2019版一轮优化探究理数(苏教版)练习:第二章第二节函数的定义域和值域
苏教版江苏专版版高考数学一轮复习第二章第二节函数的单调性与最值教案文解析版

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D 上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是单调增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是单调减函数图象描述自左向右看图象是上升的自左向右看图象是下降的如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件1对于任意的x∈I,都有f(x)≤M;2存在x∈I,使得f(x)=M1对于任意x∈I,都有f(x)≥M;2存在x∈I,使得f(x)=M结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值[小题体验]1.(2019·常州一中月考)f(x)=|x+2|的单调递增区间为________.答案:[—2,+∞)2.若函数f(x)=错误!在区间[2,a]上的最大值与最小值的和为错误!,则a=________.解析:由f(x)=错误!的图象知,f(x)=错误!在(0,+∞)上是减函数,因为[2,a]⊆(0,+∞),所以f(x)=错误!在[2,a]上也是减函数,所以f(x)max=f(2)=错误!,f(x)min=f(a)=错误!,所以错误!+错误!=错误!,所以a=4.答案:43.函数f(x)是在区间(—2,3)上的增函数,则y=f(x+5)的一个递增区间是________.解析:由—2<x+5<3,得—7<x<—2,故y=f(x+5)的递增区间为(—7,—2).答案:(—7,—2)1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x)在区间(—1,0)上是减函数,在(0,1)上是减函数,但在(—1,0)∪(0,1)上却不一定是减函数,如函数f(x)=错误!.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),错误!等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.(2019·海安期中)函数f(x)=错误!的单调递减区间为________.答案:错误!和错误!2.已知函数f(x)=log5(x2—3x—4),则该函数的单调递增区间为________.解析:由题意知x2—3x—4>0,则x>4或x<—1,令y=x2—3x—4,则其图象的对称轴为x=错误!,所以y=x2—3x—4的单调递增区间为(4,+∞).单调递减区间为(—∞,—1),由复合函数的单调性知f(x)的单调递增区间为(4,+∞).答案:(4,+∞)错误!错误![题组练透]1.讨论函数f(x)=错误!在x∈(—1,1)上的单调性.解:设—1<x1<x2<1,则f(x1)—f(x2)=错误!—错误!=错误!.因为—1<x1<x2<1,所以x2—x1>0,x1x2+1>0,(x错误!—1)(x错误!—1)>0,所以f(x1)—f(x2)>0,即f(x1)>f(x2),故函数f(x)在(—1,1)上为减函数.2.已知函数f(x)=a+错误!(a∈R),判断函数f(x)的单调性,并用单调性的定义证明.解:f(x)在(—∞,0),(0,+∞)上均为减函数,证明如下:函数f(x)的定义域为(—∞,0)∪(0,+∞),在定义域内任取x1,x2,使0<x1<x2,则f(x2)—f(x1)=错误!—错误!=错误!.因为0<x1<x2,所以2x1<2x2,2x2>1,2x1>1,所以2x1—2x2<0,2x1—1>0,2x2—1>0,从而f(x2)—f(x1)<0,即f(x2)<f(x1),所以f(x)在(0,+∞)上为减函数,同理可证f(x)在(—∞,0)上为减函数.[谨记通法]1.定义法判断函数单调性的步骤取值错误!错误!错误!2.导数法判断函数单调性的步骤错误!错误!错误!错误!错误![典例引领]求下列函数的单调区间:(1)y=—x2+2|x|+1;(2)y=log错误!(x2—3x+2).解:(1)由于y=错误!即y=错误!画出函数图象如图所示,单调递增区间为(—∞,—1]和[0,1],单调递减区间为[—1,0]和[1,+∞).(2)令u=x2—3x+2,则原函数可以看作y=log错误!u与u=x2—3x+2的复合函数.令u=x2—3x+2>0,则x<1或x>2.所以函数y=log错误!(x2—3x+2)的定义域为(—∞,1)∪(2,+∞).又u=x2—3x+2的对称轴x=错误!,且开口向上.