高等代数习题答案[1]

合集下载

高等代数习题答案

高等代数习题答案

《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --121 7、3 8、- 48 9、相 10、相11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、T A ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2-2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→cba2)31131031605510019182402113------→9532001235250019182402113-----→409201235250019182402113=-----→3)1103100321011111033100321011111993952032101111=→→→4)()()()xaan x a x an x a a an x111-+-+-+→()[]a n x 1-+=xaa x a a111→()[]a n x 1-+ax a x a a --001=()[]()11---+n a x a n x5)n n y x +6)nna a a a a1001010011110---→nn a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→572527003542 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x t x t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000004720123018144472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x t t x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131111202121⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→022********220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020*******11111 则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→1283001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----21123124112 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--1243012210011101101201221000111110111010012001111 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→3132341032313201031313100112430323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---AA A 3421322123111=⎪⎭⎫⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00CA ⎥⎦⎤⎢⎣⎡==A X CX A X CX E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--112121221100C A AX X X 则⎥⎦⎤⎢⎣⎡=---00111ACX10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定 2)064320222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t tt t t t t则054<<-t12、1)031610213510610213112311213≠-=---→---→----03321021112210211131021211≠=-→--→,故为3P 的两组基 2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→0721010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000110201000003306031155033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10010001,11000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,100110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。

高等代数__课后答案__高等教育出版社

高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。

3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。

另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。

由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。

从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。

高等代数第五版课后题答案及详解

高等代数第五版课后题答案及详解

高等代数第五版课后习题答案
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。

则Aα= λα
那么(A²-A)α= A²α- Aα= λ²α- λα= (λ²-λ)α
所以A²-A的特征值为λ²-λ,对应的特征向量为α
A²-A的特征值为0 ,2,6,...,n²-n
函数(function),名称出自数学家李善兰的著作《代数学》。

之所以如此翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。

函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

高等代数习题答案

高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。

证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。

故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。

于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。

13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。

证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。

高等代数_北大第三版_习题答案.pdf

高等代数_北大第三版_习题答案.pdf
P44.3 .2)
∴ ( x3 − x 2 − x) = ( x − 1 + 2i)3 + (2 − 8i )( x − 1 + 2i) 2 −(12 + 8i )( x − 1 + 2i ) − (9 − 8i ) 即余式 −9 + 8i
商 x − 2ix − (5 + 2i )
2
P44. 4.1).
m n
f m , g1 g 2
g n ) = 1 (注反复归纳用 12 题) 。
f(x)=x3+2x2+2x+1, g(x)=x4+x3+2x2+x+1 解:g(x)=f(x)(x-1)+2(x2+x+1), f(x)=(x2+x+1)(x+1) 即(f(x),g(x)) = x2+x+1.
令(x +x+1)=0 得
所以 d ( x) = u ( x) f1 ( x) d ( x) + v( x) g1 ( x)d ( x). 消去 d ( x ) ≠ 0 得 1 = u ( x) f1 ( x) + v( x) g1 ( x)
P45.11
证:设 ( f ( x), g ( x)) = d ( x) ≠ 0, f ( x) = f1 ( x) d ( x), g ( x) = g1 ( x)d ( x)
∴ d ( x) h( x) = ( f ( x ), g ( x )) h( x ) = u ( x ) f ( x ) h( x ) + v ( x ) g ( x ) h( x ).
而首项系数=1,又是公因式得(由 P45、8) ,它是最大公因式,且

高等代数第一章答案(多项式)

高等代数第一章答案(多项式)

若()()()x m x l x h +=,且()()x m x p |,()()x l x p |/,则()()x h x p |/。

证法1: 由()()x m x p |/有 ()()()x p x m x m 1=。

由()()x l x p |/有()()()()()0,1≠+=x r x r x p x l x l 。

于是 ()()()()()()()()x r x p x l x m x m x l x h ++=+=11。

因()0≠x r ,故()()x h x p |/。

证明2:用反证法。

若()()x h x p |,即()()()()x m x l x p +|, 又()()x m x p |,故()()()()()x m x m x l x p -+|,即()()x l x p |,矛盾。

问:若()()()()x g x h x f x h |,|//, 则()()()()x g x f x h +|成立吗?试举例说明。

答:不一定。

例如 ()()()1,1,+=-==x x g x x f x x h ,则()()()()x g x h x f x h |,|//,但()()()()x g x f x h +|。

例如 ()()()2,1,+=-==x x g x x f x x h , 则()()()()x g x h x f x h |,|//,且()()()()x g x f x h +/|。

例 求m l ,, 使()2523+++=x lx x x f 能被()12++=mx x x g 整除。

解法1:因()()3=∂x f ,()()2=∂x g ,故商()x q 满足()()1=∂x q ,且设()p x x q +=,则由 ()()()x g x q x f =,可得()()p x pm x p m x x lx x +++++=+++1252323,l m p pm p =+=+=,51,2,从而 4,2,2===l m p 。

《高等代数课后答案》(邱著)

