C 2∈(R −r ,R +r)⇔两圆相交)圆C 2:x 2+y 2+2x +2y −14=0化为标准方程为(x +1)2+(y +1)2=16∴C 2(−1 ,−1),r =4∵圆C 1:x 2+y 2=10的圆心坐标为(0 ,0),半径为R =√10∴|C 1C 2|=√2 ,∵4−√10<√2<4+√10,∴两圆相交;(2)(两圆方程相减所得方程即是公共弦所在直线方程)将两圆方程相减,可得2x +2y −4=0,即两圆公共弦所在直线的方程为x +y −2=0;(3)方法一 (先求出两个交点,再求圆心与半径得圆的方程,思路很直接)由{x 2+y 2+2x +2y −14=0x 2+y 2=10解得{x =3y =−1或{x =−1y =3,(这里还是有些计算量的)则交点为A (3 ,−1) ,B(−1 ,3),∵圆心在直线x +y −6=0上,设圆心为P(6−n ,n),则AP =BP ,解得n =3,故圆心P(3 ,3),半径r =AP =4,∴所求圆的方程为(x −3)2+(y −3)2=16.方法二 设所求圆的方程为x 2+y 2+2x +2y −14+λ(x 2+y 2−10)=0(λ≠−1) 即(1+λ)x 2+(1+λ)y 2+2x +2y −14−10λ=0 ∴圆心坐标为(−11+λ ,−11+λ)代入直线x +y −6=0可得:−11+λ−11+λ−6=0,∴λ=−43∴所求圆的方程为x 2+y 2−6x −6y +2=0.点拨 此题是过圆与圆交点的圆系问题.① 两圆之间的位置关系看圆心距O 1O 2与两圆半径R 与r 之间的关系;② 过两圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,C 2:x 2+y 2+D 2x +E 2y +F 2=0交点的圆系方程为x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠−1 , 此圆系不含C 2:x 2+y 2+D 2x +E 2y +F 2=0)特别地,当λ=−1(即两圆方程相减)时,上述方程为一次方程.两圆相交时,表示公共弦方程;两圆相切时,表示公切线方程.③ 方法的选取在于思考难度、计算量、严谨性性等.【巩固练习】1.求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +7=0的两个交点的圆的方程.答案 x 2+y 2+5x -3y =0解析 (1)设圆的方程为x 2+y 2+8x -6y +21+λ(x -y +7)=0,代入(0,0),可得21+7λ=0,∴λ=-3,∴圆的方程为x 2+y 2+8x -6y +21-3(x -y +5)=0,即x 2+y 2+5x -3y =0.2.求经过圆x 2+y 2+8x -6y +21=0与直线x -y +5=0的交点且在y 轴上的弦长为2√33的圆的方程.答案 x 2+y 2−2x +4y −29=0或x 2+y 2+26x −24y +111=0解析 设所求的圆的方程为(x 2+y 2+8x −6y +21)+k(x −y +5)=0,且与y 轴的交点坐标为y 1、y 2,令x =0得(y 2−6y +21)+k(−y +5)=0,化简得y 2−(k +6)y +21+5k =0, ∴y 1+y 2=k +6,y 1⋅y 2=5k +21,由|y 1−y 2|=2√33两边平方得(y 1+y 2)2-4y 1⋅y 2=132,∴(k +6)2-4(5k +21)=132,化简得k 2-8k -180=0,解得k =-10或k =18,∴所求圆的方程为(x 2+y 2+8x −6y +21)-10(x −y +5)=0,或(x 2+y 2+8x −6y +21)+18(x −y +5)=0,∴所求圆的方程为x 2+y 2−2x +4y −29=0或x 2+y 2+26x −24y +111=0.3.求经过两圆x 2+y 2+6x −4=0和x 2+y 2+6y −28=0的交点,并且圆心在直线x −y −4=0上的圆的方程.答案 x 2+y 2−x +7y -32=0解析 设经过两圆x 2+y 2+6x −4=0和x 2+y 2+6y −28=0的交点的圆的方程,为(x 2+y 2+6x -4)+λ(x 2+y 2+6y -28)=0,即x 2+y 2+61+λx +6λ1+λy −4+28λ1+λ=0, 则它的圆心坐标为(−31+λ,−3λ1+λ).再根据圆心在直线x −y −4=0上,可得−31+λ+3λ1+λ−4=0,解得λ=−7,故所求的圆的方程为x 2+y 2−x +7y -32=0.4.已知圆C 1:x 2+y 2−3x −3y +3=0,圆C 2:x 2+y 2−2x −2y =0.(1)求两圆的公共弦所在的直线方程及公共弦长.(2)求过两圆交点且面积最小的圆的方程. 答案 (1) x +y −3=0,√6 (2) (x −32)2+(y −32)2=32解析 (1)设两圆的交点为A(x 1,y 1),B(x 2,y 2),则A 、B 两点的坐标是圆C 1:x 2+y 2−3x −3y +3=0,圆C 2:x 2+y 2−2x −2y =0,联立方程组的解,两方程相减得:x +y −3=0,∵A 、B 两点的坐标都满足该方程,∴x +y −3=0为所求.将圆C 2的方程化为标准形式,(x −1)2+(y −1)2=2,∴圆心C 2(1,1),半径r =√2. 圆心C 2到直线AB 的距离d =√2=√2,|AB|=√6.即两圆的公共弦长为√6.(2)C 1(32,32),C 2(1,1),直线C 1C 2方程:x −y =0.{x −y =0x +y −3=0,交点为(32,32), 即为圆的圆心,半径r =√32, 所以圆的方程是:(x −32)2+(y −32)2=32.【A 组---基础题】1.求经过原点且经过以下两条直线的交点的直线的方程:l 1:x −2y +2=0,l 2:2x −y −2=0;答案 y =x解析 方法一 方程组{x −2y +2=02x −y −2=0得{x =2y =2所以,l 1与l 2的交点是(2,2).设经过原点的直线方程为y =kx ,把点(2,2)的坐标代入以上方程,得k =1,所以所求直线方程为y =x .方法二 过直线l 1与l 2的交点的直线可设为x −2y +2+λ(2x −y −2)=0因为过原点,故2−2λ=0⇒λ=1,则所求直线方程为y =x .2.已知直线x +2y =0与圆x 2+y 2−2x =0的交点为A 、B ,(1)求弦长AB ;(2)求过A 、B 两点且面积最小的圆的方程.答案 (1) 45√5 (2) (x −45)2+(y +25)2=45解析 (1)设A(x 1,y 1),B(x 2,y 2),则直线x +2y =0与圆x 2+y 2−2x =0联立,消去x ,可得5y 2+4y =0,∴y 1=0,y 2=−45,∴{x1=0y 1=0,{x 2=85y 2=−45,∴|AB|=√(x 2−x 1)2+(y 2−y 1)2=45√5.