所以u=x2—3x+2在(—∞,1)上是单调减函数,在(2,+∞)上是单调增函数.而y=log错误!u在(0,+∞)上是单调减函数,所以y=log错误!(x2—3x+2)的单调递减区间为(2,+∞),单调递增区间为(—∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.函数f(x)=log2(x2—4)的单调递增区间为________.解析:令t=x2—4>0,解得x<—2或x>2,故函数f(x)的定义域为{x|x<—2或x>2},且f(x)=log2t.利用二次函数的性质可得,t =x 2—4在定义域{x |x <—2或x >2}内的单调递增区间为(2,+∞),所以函数f (x )的单调递增区间为(2,+∞).答案:(2,+∞) 2.函数y =错误!2231x x -+的单调递增区间为________.解析:令u =2x 2—3x +1=2错误!2—错误!.因为u =2错误!2—错误!在错误!上单调递减,函数y =错误!u 在R 上单调递减. 所以y =错误!2231x x -+在错误!上单调递增.答案:错误! 错误! 错误![锁定考向]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值; (2)比较数值的大小; (3)利用单调性解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.(2019·启东中学检测)设m ∈R ,若函数f (x )=|x 3—3x —2m |+m 在x ∈[0,2]上的最大值与最小值之差为3,则m =________.解析:令y =x 3—3x ,x ∈[0,2],则y ′=3x 2—3. 由y ′>0,得1<x <2;由y ′<0,得0<x <1,所以y =x 3—3x 在(0,1)上单调递减,在(1,2)上单调递增,所以当x ∈[0,2]时,y =x 3—3x 的值域为[—2,2],y =x 3—3x —2m 的值域为[—2—2m,2—2m ].1当m =0时,f (x )max =2,f (x )min =0,不符合题意;2当m ≥1时,f (x )max =f (—2)=2+3m ,f (x )min =f (2)=3m —2,f (x )max —f (x )=4,不符合题意;min3当0<m<1时,f(x)max=f(—2)=2+3m,f(x)min=m,f(x)max—f(x)min=2+2m=3,解得m=错误!,符合题意;4当—1<m<0时,f(x)max=f(2)=2—m,f(x)min=m,f(x)max—f(x)min=2—2m=3,解得m=—错误!,符合题意;5当m≤—1时,f(x)max=2—m,f(x)min=—2—m,f(x)max—f(x)min=4,不符合题意.综上可得,m=±错误!.答案:±错误!角度二:比较数值的大小2.设函数f(x)定义在实数集R上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x—1,则f错误!,f错误!,f错误!的大小关系为________________(用“<”号表示).解析:由题设知,f(x)的图象关于直线x=1对称,当x<1时,f(x)单调递减,当x≥1时,f(x)单调递增,所以f错误!=f错误!=f错误!=f错误!,又错误!<错误!<错误!<1,所以f错误!>f错误!>f 错误!,即f错误!>f错误!>f错误!.答案:f错误!<f错误!<f错误!角度三:利用单调性解函数不等式3.设函数f(x)=错误!若f(a+1)≥f(2a—1),则实数a的取值范围是________.解析:易知函数f(x)在定义域(—∞,+∞)上是增函数,∵f(a+1)≥f(2a—1),∴a+1≥2a—1,解得a≤2.故实数a的取值范围是(—∞,2].答案:(—∞,2]x)>04.定义在R上的奇函数y=f(x)在(0,+∞)上递增,且f 错误!=0,求不等式f(log19的解集.解:∵y=f(x)是定义在R上的奇函数,且y=f(x)在(0,+∞)上递增.∴y=f(x)在(—∞,0)上也是增函数,又f 错误!=0,知f 错误!=—f 错误!=0.故原不等式f(log19x)>0可化为f(log19x)>f错误!或f错误!<f(log19x)<f错误!,∴log19x>错误!或—错误!<log19x<0,解得0<x<错误!或1<x<3.∴原不等式的解集为错误!.角度四:利用单调性求参数的取值范围或值5.(2019·南通调研)已知函数f(x)=错误!(a>0,且a≠1)满足对任意x1≠x2,都有错误!<0成立,则实数a的取值范围是________.解析:由题意知f(x)为减函数,所以错误!解得0<a≤错误!.