《高等代数课后答案》(邱著)高等代数之后的答案(秋微写的)《高等代数》的内容由浅入深,循序渐进,符合当前两位学生的教学实践。

可作为高校数学与应用数学、信息与计算科学专业的教材,也可作为相关专业的教师、学生和自学者的参考。

以下是阳光网编著的《高等代数》答案(邱著)阅读地址。

希望你喜欢!点击进入:高等代数课后答案地址(邱执笔)高等代数(秋微著)目录前言(一)第一章决定因素(1)1.1一些预备知识(1)1.2二阶和三阶行列式(3)1.3n n阶行列式(7)1.4行列式的计算(18)1.5克莱姆法则(28)1.6行列式的一些应用(31)练习1(A)(35)练习1(B)(38)第二章矩阵(41)2.1矩阵的概念(41)2.2矩阵运算(44)2.3初等变换和初等矩阵(54)2.4可逆矩阵(67)2.5矩阵的秩(76)2.6分块矩阵及其应用(79)练习2(A)(90)练习2(B)(93)第三章线性空间(95)3.1矢量(96)3.2向量的线性相关性(98)3.3向量组的秩(103)3.4矩阵的行秩和列秩(106)3.5线性空间(111)3.6基础、尺寸和坐标(114)3.7基变换和转移矩阵(118)3.8子空间(122)3.9同构(131)3.10线性方程(135)练习3(A)(147)练习3(B)(150)第四章线性变换(152)4.1线性变换及其运算(152)4.2线性变换矩阵(156)4.3线性变换的范围和核心(165)4.4不变子空间(169)练习4(A)(173)练习4(B)(175)第五章多项式(176)5.1一元多项式(176)5.2多项式可整除(178)5.3倍大公因数(181)5.4因式分解定理(186)5.5重因子(189)5.6多项式函数(191)5.7复系数和实系数多项式的因式分解(195) 5.8有理系数多项式(198)5.9多元多项式(202)5.10对称多项式(206)练习5(A)(211)练习5(B)(213)第六章特征值(216)6.1特征值和特征向量(216)6.2特征多项式(221)6.3对角化(225)练习6(A)(231)练习6(B)(232)第七章-矩阵(234)7.1-矩阵及其初等变换(234)7.2-矩阵的标准型(238)7.3不变因子(242)7.4矩阵相似性的确定(245)7.5基本因素(247)7.6乔丹范式(251)7.7x小多项式(256)练习7(A)(259)第八章二次型(261)8.1二次型及其矩阵表示(261)8.2将二次型转化为标准型(264)8.3惯性定理(271)8.4正定二次型(274)练习8(A)(279)练习8(B)(280)第九章欧几里得空间(282)9.1欧氏空间的定义和基本性质(282) 9.2标准正交基(285)9.3正交子空间(291)9.4正交变换和对称变换(293)9.5实对称方阵的正交相似性(297)练习9(A)(303)练习9(B)(306)练习答案(308)参考文献312。