(2)所求圆的圆心为AB 中点C(45,−25),所求面积最小的圆的方程是(x −45)2+(y +25)2=45.3.求圆心在直线3x +4y −1=0上,且过两圆x 2+y 2−x +y -2=0与x 2+y 2=5交点的圆的方程.答案 x 2+y 2+2x −2y −11=0解析设所求圆的方程为(x2+y2−x+y−2)+m(x2+y2−5)=0.整理得(1+m)x2+(1+m)y2−x+y−2−5m=0.圆心坐标为(12(1+m),−12(1+m))代入3x+4y−1=0得m=−32,∴所求圆的方程为x2+y2+2x−2y−11=0.4.过圆x2+y2=4内一点A(1 ,1)作一弦交圆于B、C两点,过点B、C作圆的切线PB、PC,求点P的轨迹方程.答案x+y=4解析设B(x1,y1),C(x2,y2),P(x0,y0),则过圆x2+y2=4上的B,C点的切线方程分别为:xx1+yy1=4,xx2+yy2=4,P点在切线上;∴x0x1+y0y1=4,x0x2+y0y2=4;∴直线BC的方程为:xx0+yy0=4;直线BC过点A(1,1);∴x0+y0=4;∴点P的轨迹方程为x+y=4.故答案为:x+y=4.5.已知点M(2,-2),圆O:x2+y2=3(O为坐标原点).(1)求经过M,以及圆O与圆x2+y2+3x=0交点的圆的方程;(2)过点M向圆O引两条切线,切点分别为A,B,求直线AB的方程.答案(1)3x2+3y2−5x−14=0(2) 2x−2y=3.解析(1)设圆的方程为x2+y2+3x+λ(x2+y2−3)=0,因为点M(2,-2)在圆上,所以λ=−145,所求圆的方程是3x2+3y2−5x−14=0;(2)以MO为直径的圆C的方程为x2+y2−2x+2y=0,则由圆系方程可知圆C与圆O方程相减即得直线AB方程为是2x−2y=3.若切点弦的公式可直接得到2x−2y=3.6.已知圆C的圆心在x轴的正半轴上,半径为2,且被直线l:4x−3y−3=0截得的弦长为2√3.(1)圆C的方程;(2)设P是直线x+y+4=0上动点,过点P作圆C的切线PA,切点为A,证明:经过A,P ,C 三点的圆必过定点,并求所有定点坐标.答案(1)(x−2)2+y2=4 (2)(−1 ,−3)和(2 ,0)解析(1)设圆C的圆心为(a,0),则圆心到直线l的距离d=|4a−3|5.由题意可得,d2+(√3)2=r2,即(4a−3)225+3=4,解得a =2或a =−12(舍).∴圆C 的方程为(x −2)2+y 2=4;(2)证明:∵P 是直线x +y +4=0上的点,∴P(m,−m −4).∵PA 为圆的切线,∴PA ⊥AC,即过A,B,C 三点的圆是以PC 为直径的圆.设圆上任意一点Q(x,y),则PQ ⃗⃗⃗⃗⃗ ⋅CQ ⃗⃗⃗⃗⃗ =0.∵PQ ⃗⃗⃗⃗⃗ =(x −m,y +m +4),CQ ⃗⃗⃗⃗⃗ =(x −2,y),∴PQ ⃗⃗⃗⃗⃗ ⋅CQ ⃗⃗⃗⃗⃗ =(x −m)(x −2)+y(y +m +4)=0,即x 2+y 2-2x +4y +m(-x +y +2)=0.故{x 2+y 2−2x +4y =0−x +y +2=0,解得{x =−1y =−3或{x =2y =0.因此经过A,P,C 三点的圆必过定点(-1,-3)和(2,0).【B 组---提高题】1.已知圆C :x 2+y 2=1,直线l :x +y +2=0,P 为直线l 上的动点,过点P 作圆C 的两条切线,切点分别为A,B ,则直线AB 过定点( )A .(−12,−12)B .(−1,−1)C .(−12,12)D .(12,−12)答案 A解析 根据题意,P 为直线l :x +y +2=0上的动点,设P 的坐标为(t,−2−t),过点P 作圆C 的两条切线,切点分别为A,B ,则PA ⊥AC ,PB ⊥BC ,则点A 、B 在以PC 为直径的圆上,又由C(0,0),P(t,−2−t),则以PC 为直径的圆的方程为x(x −t)+y(y +2+t)=0, 变形可得:x 2+y 2−tx +(t +2)y =0,则有{x 2+y 2=1x 2+y 2−tx +(t +2)y =0,联立可得:1−tx +(t +2)y =0,变形可得:1+2y −t(x −y)=0,即直线AB 的方程为1+2y −t(x −y)=0,变形可得:1+2y −t(x −y)=0,则有{1+2y =0x −y =0,解可得{x =−12y =−12,故直线AB 过定点(−12,−12),故选:A .2.已知圆C 的方程为(x +2)2+y 2=4,点M 在圆C 上运动,点N 的坐标是(2,0).(1)若线段MN 的中点形成的轨迹为G ,求轨迹G 的方程;(2)点P在直线x=8上,过P点引轨迹G的两条切线PA、PB,切点为A、B,求证:直线AB恒过定点.答案(1)x2+y2=1(2) (18,0)解析(1)设线段MN的中点(x,y),则M(2x−2,2y)∵NM在圆(x+2)2+y2=4上运动∴(2x−2+2)2+(2y)2=4,即x2+y2=1①;(2)连接OA,OB,∵PA,PB是圆C的两条切线,∴OA⊥AP,OB⊥BP,∴A,B在以OP为直径的圆上,设点P的坐标为(8,b),b∈R,则线段OP的中点坐标为(4,b2)∴以OP为直径的圆方程化简得:x2+y2-8x-by=0,b∈R,②∵AB为两圆的公共弦,∴①-②得:直线AB的方程为8x+by=1,b∈R,即8(x−18)+by=0,则直线AB恒过定点(18,0).【C组---拓展题】1.已知直线l:y=kx−2,M(−2 ,0) ,N(−1 ,0),O为坐标原点,动点Q满足|QM||QN|=√2,动点Q的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l与圆O:x2+y2=2交于不同的两点A ,B,当∠AOB=π2时,求k的值;(3)若k=12,P是直线l上的动点,过点P作曲线C的两条切线PC、PD,切点为C、D,探究:直线CD是否过定点.答案(1)x2+y2=2(2) ±√3(3)(12,−1)解析(1)设点Q(x ,y),依题意知|QM||QN|=√(x+2)2+y2√(x+1)2+y2=√2 ,整理得x 2+y 2=2,∴曲线C 的方程为x 2+y 2=2;(2)∵点O 为圆心,∠AOB =π2,∴点O 到l 的距离d =√22r ,∴√k 2+1=√22⋅√2⇒k =±√3 ;(3)由题意可知:O 、P 、C 、D 四点共圆且在以OP 为直径的圆上, (对角互补的四边形的四顶点共圆)设P(t ,12t −2),则圆心(t 2 ,t 4−1),半径√t 24+(t4−1)2得(x −t 2)2+(y −t 4+1)2=t 24+(t 4−1)2即x 2−tx +y 2−(12t −2)y =0 又C 、D 在圆O :x 2+y 2=2上∴l CD :tx +(12t −2)y −2=0即 (x +y2)t −2y −2=0(直线CD 是两圆的公共弦所在直线,故两圆方程相减便得其方程) 由{x +y 2=02y +2=0得 {x =12y =−1,∴直线CD 过定点(12 ,−1).。