《高等代数》第一章习题及答案

习题1.1解答1.下列数集哪些是数域?哪些是数环?哪些既非数域也非数环?1)所有正实数所成的集合.2)所有偶数(或奇数)构成的集合. 3)某个整数a 的所有整数倍所成的集合.4)F={Q b a b a ∈+,23}.解 1)所有正实数所成的集合对减法不封闭,所以不是数环,当然也非数域.2)所有偶数构成的集合对加、减、乘均封闭,所以是数环;但对除法不封闭,所以不是数域.3)某个整数a 的所有整数倍所成的集合对加、减、乘均封闭,所以是数环;但对除法不封闭,所以不是数域.4)在F={Q b a b a ∈+,23} 中取32,显然32×32∉F ,即对乘法不封闭,所以F 不是数环,当然也非数域.2.证明:两个数域的交是一个数域.解 设A ,B 是两个数域,则0,1∈A ,0,1∈B ,从而0,1∈A ∩B ;对任意x,y ∈A ∩B ,有x,y ∈A 和x,y ∈B ,从而x+y ∈A ,x-y ∈A ,x ×y ∈A ,x ÷y ∈A (对y ≠0),同样也有x+y ∈B ,x-y ∈B ,x ×y ∈B ,x ÷y ∈B (对y ≠0),所以x+y ∈A ∩B ,x-y ∈A ∩B ,x ×y ∈A ∩B ,x ÷y ∈A ∩B (对y ≠0),故A ∩B 是数域.3*.证明:F={a+bi|a,b ∈Q}(i 是虚单位)是一个数域.解 显然0=0+0i ∈F ,1=1+0i ∈F ;对任意a+bi,c+di ∈F ,有(a+bi)+(c+di)=(a+c)+(b+d)i ∈F ,(a+bi)-(c+di)=(a-c)+(b-d)i ∈F ,(a+bi)×(c+di)=(ac-bd)+(ad+bc)i ∈F ,若c+di ≠0,则(a+bi)÷(c+di)=F i d c ad cb d c bd ac d c di c bi a ∈+-+++=+-+222222)())((.所以F 是数域.4*.证明:G={a+bi|a,b ∈Z}是数环而不是数域.解 对任意a+bi,c+di ∈G ,有(a+bi)+(c+di)=(a+c)+(b+d)i ∈G ,(a+bi)-(c+di)=(a-c)+(b-d)i∈G ,(a+bi)×(c+di)=(ac-bd)+(ad+bc)i ∈G ,所以G 是数环.数1=1+0i ∈G ,2=2+0i ∈G ,2≠0,但1÷2∉G ,所以G 不是数域.习题1.2解答1.用行的初等变换,将下列矩阵化为行最简形.①⎪⎪⎪⎭⎫⎝⎛-213312011 ②⎪⎪⎪⎪⎪⎭⎫⎝⎛-2605573314122321③⎪⎪⎪⎭⎫⎝⎛---443112110013 ④⎪⎪⎪⎪⎪⎭⎫⎝⎛-----133331241246104210521 解 ①⎪⎪⎪⎭⎫ ⎝⎛-213312011→⎪⎪⎪⎭⎫ ⎝⎛-240330011→⎪⎪⎪⎭⎫ ⎝⎛--200110011→⎪⎪⎪⎭⎫⎝⎛100010001 ②⎪⎪⎪⎪⎪⎭⎫⎝⎛-2605573314122321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------129100123032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------129100123032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----23/700200032302321→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----200023/70032302321→⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001 ③⎪⎪⎪⎭⎫ ⎝⎛---443112110013→⎪⎪⎪⎭⎫ ⎝⎛---443100131211→⎪⎪⎪⎭⎫ ⎝⎛----564036401211 →⎪⎪⎪⎭⎫ ⎝⎛---200036401211→⎪⎪⎪⎭⎫ ⎝⎛--100006400211→⎪⎪⎪⎭⎫ ⎝⎛-100002/31002/101 ④⎪⎪⎪⎪⎪⎭⎫⎝⎛-----133331241246104210521→⎪⎪⎪⎪⎪⎭⎫⎝⎛----231890126306600010521→⎪⎪⎪⎪⎪⎭⎫⎝⎛----660002318901263010521 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----11000130001263010521→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---40000110001263010521→⎪⎪⎪⎪⎪⎭⎫⎝⎛--10000010000063000521 →⎪⎪⎪⎪⎪⎭⎫⎝⎛100000100000310001012*.用行的与列的初等变换,将上题中的③化成形为⎪⎪⎭⎫ ⎝⎛000sE 的矩阵. 解 接上题中的③的行最简形⎪⎪⎪⎭⎫ ⎝⎛-100004/61002/101→⎪⎪⎪⎭⎫ ⎝⎛100000100001→⎪⎪⎪⎭⎫⎝⎛010*********习题1.3解答1.写出以下列行最简形矩阵为增广矩阵的线性方程组的全部解.①⎪⎪⎪⎭⎫ ⎝⎛-000032100301 ②⎪⎪⎪⎭⎫ ⎝⎛110000010010011 解 ①对应的线性方程组可写为⎩⎨⎧+=-=32312330x x x x令x 3=c ,得x 1=-3c ,x 2=3+2c ,全部解可表示为⎪⎩⎪⎨⎧=+=-=c x c x c x 321233 其中c 为任意数.② 对应的线性方程组可写为⎪⎩⎪⎨⎧==-=1014321x x x x令x 2=c ,得⎪⎪⎩⎪⎪⎨⎧===-=1014321x x c x c x 其中c 为任意数.2.解下列线性方程组:①⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x ②⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++69413283542432321321321321x x x x x x x x x x x x③⎪⎩⎪⎨⎧=--+=+-+=+-+12222412432143214321x x x x x x x x x x x x ④⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312432143214321x x x x x x x x x x x x 解 ① 对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎪⎪⎭⎫ ⎝⎛---2/54/112/502/174/112/502124~⎪⎪⎪⎭⎫ ⎝⎛---101110034111002124~⎪⎪⎪⎭⎫ ⎝⎛---2400034111002124 由于系数矩阵的秩不等于增广矩阵的秩,所以原方程组无解.② 对应的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328341325421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----147702814140147705421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000021105421 对应的同解方程组可写为⎩⎨⎧+=--=-323212452x x x x x令x 3=c ,全部解可表示为⎪⎩⎪⎨⎧=+=--=cx c x cx 321221 其中c 为任意数.③对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎪⎭⎫⎝⎛---020000100011112 ~⎪⎪⎪⎭⎫⎝⎛-00000010002/102/12/11 对应的同解线性方程组可写为⎩⎨⎧=+-=02/12/12/14321x x x x令x 2=c 1,x 3=c 2,得⎪⎪⎩⎪⎪⎨⎧===+-=021212142312211x c x cx c c x 其中c 1,c 2为任意数.④ 对应的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎪⎪⎭⎫ ⎝⎛-----111124312325341~⎪⎪⎪⎭⎫ ⎝⎛------5957010181014025341~⎪⎪⎪⎭⎫ ⎝⎛----000005957025341 对应的同解线性方程组可写为⎩⎨⎧+-=--+-=+432432195575324x x x x x x x令x 3=c 1,x 4=c 2,得⎪⎪⎩⎪⎪⎨⎧==-+-=++=24132122117/97/57/57/7/7/6c x c x c c x c c x 其中c 为任意数.3.解下列齐次线性方程组:①⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ②⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ③⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x 解 ① 对应的系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎪⎭⎫ ⎝⎛----430013101211~⎪⎪⎪⎭⎫ ⎝⎛---430030103/4001 令x 4=c ,得⎪⎪⎩⎪⎪⎨⎧==-=-=cx c x c x c x 43213/433/4 中c 为任意数.② 对应的系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎪⎭⎫ ⎝⎛---040004001121~⎪⎪⎪⎭⎫⎝⎛--000004001121对应的同解方程为⎩⎨⎧=-+-=+04234231x x x x x令x 2=c 1,x 4=c 2,得⎪⎪⎩⎪⎪⎨⎧===+-=2431221102c x x c x c c x ③ 对应的系数矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----5132631472137421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----199703419901410707421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----51007/1127/43001410707421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----510011243001410707421~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---100051001410707421 系数矩阵的秩为4,对应的齐次线性方程组只有零解⎪⎪⎩⎪⎪⎨⎧====00004321x x x x4.讨论a,b 取什么值时下面的线性方程组无解,有唯一解,有无穷多解?①⎪⎩⎪⎨⎧=-++=++=-+b x a x x x x x x x x 3221321321)5(322 ②⎪⎩⎪⎨⎧=++=++=++4234321321321x bx x x bx x ax x x 解 ①系数矩阵的行列式为5111211112--a =400211112--a =(a-2)(a+2)当a ≠2且a ≠-2时,方程组有唯一解。

091550_高等代数(北大版第三版)习题答案


所以

f ( x) g ( x) , 1。 ( f ( x), g ( x)) ( f ( x), g ( x))
11 . 证 明 : 如 果 f ( x), g ( x) 不 全 为 零 , 且 u ( x) f ( x) v( x) g ( x) ( f ( x), g ( x)) , 那 么
解 1)由带余除法,可得 q ( x)
2
2)同理可得 q ( x) x x 1, r ( x) 5 x 7 。 2. m, p, q 适合什么条件时,有 1) x mx 1 | x px q ,
2 3
2) x mx 1 | x px q 。
2 4 2
(u ( x), v( x)) 1 。
证 由上题证明类似可得结论。 12.证明:如果 ( f ( x), g ( x)) 1, ( f ( x), h( x)) 1 ,那么 ( f ( x), g ( x) h( x)) 1 。 证 由假设,存在 u1 ( x), v1 ( x) 及 u2 ( x), v2 ( x) 使
3 2 2
多项式
1) f ( x) x 3 x x 1, g ( x) 3 x 2 x 1 ; 2)
f ( x) x 4 2 x 5, g ( x) x 2 x 2 。 1 7 26 2 x , r ( x) x ; 3 9 9 9
高等代数(北大*第三版)答案
目录
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 多项式 行列式 线性方程组 矩阵 二次型 线性空间 线性变换
—矩阵
欧氏空间 双线性函数与辛空间

高等代数习题解答(第一章)