高中数学课件-专题9 直线和圆的方程 (共55张PPT)

高中数学课件-专题9 直线和圆的方程 (共55张PPT)

2.自一点引圆 的切线的条数
3.弦长公式
考点53 直线与圆的位置关系
1.直线与圆 的位置关系
2.自一点引圆 的切线的条数
(1)若点在圆外,则过此点可以作圆的两条切线; (2)若点在圆上,则过此点只能作圆的一条切线,且此点是切 点; (3)若点在圆内,则过此点不能作圆的切线.
3.弦长公式
考点53 直线与圆的位置关系
2.距离公式 的应用
(2)已知距离求有关方程或有关量
借助于距离公式建立方程(组)得出参数的值或
满足的关系式,然后可结合题中其他条件确定方
程、点的坐标等.
【注意】若已知点到直线的距离求直线方程,用
一般式可避免讨论.否则,应讨论斜率是否存在.
23
24
第2节 圆的方程及直线、圆的位置关系
600分基础 考点&考法
8
10
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
确定定点和斜率或确定两点, 套用直线方程的相应形式, 写出方程.
11
考法2 求直线方程
常用的方法 1.直接法 2.待定系数法
一般步骤: ①设所求直线方程的某种形式; ②由条件(直线的截距、直线上的点、有关图形的面 积等)建立所求参数的方程(组); ③解这个方程(组)求参数; ④把所求的参数值代入所设直线方程.
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
考点51 两条直线的位置关系
1.两条直线的 位置关系
2.两条直线 的交点坐标
3.距离公式 距离公式
两直线的方程组成的方程组的解
考法3 两直线平行与垂直的判定及应用
1.两直线平行或 垂直的判定方法

高二数学辅导资料 直线与圆的方程

高二数学辅导资料 直线与圆的方程

第十讲 直线与圆的方程知识整理1、倾斜角和斜率:(1)倾斜角: ①范围:)180,0[ ∈α②定义:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴饶交点按逆时针方向旋转到和直线重合时的最小正角记为α,则α当直线与和x 轴平行或重合时,倾斜角为 0;当直线与和x 轴垂直时,倾斜角为9 0(2)斜 率:αtan =k ,),(+∞-∞∈k当k 是特殊角的三角函数值时,直接写出角当k 不是特殊角的三角函数值时,可用反三角表示斜率: (3)直线上两点),(),,(222111y x P y x P ,则斜率为1212x x y y k --= 2、直线方程:直线方程的五种形式(1)、点斜式:)(11x x k y y -=-;(2)、斜截式:b kx y +=;(3)、两点式:121121x x x x y y y y --=-- (4)、截距式:1=+by a x (截距是直线与坐标轴的交点坐标,可正可负可为零) (5)、一般式:0=++C By Ax (A 、B 不同时为0) 斜率B A k -=,y 轴截距为BC - 3、两直线的位置关系(1)平行:212121//b b k k l l ≠=⇔且垂直: 21211l l k k ⊥⇔-=⋅(2)相交:21k k ≠ 2121B B A A ≠,交点就是方程组 ⎩⎨⎧=++=++.0;0222111C y B x A C y B x A 的解。