高等代数习题解答第一章 多项式补充题1.当,,a b c 取何值时,多项式()5f x x =-与2()(2)(1)g x a x b x =-++2(2)c x x +-+相等?提示:比较系数得6136,,555a b c =-=-=.补充题2.设(),(),()[]f x g x h x x ∈,2232()()()f x xg x x h x =+,证明:()()()0f x g x h x ===.证明 假设()()()0f x g x h x ===不成立.若()0f x ≠,则2(())f x ∂为偶数,又22(),()g x h x 等于0或次数为偶数,由于22(),()[]g x h x x ∈,首项系数(如果有的话)为正数,从而232()()xg x x h x +等于0或次数为奇数,矛盾.若()0g x ≠或()0h x ≠则232(()())xg x x h x ∂+为奇数,而2()0f x =或2(())f x ∂为偶数,矛盾.综上所证,()()()0f x g x h x ===.1.用g (x ) 除 f (x ),求商q (x )与余式r (x ): 1)f (x ) = x 3-3x 2 -x -1,g (x ) =3x 2 -2x +1; 2)f (x ) = x 4 -2x +5,g (x ) = x 2 -x +2. 1)解法一 待定系数法.由于f (x )是首项系数为1的3次多项式,而g (x )是首项系数为3的2次多项式,所以商q (x )必是首项系数为13的1次多项式,而余式的次数小于 2.于是可设q (x ) =13x +a ,r (x ) =bx +c根据 f (x ) = q (x )g (x )+r (x ),即x 3-3x 2 -x -1= (13x +a )( 3x 2 -2x +1)+bx +c右边展开,合并同类项,再比较两边同次幂的系数,得2333a -=-,1123a b -=-++,1a c -=+解得79a =- , 269b =- , 29c =- ,故得17(),39q x x =-262().99r x x =--解法二 带余除法.3 -2 1 1 -3 -1 -11379- 1 23-1373-43- -1 73-14979- 269-29- 得17(),39q x x =-262().99r x x =--2)2()1,()57.q x x x r x x =+-=-+262().99r x x =-- 2.,,m p q 适合什么条件时,有 1)231;x mx x px q +-++ 2)2421.x mx x px q ++++1)解 21x mx +-除3x px q ++得余式为:2()(1)()r x p m x q m =+++-,令()0r x =,即 210;0.p m q m ⎧++=⎨-=⎩故231x mx x px q +-++的充要条件是2;10.m q p m =⎧⎨++=⎩ 2)解 21x mx ++除42x px q ++得余式为:22()(2)(1)r x m p m x q p m =-+-+--+,令()0r x =,即 22(2)0;10.m p m q p m ⎧-+-=⎪⎨--+=⎪⎩ 解得2421x mx x px q ++++的充要条件是0;1m p q =⎧⎨=+⎩ 或 21;2.q p m =⎧⎨=-⎩ 3.求()g x 除()f x 的商()q x 与余式()r x : 1)53()258,()3;f x x x x g x x =--=+ 2)32(),()12.f x x x x g x x i =--=-+ 1)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0: -3 2 0 -5 0 -8 0 + -6 18 -39 117 -327 2 -6 13 -39 109 -327 所以432()261339109,()327.q x x x x x r x =-+-+=-2)解法一 用带余除法(略).解法二 用综合除法.写出按降幂排列的系数,缺项的系数为0:()f x1-2i 1 -1 -1 0 + 1-2i -4-2i -9+8i 1 -2i -5-2i -9+8i 所以2()2(52),()98.q x x ix i r x i =--+=-+4.把()f x 表成0x x -的方幂和,即表成201020()()c c x x c x x +-+-+的形式:1)50(),1;f x x x ==2)420()23,2;f x x x x =-+=-3)4320()2(1)37,.f x x ix i x x i x i =--+-++=- 注 设()f x 表成201020()()c c x x c x x +-+-+的形式,则0c 就是()f x 被0x x -除所得的余数,1c 就是()f x 被0x x -除所得的商式212030()()c c x x c x x +-+-+再被0x x -除所得的余数,逐次进行综合除法即可得到01,,,.n c c c1)解 用综合除法进行计算 1 1 0 0 0 0 0 + 1 1 1 1 1 1 1 1 1 1 1 1 + 1 2 3 4 1 2 3 4 5 1 + 1 3 6 1 3 6 101 + 1 4 1 4 10 1 + 1 1 5所以 5234515(1)10(1)10(1)5(1)(1).x x x x x x =+-+-+-+-+-2)3)略5.求()f x 与()g x 的最大公因式:1)43232()341,()1;f x x x x x g x x x x =+---=+-- 2)4332()41,()31;f x x x g x x x =-+=-+3)42432()101,()6 1.f x x x g x x x =-+=-+++ 1)解 用辗转相除法()g x ()f x 2()q x 12-141 1 -1 -1 1 1 -3 -4 -1 1()q x 1 0 132121 1 -1 -1 12-32- -1 1()r x -2 -3 -13()q x 8343 12-34-14- -2 -2 2()r x 34-34- -1 -1 -1 -13()r x 0所以((),()) 1.f x g x x =+2)((),()) 1.f x g x =3)2((),()) 1.f x g x x =--6.求(),()u x v x 使()()()()((),()):u x f x v x g x f x g x += 1)432432()242,()22f x x x x x g x x x x x =+---=+---; 2)43232()421659,()254f x x x x x g x x x x =--++=--+; 3)4322()441,()1f x x x x x g x x x =--++=--. 1)解 用辗转相除法()g x ()f x2()q x 11 1 1 -1 -2 -2 1 2 -1 -4 -2 1()q x 110-20 1 1 -1 -2 -2 11 -2 -21()r x 10 -2 0 3()q x 10 1 0-2 0 1 0 -22()r x 1 0 -2 3()r x 0由以上计算得11()()()(),f x q x g x r x =+212()()()(),g x q x r x r x =+ 132()()(),r x q x r x =因此22((),())()2f x g x r x x ==-,且2((),())()f x g x r x =21()()()g x q x r x =-21()()[()()()]g x q x f x q x g x =-- 212()()[1()()]()q x f x q x q x g x =-++所以212()()1,()1()()2u x q x x v x q x q x x =-=--=+=+.2)((),())1f x g x x =-,21122(),()13333u x x v x x x =-+=--.3)((),())1f x g x =,32()1,()32u x x v x x x x =--=+--.7.设323()(1)22,()f x x t x x u g x x tx u =++++=++的最大公因式是一个二次多项式,求,t u 的值.解 略.8.证明:如果()(),()()d x f x d x g x 且()d x 为()f x 与()g x 的一个组合,那么()d x 是()f x 与()g x 的一个最大公因式.证明 由于()(),()()d x f x d x g x ,所以()d x 为()f x 与()g x 的一个公因式.任取()f x 与()g x 的一个公因式()h x ,由已知()d x 为()f x 与()g x 的一个组合,所以()()h x d x .因此,()d x 是()f x 与()g x 的一个最大公因式.9.