任意曲线的交点就是:曲线方程构成的方程组⎩⎨⎧==0),(0),(21y x f y x f 的解 (3)点到直线的距离公式2200B A C By Ax d +++=(直线方程必须化为一般式) 两平行线间的距离公式:2212BA C C d +-=(即一条直线上任一点到另一条直线的距离)4、圆的方程:(1)、圆的标准方程 222)()(r b y a x =-+-,圆心为),(b a C ,半径为r(2)圆的一般方程022=++++F Ey Dx y x 配方:44)2()2(2222F E D E y D x -+=+++) 0422>-+F E D 时,表示一个以)2,2(E D --为圆心,半径为F E D 42122-+的圆(3)点与圆的位置关系:判断方法0,0)()(222<>=-+-内,外上r b y a x ,上=0(4)直线与圆位置关系:已知直线0=++C By Ax 和圆222)()(r b y a x =-+- ①、圆心到直线的距离d 与r 比较,相离r d >,相切r d =,相交r d <;②、利用根的判别式:联立⎪⎩⎪⎨⎧=-+-=++2222)()(0rb y a x C Bx Ax 消元后得一元二次方程的判别式∆, ⇔>∆0直线和圆相交,⇔=∆0直线和圆相切,⇔<∆0直线和圆相离;练习训练1、直线x+6y+2=0在x 轴和y 轴上的截距分别是 ( ) A.213, B.--213, C.--123, D.-2,-3 2、直线x=3的倾斜角 ( )A.是0B.是2π C.是π D.不存在 3、直线x+3y -2=0的倾斜角为 ( ) A.π6 B.π3 C.23π D.56π 4、过点(3,2)、(2,-1)的直线的斜率是 ( ) A .3 B.-3 C.31 D.31- 5、直线3x+y+1=0和直线6x+2y+1=0的位置关系是 ( )A.重合B.平行C.垂直D.相交但不垂直6、圆x 2+y 2+4x=0的圆心坐标和半径分别是 ( )A.(-2,0),2B.(-2,0),4C.(2,0),2D.(2,0),47、点(2,1)到直线3x -4y + 2 = 0的距离是 ( )(A )54 (B )45 (C )254 (D )425 8、圆x 2+y 2-6y +m =0的半径是2,则m = ( )(A)5 (B)7 (C)-5 (D)-79、已知直线3430x y +-=与直线6140x my ++=平行,则它们间的距离是 ( )A .1710 B . 175C .8D .210、已知圆014222=++++y x y x 上一点P (-1,0)的切线方程是 ( )A .y=0 B.y=-x -1 C.y=2x +2 D.x=011、已知圆C :x 2+y 2=4与直线L :x+y+a=0相切,则a= ( )A.22B.42C.2222或-D.4242或-12、圆22(1)(3)1x y +++=与圆22(3)(1)9x y -++=的位置关系是 ( ) A .相离 B . 相外切 C . 相交 D . 相内切13、如图,已知直线321,,l l l 的斜率分别为321,,k k k ,则 ( )A .321k k k <<B .213k k k <<C .123k k k <<D . 231k k k <<14、x 轴被圆C :x 2+y 2-6x+8y=0截得的线段长是( )(A)10(B)8 (C)6 (D)515、若方程02)2(222=++++a ax y a x a 表示圆,则a = ( )A.-1B.2C.-1或2D.116、若三条直线001,0832=+=--=++ky x y x y x 和相交于一点,则=k ( )(A )-2 (B )21- (C )2 (D )21 17、过点(2,3)且平行于直线052=-+y x 的方程为________________.过点(2,3)且垂直于直线052=-+y x 的方程为________________.18、已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平行时,a =______;当两直线垂直时,a =______.19、已知直线的斜率为4,且在x 轴上的截距为2,此直线方程为____________.20、过点)3,2(P 且在两坐标轴上截距互为相反数的直线方程___________________________21、圆心在点)2,1(-,与y 轴相切的圆的方程为___________________,与x 轴相切的圆的方程为____________________,过原点的圆的方程为_____________________。

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结

高考数学直线与圆归纳总结直线与圆是高中数学中重要的几何概念。

在高考数学中,直线与圆的相关知识点常常出现,并且在解决几何问题时扮演着重要的角色。

下面将对高考数学中涉及直线与圆的知识进行归纳总结。

一、直线与圆的位置关系1. 直线和圆可能有三种位置关系:相离、相切和相交。

a. 如果直线和圆没有交点,则称直线和圆相离。

b. 如果直线与圆有且仅有一个交点,则称直线与圆相切。

c. 如果直线与圆有两个交点,则称直线与圆相交。

2. 判断直线与圆的位置关系的方法:a. 判断直线与圆相离:计算直线到圆心的距离是否大于圆的半径。

b. 判断直线与圆相切:计算直线到圆心的距离等于圆的半径。

c. 判断直线与圆相交:计算直线到圆心的距离小于圆的半径。

二、直线与圆的方程1. 直线的一般方程:Ax + By + C = 0。

直线的一般方程表示直线上的所有点 (x, y),满足方程左侧等式。

2. 圆的标准方程:(x - a)^2 + (y - b)^2 = r^2。

圆的标准方程表示平面上距离圆心 (a, b) 距离为半径 r 的点 (x, y)。

3. 直线与圆的方程应用:a. 直线与圆的相交问题可以通过联立直线和圆的方程求解。

b. 直线与圆的相切问题可以通过判断直线方程是否与圆方程有且仅有一个交点来确定。

三、直线与圆的性质1. 切线与半径的关系:切线与半径的夹角是直角,即切线垂直于半径。

2. 切线的性质:a. 切点:切线与圆的交点称为切点。

b. 切线长度:切点到圆心的距离等于半径的长度。

c. 外切线:若直线与圆内切于一点,则这条直线称为外切线。

d. 内切线:若直线切圆于两个相交点,则这条直线称为内切线。

3. 弦的性质:弦是圆上的两个点之间的线段。

弦的性质有:a. 弦长:弦长等于圆心到弦的距离的两倍。

b. 直径:直径是通过圆心的弦。

直径等于半径的两倍。

四、圆的位置关系1. 同心圆:具有共同圆心的多个圆称为同心圆。

2. 内切圆与外接圆:如果一个圆与另一个圆有且仅有一个切点,则这两个圆称为内切圆与外接圆。

【高中数学】秒杀秘诀---直线系和圆系方程

【高中数学】秒杀秘诀---直线系和圆系方程

直线系和圆系方程定义:如果两条曲线方程是f 1(x ,y)=0和f 2(x ,y)=0,它们的交点是P (x 0,y 0),方程f 1(x ,y)+λf 2(x ,y )=0的曲线也经过点P (λ是任意常数)。

由此结论可得出:经过两曲线f 1(x ,y)=0和f 2(x ,y )=0交点的曲线系方程为:f 1(x ,y )+λf 2(x ,y )=0。

利用此结论可得出相关曲线系方程。

一.直线系概念:具有某种共同属性的一类直线的集合,称为直线系。

它的方程称直线系方程。

几种常见的直线系方程:(1)过已知点P (x 0,y 0)的直线系方程y -y 0=k (x -x 0)(k 为参数)(2)斜率为k 的直线系方程y =kx +b (b 是参数)(3)与已知直线Ax +By +C =0平行的直线系方程Ax +By +λ=0(λ为参数)(4)与已知直线Ax +By +C =0垂直的直线系方程Bx -Ay +λ=0(λ为参数)(5)过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ为参数)例1:已知直线l 1:x +y +2=0与l 2:2x -3y -3=0,求经过的交点且与已知直线3x +y -1=0平行的直线分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。

解:由原方程得m(x +2y -1)-(x +y -5)=0,①即⎩⎨⎧-==⎩⎨⎧=-+=-+4y 9x 05y x 01y 2x 解得,∴直线过定点P (9,-4)例3:求过直线:210x y ++=与直线:210x y -+=的交点且在两坐标轴上截距相等的直线方程.概念:具有某种共同属性的圆的集合,称为圆系。