证明:(()(),()())((),())()f x h x g x h x f x g x h x =,(()h x 的首项系数为 1). 证明 因为存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,所以((),())()()()()()()()f x g x h x u x f x h x v x g x h x =+,这表明((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个组合,又因为((),())(),((),())()f x g x f x f x g x g x , 从而((),())()()(),((),())()()()f x g x h x f x h x f x g x h x g x h x ,故由第8题结论,((),())()f x g x h x 是()()f x h x 与()()g x h x 的一个最大公因式.注意到((),())()f x g x h x 的首项系数为1,于是(()(),()())((),())()f x h x g x h x f x g x h x =.10.如果(),()f x g x 不全为零,证明:()()(,)1((),())((),())f xg x f x g x f x g x =.证明存在多项式()u x 和()v x 使((),())()()()()f x g x u x f x v x g x =+,因为(),()f x g x 不全为零,所以((),())0f x g x ≠,故由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以()()(,)1((),())((),())f xg x f x g x f x g x =.11.证明:如果(),()f x g x 不全为零,且()()()()((),())u x f x v x g x f x g x +=,那么((),())1u x v x =.证明 因为(),()f x g x 不全为零,故 ((),())0f x g x ≠,从而由消去律得()()1()()((),())((),())f xg x u x v x f x g x f x g x =+,所以((),())1u x v x =.12.证明:如果((),())1f x g x = ,((),())1f x h x =,那么((),()())1f x g x h x =. 证法一 用反证法.假设()((),()())1d x f x g x h x =≠,则(())0d x ∂>,从而()d x 有不可约因式()p x ,于是()(),()()()p x f x p x g x h x ,但因为((),())1f x g x =,所以()p x 不整除()g x ,所以()()p x h x ,这与((),())1f x h x =矛盾.因此((),()())1f x g x h x =.证法二 由题设知,存在多项式1122(),(),(),()u x v x u x v x ,使得11()()()()1u x f x v x g x +=,22()()()()1u x f x v x h x +=,两式相乘得12121212[()()()()()()()()()]()[()()]()()1u x u x f x v x u x g x u x v x h x f x v x v x g x h x +++=,所以((),()())1f x g x h x =.13.设11(),,(),(),,()m n f x f x g x g x 都是多项式,而且 ((),())1(1,2,,;1,2,,).i j f x g x i m j n ===求证:1212(()()(),()()()) 1.m n f x f x f x g x g x g x =证法一 反复应用第12题的结果 证法二 反证法14.证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x +=. 证明 由于((),())1f x g x =,所以存在多项式()u x 和()v x 使()()()()1u x f x v x g x +=,由此可得()()()()()()()()1,u x f x v x f x v x f x v x g x -++= ()()()()()()()()1,u x f x u x g x u x g x v x g x +-+=即[][]()()()()()()1,u x v x f x v x f x g x -++=[][]()()()()()()1,v x u x g x u x f x g x -++=于是((),()())1f x f x g x +=,((),()())1g x f x g x +=,应用第12题的结论可得(()(),()())1f x g x f x g x +=.注 也可以用反证法.15.求下列多项式的公共根:32432()221;()22 1.f x x x x g x x x x x =+++=++++提示 用辗转相除法求出2((),()) 1.f x g x x x =++于是得两多项式的公共根为16.判别下列多项式有无重因式: 1)5432()57248f x x x x x x =-+-+-; 2) 42()443f x x x x =+--1)解 由于432'()5202144f x x x x x =-+-+,用辗转相除法可求得2((),'())(2)f x f x x =-,故()f x 有重因式,且2x -是它的一个 3 重因式.2)解 由于3'()484f x x x =+-,用辗转相除法可求得((),'())1f x f x =,故()f x 无重因式.17.求t 值使32()31f x x x tx =-+-有重根. 解 2'()36f x x x t =-+.先用'()f x 除()f x 得余式 1263()33t t r x x --=+. 当3t =时,1()0r x =.此时'()()f x f x ,所以21((),'())'()(1)3f x f x f x x ==-,所以1是()f x 的3重根.当3t ≠时,1()0r x ≠.再用1()r x 除'()f x 得余式215()4r x t =+.故当154t =-时,2()0r x =.此时,121((),'())()92f x f x r x x =-=+,所以12-是()f x 的2重根.当3t ≠且154t ≠-时,2()0r x ≠,则((),'())1f x f x =,此时()f x 无重根. 综上,当3t =时,()f x 有3重根1;当154t =-时,()f x 有2重根12-.18.求多项式3x px q ++有重根的条件. 解 略.19.如果242(1)1x Ax Bx -++ ,求,A B .解法一设42()1f x Ax Bx =++,则3'()42f x Ax Bx =+.因为242(1)1x Ax Bx -++,所以1是()f x 的重根,从而1也是'()f x 的根.于是(1)0f =且'(1)0f =,即10;420.A B A B ++=⎧⎨+=⎩解得1,2A B ==-.解法二 用2(1)x -除421Ax Bx ++得余式为(42)(31)A B x A B ++--+,因为242(1)1x Ax Bx -++,所以(42)(31)0A B x A B ++--+=,故420;310.A B A B +=⎧⎨--+=⎩ 解得1,2A B ==-.20.证明:212!!nx x x n ++++没有重根.证法一设2()12!!nx x f x x n =++++,则21'()12!(1)!n x x f x x n -=++++-. 因为()'()!nx f x f x n -=,所以((),'())((),)1!nx f x f x f x n ==.于是212!!nx x x n ++++没有重根. 证法二 设2()12!!nx x f x x n =++++ ,则21'()12!(1)!n x x f x x n -=++++-. 假设()f x 有重根α,则()0f α=且'()0f α=,从而0!nn α=,得0α=,但0α=不是()f x 的根,矛盾.所以212!!nx x x n ++++没有重根. 21.略.22.证明:0x 是()f x 的k 重根的充分必要条件是 (1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.证明(必要性)设0x 是()f x 的k 重根,从而0x 是'()f x 的1k -重根,是''()f x 的2k -重根,…,是(1)()k f x -的单根,不是()()k f x 的根,于是(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠.(充分性)设(1)000()'()()0k f x f x f x -====,而()0()0k f x ≠,则0x 是(1)()k f x -的单根,是(2)()k f x -的2重根,…,是()f x 的k 重根.23.举例说明断语“如果α是'()f x 的m 重根,那么α是()f x 的m +1重根”是不对的.解 取1()()1m f x x α+=-+,则()'()1()m f x m x α=+-.α是'()f x 的m 重根,但α不是()f x 的m +1重根.注:也可以取具体的,如0,1m α==.24.证明:如果(1)()n x f x -,那么(1)()n n x f x -. 证明 略.25.证明:如果23312(1)()()x x f x xf x +++,那么12(1)(),(1)()x f x x f x --.证明 2121()()x x x x ωω++=--,其中12ωω==. 由于23312(1)()()x x f x xf x +++,故存在多项式()h x 使得33212()()(1)()f x xf x x x h x +=++,因此112122(1)(1)0;(1)(1)0.f f f f ωω+=⎧⎨+=⎩ 解得12(1)(1)0f f ==,从而12(1)(),(1)()x f x x f x --.26.求多项式1n x -在复数范围内和实数范围内的因式分解.解 多项式1n x -的n 个复根为22cos sin ,0,1,2,,1k k k i k n n n ππω=+=-,所以1n x -在复数范围内的分解式为1211(1)()()()n n x x x x x ωωω--=----.在实数范围内,当n 为奇数时:222112211221(1)[()1][()1][()1]n n n n n x x x x x x x x ωωωωωω---+-=--++-++-++,当n 为偶数时:222112222221(1)(1)[()1][()1][()1]n n n n n x x x x x x x x x ωωωωωω---+-=-+-++-++-++.27.求下列多项式的有理根:1)3261514x x x -+-;2)424751x x x ---;3)5432614113x x x x x +----.1)解 多项式可能的有理根是1,2,7,14±±±±.(1)40f =-≠,(1)360f -=-≠.由于44444,,,,1(2)171(7)1141(14)-------------都不是整数,所以多项式可能的有理根只有2.用综合除法判别:2 1 15 -14+ 2 -8 142 1 -4 7 0+ 2 -41 -2 3≠0所以2是多项式的有理根(单根).注:一般要求指出有理根的重数.计算量较小的话,也可以直接计算,如本题可直接算得(2)0f =,说明2是()f x 的有理根,再由'(2)0f ≠知. 2是单根.用综合除法一般比较简单.2)答 12-(2重根). 3)答 1-(4重根),3(单根).28.下列多项式在有理数域上是否可约?1)21x -;2)4328122x x x -++;3)631x x ++;4)1p x px ++,p 为奇素数;5)441x kx ++,k 为整数.1)解 21x -可能的有理根是1±,直接检验知,都不是它的根,故21x -不可约.2)解 用艾森斯坦判别法,取2p =.3)解 令1x y =+,则原多项式变为6365432(1)(1)1615211893y y y y y y y y ++++=++++++,取3p =,则由艾森斯坦判别法知多项式65432615211893y y y y y y ++++++不可约,从而多项式631x x ++也不可约.4)提示:令1x y =-,取素数p .5)提示:令1x y =+,取2p =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等代数》习题答案一、1、存在多项式()()()()()()1,=+x v x g x u x f x v x u 使得与2、()()x f x f '和互质3、()()的重因式为x f x p4、05、1,-26、()k n n --1217、3 8、- 48 9、相 10、相 11、1或2(有非零解) 12、()()A r A r = 13、无 14、12 15、9816、⎥⎦⎤⎢⎣⎡-0001 17、E 18、()2222121,,r n Z Z Z x x x f ++= 19、()22122121,,r p p n Z Z Z Z x x x f --++=+ 20、大于零21、α为非零向量,α不能由β线性表出 22、无 23、关于V 的加法和数乘封闭 24、对于 V 中任意向量α、β和数域P 中任意数K 都有()()()βαβαA A A +=+和()()ααkA k A = 25、相似 26、线性无关的27、线性变量A 在数域P 中有个互异的特征的值 28、1 29、TA ,1 30、线性无关的 31、正交矩阵二、1、1)()()7422+--x x x 有理根22)()()333122+⎪⎭⎫ ⎝⎛-+x x x 有理根31,2- 2、()()()n mx x n mx x n mx x x ---++=++-2342211=b ax x x x +++-23463 由7,37,3-==⇒=-=b a n m3、1)0211211211=+++→c b a2)31131031605510019182402113------→9532001235250019182402113-----→40920001235250019182402113=-----→3)110003100321011111030031003210111119930952032101111=→→→4)()()()x a a n x a x a n x a a a n x 111-+-+-+→()[]a n x 1-+=xa ax aa 111→()[]a n x 1-+ax a x a a -- 00001=()[]()11---+n a x a n x 5)nny x +6)nna a a a a1001010011110---→n n a a a a a a 211011⎥⎦⎤⎢⎣⎡---=4、1)系数矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---11178424633542 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→570025******** ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→0000570005442通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-===-=24231221157522t x t x tx t t x 则基础解系[]⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--==57,1,0,520,0,1,221x x2)系数矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----7931181332111511⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→0000000047201230181440472047201511通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=--=241321221122723t x t x tt x t t x 则基础解系为[]⎪⎩⎪⎨⎧--=⎥⎦⎤⎢⎣⎡-=1,0,2,10,1,27,2321x x5、1)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----112131*********⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→00000151505205301151501515002121通解为⎪⎪⎪⎩⎪⎪⎪⎨⎧-+===+=21423122151515352t t x t x t x t x 令21,t t 为0,则特解⎥⎦⎤⎢⎣⎡=51,0,0,520x通解⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=511053101051005221t t x , 21,t t 为任意常数2)扩展矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---787695754636323⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→0000015100090232102001510036323通解为⎪⎪⎩⎪⎪⎨⎧=-==+=24231221151332t