几种常见的圆系方程:(1)同心圆系:(x -x 0)2+(y -y 0)2=r 2,x 0、y 0为常数,r 为参数。

高中数学 第四章 圆与方程 4.2 4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用学

高中数学 第四章 圆与方程 4.2 4.2.2 圆与圆的位置关系 4.2.3 直线与圆的方程的应用学

4.2.2 圆与圆的位置关系4.2.3 直线与圆的方程的应用目标定位 1.掌握圆与圆的位置关系及判定方法.2.能利用直线与圆的位置关系解决简单的实际问题.3.理解坐标法解决几何问题的一般步骤.自主预习1.圆与圆位置关系的判定(1)几何法:若两圆的半径分别为r1、r2,两圆的圆心距为d,则两圆的位置关系的判断方法如下:位置关系外离外切相交内切内含图示d与r1、r2的关系d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|(2)代数法:通过两圆方程组成方程组的公共解的个数进行判断.⎭⎪⎬⎪⎫圆C 1方程圆C 2方程――→消元一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含2.用坐标方法解决平面几何问题的“三步曲”:即 时 自 测1.判断题(1)两圆无公共点,则两圆外离.( ×)(2)两圆有且只有一个公共点,则两圆内切和外切.(√)(3)设两圆的圆心距为l ,两圆半径长分别为r 1,r 2,则当|r 1-r 2|<l <r 1+r 2时,两圆相交.(√)(4)两圆外切时,有三条公切线:两条外公切线,一条内公切线.(√) 提示 (1)两圆无公共点,则两圆外离和内含.2.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A.相离B.相交C.外切D.内切解析 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2;1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交. 答案 B3.圆x 2+y 2+4x -4y +7=0与圆x 2+y 2-4x +10y +13=0的公切线的条数是( ) A.1B.2C.3D.4解析 两圆的圆心坐标和半径分别为(-2,2),(2,-5),1,4,圆心距d =(-2-2)2+(2+5)2>8,1+4=5<8,∴两圆相离,公切线有4条. 答案 D4.两圆x 2+y 2=r 2与(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值是________.解析 由题意可知(3-0)2+(-1-0)2=2r ,∴r =102. 答案102类型一 与两圆相切有关的问题【例1】 求与圆x 2+y 2-2x =0外切且与直线x +3y =0相切于点M (3,-3)的圆的方程. 解 设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0), 则(a -1)2+b 2=r +1,①b +3a -3=3,② |a +3b |2=r .③ 联立①②③解得a =4,b =0,r =2,或a =0,b =-43,r =6,即所求圆的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 规律方法 两圆相切时常用的性质有:(1)设两圆的圆心分别为O 1、O 2,半径分别为r 1、r 2,则两圆相切⎩⎪⎨⎪⎧内切⇔|O 1O 2|=|r 1-r 2|外切⇔|O 1O 2|=r 1+r 2(2)两圆相切时,两圆圆心的连线过切点(两圆若相交时,两圆圆心的连线垂直平分公共弦). 【训练1】 求与圆(x -2)2+(y +1)2=4相切于点A (4,-1)且半径为1的圆的方程. 解 设所求圆的圆心为P (a ,b ),则 (a -4)2+(b +1)2=1.①(1)若两圆外切,则有(a -2)2+(b +1)2=1+2=3,②联立①②,解得a =5,b =-1,所以,所求圆的方程为(x -5)2+(y +1)2=1; (2)若两圆内切,则有(a -2)2+(b +1)2=|2-1|=1,③联立①③,解得a =3,b =-1,所以,所求圆的方程为(x -3)2+(y +1)2=1. 综上所述,所求圆的方程为(x -5)2+(y +1)2=1或(x -3)2+(y +1)2=1. 类型二 与两圆相交有关的问题(互动探究)【例2】 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0.(1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度. [思路探究]探究点一 当两圆相交时,其公共弦所在直线的方程是什么? 提示 两圆的方程相减即可得公共弦所在直线的方程. 探究点二 如何求公共弦长?提示 (1)代数法:将两圆的方程联立,求出两交点的坐标,利用两点间的距离公式求弦长. (2)几何法:求出公共弦所在的直线方程,半径、弦心距、半弦长构成直角三角形的三边长,利用勾股定理求弦长.解 (1)将两圆方程配方化为标准方程,C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,则圆C 1的圆心为(1,-5),半径r 1=52, 圆C 2的圆心为(-1,-1),半径r 2=10.又∵|C 1C 2|=25,r 1+r 2=52+10,r 1-r 2=52-10, ∴r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x -2y +4=0. (3)法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35, ∴公共弦长l =2r 21-d 2=250-45=2 5.法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0,或⎩⎪⎨⎪⎧x =0,y =2.即A (-4,0),B (0,2).所以|AB |=(-4-0)2+(0-2)2=25, 即公共弦长为2 5.规律方法 1.两圆相交时,公共弦所在的直线方程若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.2.公共弦长的求法(1)代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. (2)几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.【训练2】 已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.解 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+(-4)2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.类型三 直线与圆的方程的应用【例3】 一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9, 港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0), 则轮船航线所在直线l 的方程为x 7+y4=1, 即4x +7y -28=0.圆心(0,0)到航线4x+7y-28=0的距离d=|28|42+72=2865,而半径r=3,∴d>r,∴直线与圆相离,所以轮船不会受到台风的影响.规律方法解决直线与圆的方程的实际应用题时应注意以下几个方面:【训练3】台风中心从A地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( )A.0.5小时B.1小时C.1.5小时D.2小时解析以台风中心A为坐标原点建立平面直角坐标系,如图,则台风中心在直线y=x上移动,又B(40,0)到y=x的距离为d=202,由|BE|=|BF|=30知|EF|=20,即台风中心从E到F时,B城市处于危险区内,时间为t=20千米20千米/时=1小时.故选B.答案 B[课堂小结]1.判断圆与圆位置关系的方式通常有代数法和几何法两种,其中几何法较简便易行、便于操作.2.直线与圆的方程在生产、生活实践以及数学中有着广泛的应用,要善于利用其解决一些实际问题,关键是把实际问题转化为数学问题;要有意识用坐标法解决几何问题,用坐标法解决平面几何问题的思维过程:1.圆x 2+y 2=1与圆x 2+y 2+2x +2y +1=0的交点坐标为( ) A.(1,0)和(0,1) B.(1,0)和(0,-1) C.(-1,0)和(0,-1)D.(-1,0)和(0,1)解析 由⎩⎪⎨⎪⎧x 2+y 2=1,x 2+y 2+2x +2y +1=0;解得⎩⎪⎨⎪⎧x =0,y =-1或⎩⎪⎨⎪⎧x =-1,y =0. 答案 C2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为( ) A.x +y -1=0 B.2x -y +1=0 C.x -2y +1=0D.x -y +1=0解析 直线AB 的方程为:4x -4y +1=0,因此它的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),即两圆连心线. 答案 A3.已知两圆x 2+y 2=10和(x -1)2+(y -3)2=20相交于A 、B 两点,则直线AB 的方程是________.解析 ⎩⎪⎨⎪⎧x 2+y 2=10,x 2+y 2-2x -6y =10⇒2x +6y =0,即x +3y =0. 答案 x +3y =04.已知圆C 1:x 2+y 2-2mx +4y +m 2-5=0,圆C 2:x 2+y 2+2x -2my +m 2-3=0,当m 的取值满足什么条件时,圆C 1与圆C 2相切?解 对于圆C 1与圆C 2的方程,化为标准方程得C 1:(x -m )2+(y +2)2=9,C 2:(x +1)2+(y -m )2=4,所以两圆的圆心分别为C 1(m ,-2),C 2(-1,m ),半径分别为r 1=3,r 2=2,且|C 1C 2|=(m +1)2+(m +2)2.当圆C 1与圆C 2相外切时,则|C 1C 2|=r 1+r 2,即(m +1)2+(m +2)2=3+2,解得m =-5或m =2.当圆C 1与圆C 2相内切时,则|C 1C 2|=|r 1-r 2|,即(m +1)2+(m +2)2=|3-2|,解得m =-1或m =-2.综上可知,当m =-5或m =2或m =-1或m =-2时,两圆相切.基 础 过 关1.圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( ) A.内切B.相交C.外切D.相离解析 两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交. 答案 B2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( ) A.21B.19C.9D.-11解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m . 又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9. 答案 C3.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( ) A.1.4米B.3.5米C.3.6米D.2米解析 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h ,则A (0.8,h -3.6)半圆所在圆的方程为:x 2+(y +3.6)2=3.62把A (0.8,h -3.6)代入得0.82+h 2=3.62.∴h =40.77≈3.5(米).答案 B4.两圆x 2+y 2-x +y -2=0和x 2+y 2=5的公共弦长为________.解析 由⎩⎪⎨⎪⎧x 2+y 2-x +y -2=0,x 2+y 2=5,①②②-①得两圆的公共弦所在的直线方程为x -y -3=0, ∴圆x 2+y 2=5的圆心到该直线的距离为d =|-3|1+(-1)2=32,设公共弦长为l ,∴l =25-⎝ ⎛⎭⎪⎫322= 2. 答案25.已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为________.解析 圆C 2可化为(x +2)2+(y -2)2=4,则圆C 1,C 2的圆心为C 1(0,0),C 2(-2,2),所以C 1C 2的中点为(-1,1),kC 1C 2=2-0-2-0=-1,所以所求直线的斜率为1,所以直线l 的方程为y -1=x +1,即x -y +2=0. 答案 x -y +2=06.求与圆O :x 2+y 2=1外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,半径为2的圆的方程.解 设所求圆的圆心为C (a ,b ),则所求圆的方程为 (x -a )2+(y -b )2=4.∵两圆外切,切点为P ⎝ ⎛⎭⎪⎫-12,-22,∴|OC |=1+2=3,|CP |=2.∴⎩⎨⎧a 2+b 2=9,⎝ ⎛⎭⎪⎫a +122+⎝ ⎛⎭⎪⎫b +322=4,解得⎩⎪⎨⎪⎧a =-32,b =-332. ∴圆心C 的坐标为⎝ ⎛⎭⎪⎫-32,-332,故所求圆的方程为⎝ ⎛⎭⎪⎫x +322+⎝ ⎛⎭⎪⎫y +3322=4.7.已知圆C 1:x 2+y 2-10x -10y =0和圆C 2:x 2+y 2+6x -2y -40=0.求: (1)它们的公共弦所在直线的方程; (2)公共弦长.解 (1)由⎩⎪⎨⎪⎧x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,两方程相减,得公共弦所在直线方程为2x +y -5=0. (2)圆x 2+y 2-10x -10y =0的圆心C 1的坐标为(5,5),半径r =52,又点C 1到相交弦的距离d =|2×5+5-5|22+12=2 5. ∴公共弦长为2(52)2-(25)2=230.能 力 提 升8.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|等于( ) A.4B.4 2C.8D.8 2解析 ∵两圆与两坐标轴都相切,且都经过点(4,1), ∴两圆圆心均在第一象限且横、纵坐标相等. 设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2, 即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根, 整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8. 答案 C9.以圆C 1:x 2+y 2+4x +1=0与圆C 2:x 2+y 2+2x +2y +1=0相交的公共弦为直径的圆的方程为( )A.(x -1)2+(y -1)2=1 B.(x +1)2+(y +1)2=1C.⎝ ⎛⎭⎪⎫x +352+⎝ ⎛⎭⎪⎫y +652=45D.⎝ ⎛⎭⎪⎫x -352+⎝ ⎛⎭⎪⎫y -652=45解析 两圆方程相减得公共弦所在直线的方程为x -y =0,因此所求圆的圆心的横、纵坐标相等,排除C ,D 选项,画图(图略)可知所求圆的圆心在第三象限,排除A.故选B. 答案 B10.与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是________.解析 曲线化为(x -6)2+(y -6)2=18,其圆心C 1(6,6)到直线x +y -2=0的距离为d =|6+6-2|2=5 2.过点C 1且垂直于x +y -2=0的直线为y -6=x -6,即y =x ,所以所求的最小圆的圆心C 2在直线y =x 上,如图所示,圆心C 2到直线x +y -2=0的距离为52-322=2,则圆C 2的半径长为 2.设C 2的坐标为(x 0,x 0),则|x 0+x 0-2|2=2, 解得x 0=2(x 0=0舍去),所以圆心坐标为(2,2),所以所求圆的标准方程为(x -2)2+(y -2)2=2.答案 (x -2)2+(y -2)2=211.已知隧道的截面是半径为4 m 的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7 m ,高为3 m 的货车能不能驶入这个隧道?假设货车的最大宽度为a m ,那么要正常驶入该隧道,货车的限高为多少?解 以某一截面半圆的圆心为坐标原点,半圆的直径AB 所在直线为x 轴,建立如图所示的平面直角坐标系,那么半圆的方程为x 2+y 2=16(y ≥0).将x =2.7代入,得y =16-2.72=8.71<3,所以,在离中心线2.7 m 处,隧道的高度低于货车的高度.因此,货车不能驶入这个隧道.将x =a 代入x 2+y 2=16(y ≥0)得y =16-a 2.所以,货车要正常驶入这个隧道,最大高度(即限高)为16-a 2m.探 究 创 新12.已知圆C 1:x 2+y 2-4x -2y -5=0与圆C 2:x 2+y 2-6x -y -9=0.(1)求证:两圆相交;(2)求两圆公共弦所在的直线方程;(3)在平面上找一点P ,过点P 引两圆的切线并使它们的长都等于6 2.(1)证明 圆C 1:(x -2)2+(y -1)2=10, 圆C 2:(x -3)2+⎝ ⎛⎭⎪⎫y -122=734. ∵|C 1C 2|=(2-3)2+⎝ ⎛⎭⎪⎫1-122=52.且732-10<52<732+10, ∴圆C 1与圆C 2相交.(2)解 联立两圆方程,得⎩⎪⎨⎪⎧x 2+y 2-4x -2y -5=0,x 2+y 2-6x -y -9=0, ∴两圆公共弦所在的直线方程为2x -y +4=0.(3)解 设P (x ,y ),由题意,得⎩⎨⎧2x -y +4=0,x 2+y 2-6x -y -9=(62)2,解方程组,得点P 的坐标为(3,10)或⎝ ⎛⎭⎪⎫-233,-265.。