x t x t x t t x 令21,t t 为0,则特解[]0,1,0,00=x通解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=150300132010021t t x , 21,t t 为任意常数6、扩展矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------11111111112111111111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00220020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→02200020201220011111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→02200020201400011111则⎪⎪⎩⎪⎪⎨⎧=+-=--=-=+++022022141434244321x x x x x x x x x ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-=-===⇒414141454321x x x x 则432141414145ααααβ--+=5、因四元非齐次线性方程组的系数矩阵秩为3, 则通解形式为110x t x x +=则通解为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=432154321t x , 1t 为任意常数6、()()A A x A x A 122--=⇒=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1111221124100111032100111011x ⎥⎥⎦⎤⎢⎢⎣⎡411010103⎥⎥⎦⎤⎢⎢⎣⎡-----=3222352257、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100012010411001210⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→1012001210010411⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→120830001210010411⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→2112311240101120011232001210011201则逆矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----211231241122)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--124300012210011101100120012210001111101011010012001111⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→313234100323132010313131001124300323132010313131001,则逆矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----3132343231323131318、原式=()1123---A A A 3421322123111=⎪⎭⎫ ⎝⎛⋅=⋅-=--A9、⎥⎦⎤⎢⎣⎡22211211X X X X ⎥⎦⎤⎢⎣⎡00C A ⎥⎦⎤⎢⎣⎡==A X C X A X C X E 21221112⎪⎪⎩⎪⎪⎨⎧====⇒--11212122110C A A X X X 则⎥⎦⎤⎢⎣⎡=---00111AC X10、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----524212425,,011225,05>=>01524212425>=---- 正定2)0643020222210,02422210,010,3020222210<-=-<-=->⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡- 不正定11、0545212111,0111,01,521211122>--=-->-=>⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--t t t t t t t t t则054<<-t12、1)03100610213510610213112311213≠-=---→---→----03300210211120210211131021211≠=-→--→,故为3P 的两组基2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----173510101610211213131112021311211213⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→07210010161031280313、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----00000011020100000033060311055033033311341335512333则基为[][]3,3,1,34,5,2,3---与, 维数为214、1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-001010100,0010101001M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡131211232221333231a a a a a a a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111213212223313233a a a a a a a a a2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100010001,110000011k M k M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221131211111a a a a k a k a k a a a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33323123222113121111a ka a a k a a k a ka a3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-100011001,1000110011M M=-AM M 1⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+-333231231322122111131211a a a a a a a a a a a a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-++--+=33323231231322122221121113121211a a a a a a a a a a a a a a a a15、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=111101011B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101则=B 110010001-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--111101011⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121011101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=21122011016、1)()()215122212221+-=---------=-λλλλλλA E 特征值1,521-==λλ(二重)51=λ代入()01=-X A E λ得基础解系[],1,1,11=X 特征向量为321εεε++12-=λ代入()02=-X A E λ得基础解系[][]1,1,0,1,0,132-=-=X X特征向量为3231εεεε--和由3dim dim dim 21P w w =+λλ知可对角化。

相关文档
最新文档