高中数学《直线和圆的方程》常用公式

高中数学《直线和圆的方程》常用公式

高中数学《直线和圆的方程》常用公式1.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 2.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;3. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π.4.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).5.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 6.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.7. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). (3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).8.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).9. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.10. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是:111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分;111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.11.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d = d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.12.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .其中22B A CBb Aa d +++=.13. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.14.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .15.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x x E y y x x y y F ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k的圆的切线方程为y kx =±.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆及其方程专题复习一、高考考点梳理(一)、直线的倾斜角与斜率1.直线的倾斜角①定义:在平面直角坐标系中,对于一条与x轴相交的直线l,把x轴(正方向)按逆时针方向绕着交点旋转到和直线l重合所成的角,叫作直线l的倾斜角,当直线l和x轴平行时,它的倾斜角为0.②范围:直线的倾斜角α的取值范围是[0,π).2.直线的斜率①定义:当α≠90°时,一条直线的倾斜角α的正切值叫作这条直线的斜率,斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在.②过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为k=y2-y1x2-x1. (二)、直线方程的五种形式(三)、线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y 22,此公式为线段P 1P 2的中点坐标公式.(四)、两条直线平行与垂直的判定1.两条直线平行:对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.特别地,当直线l 1,l 2的斜率都不存在时,l 1与l 2平行.2.两条直线垂直:如果两条直线l 1,l 2斜率都存在,设为k 1,k 2,则l 1⊥l 2⇔k 1·k 2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直.(五)、两直线相交:直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一 一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解.(六)、距离公式1.两点间的距离公式平面上任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为 |AB |=(x 2-x 1)2+(y 2-y 1)2.特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.2.点到直线的距离公式:平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B2.(七)、圆的定义和圆的方程(八)、点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2之间存在着下列关系: 1.d >r ⇔M 在圆外,即(x 0-a )2+(y 0-b )2>r 2⇔M 在圆外; 2.d =r ⇔M 在圆上,即(x 0-a )2+(y 0-b )2=r 2⇔M 在圆上; 3.d <r ⇔M 在圆内,即(x 0-a )2+(y 0-b )2<r 2⇔M 在圆内.(九)、直线与圆的位置关系设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0,圆心C (a ,b )到直线l的距离为d ,由⎩⎪⎨⎪⎧(x -a )2+(y -b )2=r 2,Ax +By +C =0消去y (或x ),得到关于x (或y )的一元二次方程,其判别式为Δ.(十)、圆与圆的位置关系设两个圆的半径分别为R ,r ,R >r ,圆心距为d ,则两圆的位置关系可用下表来表示:题型一 圆的方程【例1】(2018国Ⅱ卷)设抛物线C:y 2=4x 的焦点为F ,过F 且斜率为k(k>0)的直线l 与C 交于A ,B 两点,|AB|=8. (1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解析:(1)由题意得F(1,0),l 的方程为y=k(x-1)(k>0). 设A(x 1,y 1),B(x 2,y 2),由⎩⎨⎧y=k(x-1)y 2=4x 得k 2x 2-(2k 2+4)x+k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB|= x 1+x 2+2=2k 2+4k 2+2=8 ,解得k=-1(舍去),k=1.因此l 的方程为y=x-1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程 为y-2=-(x-3),即y=-x+5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎨⎧y 0=-x 0+5(x 0+1)2=(y 0-x 0+1)22+16解得⎩⎨⎧x 0=3y 0=2或⎩⎨⎧x 0=11y 0=-6因此所求圆的方程为(x-3)2+(y-2)2=16或(x-11)2+(y+6)2=144.题型二 求点到直线的距离【例2】(2020国Ⅲ卷)点到直线距离的最大值为( )A. B. C. D.解析:因为点到直线距离;要求距离的最大值,故需;可得;当时等号成立;故选B .题型三 直线与圆的综合问题【例3】(2020国Ⅰ卷)已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .4解析:依题意,圆心为C (3,0),半径r =3,过点A (1,2)的最短弦是垂直于AC 的弦.又AC ,由勾股定理可得最短弦长等于2,故选B.【例4】(2020国Ⅱ卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.5B.5C.5D.5解析:依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --=的距离5=;当圆心坐标为(5,5)时,其到直线230x y --=的距离为5=,综上,可知B 正确.故选B . 【例5】(2018国Ⅰ卷)直线y=x+1与圆x 2+y 2+2y-3=0交于A,B 两点,则|AB|=________.解析:圆心为(0,-1),半径R=2,线心距d=2,|AB|=2R 2-d 2=2 2【例6】(2018国Ⅲ卷)直线x+y+2=0分别与x 轴,y 轴交于A,B 两点,点P 在圆(x-2)2+y 2=2上,则ΔABP 面积的取值范围是( ) A .[2,6]B .[4,8]C .[2,32]D .[22,32]解析:线心距d=22,点P 到直线的最大距离为32,最小距离为2,|AB|=22,S min =2, S max =6 .故选A .【例7】(2017国Ⅲ卷)在直角坐标系xOy 中,曲线22-+=mx x y 与x 轴交于B A ,两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1) 能否出现BC AC ⊥的情况?说明理由;(2) 证明过C B A ,,三点的圆在y 轴上截得的弦长为定值. 解析:(1)令)(0,1x A ,)(0,2x B ,又)(1,0C 1x ,2x 为022=-+mx x 的根0∆> ⎩⎨⎧-=-=+22121x x mx x 假设BC AC ⊥成立,0=⋅∴C B C A)1,()1,-011x x C A -==( ,)1,()1,-022x x C B -==( 01121≠-=+=⋅∴x x C B C A∴不能出现BC AC ⊥的情况.(2)令圆与y 轴的交点为)(1,0C ,)(3,0y D 令圆的方程为022=++++F Ey Dx y x 令0=y 得02=++F Dx x 的根为1x ,2x2-==∴F m D ,令0=x 得02=++F Ey y ……. ① 点)(1,0C 在①上,021=-+∴E 1=∴E 022=-+∴y y 解得1=y 或2-=y 23-=∴y∴过C B A ,,三点的圆在y 轴上截得的弦长为3,为定值.【例8】(2015国Ⅰ卷)已知过点且斜率为k 的直线l 与 圆C :交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ),其中O 为坐标原点,求.()1,0A ()()22231x y -+-=12OM ON ⋅=MN解析:(Ⅰ)由题设,可知直线l 的方程为.因为l 与C 交于两点,所以..所以的取值范围是(Ⅱ)设. 将代入方程,整理得,所以 , 由题设可得,解得,所以l 的方程为.故圆心在直线l 上,所以.1y kx 147473kk 47473k1122(,),(,)M x y N x y 1ykx 22231x y 22(1)-4(1)70k x k x 1212224(1)7,.11k x x x x k k21212121224(1)1181k k OM ON x x y y k x x k x x k 24(1)8=121k k k=1k 1y x ||2MN。

相关文档
最新文档