答案:错误![通法在握]函数单调性应用问题的常见类型及解题策略(1)求函数最值(五种常用方法)(2)比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于填空题能数形结合的尽量用图象法求解.(3)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数的范围(或值)的方法1视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;2需注意若函数在区间[a,b]上是单调的,则该函数在此区间的任意子集上也是单调的.[提醒] 1若函数在区间[a,b]上单调,则该函数在此区间的任意子区间上也是单调的;2分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[演练冲关]1.(2019·连云港调研)若函数f(x)=错误!是在R上的减函数,则a的取值范围是________.解析:由题意得错误!解得—6≤a<1.答案:[—6,1)2.函数f(x)=—错误!+b(a>0)在错误!上的值域为错误!,则a=________,b=________.解析:因为f(x)=—错误!+b(a>0)在错误!上是增函数,所以f错误!=错误!,f(2)=2.即错误!解得a=1,b=错误!.答案:1错误!3.已知函数f(x)=ln(2+|x|)—错误!,则使得f(x+2)>f(2x—1)成立的x的取值范围是________.解析:由f(—x)=f(x)可得函数f(x)是定义域R上的偶函数,且x>0时函数f(x)单调递增,则不等式等价于f(|x+2|)>f(|2x—1|),即|x+2|>|2x—1|,两边平方化简得3x2—8x—3<0,解得—错误!<x<3.答案:错误!一抓基础,多练小题做到眼疾手快1.(2019·如皋中学月考)函数f(x)=|x2—2x+2|的增区间是________.解析:因为函数f(x)=|x2—2x+2|=|(x—1)2+1|=(x—1)2+1,所以函数f(x)=|x2—2x+2|的增区间是[1,+∞).答案:[1,+∞)2.函数y=错误!—x(x≥0)的最大值为________.解析:令t=错误!,则t≥0,所以y=t—t2=—错误!2+错误!,结合图象知,当t=错误!,即x=错误!时,y max=错误!.答案:错误!3.(2018·徐州质检)函数f(x)=错误!x—log2(x+2)在区间[—1,1]上的最大值为________.解析:因为y=错误!x和y=—log2(x+2)都是[—1,1]上的减函数,所以y=错误!x—log2(x +2)是在区间[—1,1]上的减函数,所以最大值为f(—1)=3.答案:34.已知偶函数f(x)在区间[0,+∞)上单调递减,则满足f(2x—1)<f(5)的x的取值范围是________.解析:因为偶函数f(x)在区间[0,+∞)上单调递减,且f(2x—1)<f(5),所以|2x—1|>5,即x<—2或x>3.答案:(—∞,—2)∪(3,+∞)5.若函数f(x)=—x2+2ax与g(x)=(a+1)1—x在区间[1,2]上都是减函数,则a的取值范围是________.解析:因为f(x)=—x2+2ax=—(x—a)2+a2在[1,2]上是减函数,所以a≤1.又g(x)=(a+1)1—x在[1,2]上是减函数.所以a+1>1,所以a>0.综上可知0<a≤1.答案:(0,1]6.(2019·海门中学高三检测)已知函数f(x)=错误!满足对任意x1<x2,都有f(x1)<f(x2)成立,那么实数a的取值范围是________.解析:∵函数f(x)满足对任意x1<x2,都有f(x1)<f(x2)成立,∴函数f(x)在定义域上是增函数,则满足错误!即错误!解得错误!≤a<2.答案:错误!二保高考,全练题型做到高考达标1.设函数f(x)=错误!在区间(—2,+∞)上是增函数,则a的取值范围是________.解析:f(x)=错误!=a—错误!,因为函数f(x)在区间(—2,+∞)上是增函数.所以错误!解得a≥1.答案:[1,+∞)2.(2019·江阴高三检测)设a>0且a≠1,函数f(x)=log a|ax2—x|在[3,5]上是单调增函数,则实数a的取值范围为______________.解析:∵a>0且a≠1,函数f(x)=log a|ax2—x|=log a|x·(ax—1)|在[3,5]上是单调增函数,∴当a>1时,y=x·(ax—1)在[3,5]上是单调增函数,且y>0,满足f(x)是增函数;当0<a<1时,要使f(x)在[3,5]上是单调增函数,只需错误!解得错误!≤a<错误!.综上可得,a>1或错误!≤a<错误!.答案:错误!∪(1,+∞)3.对于任意实数a,b,定义min{a,b}=错误!设函数f(x)=—x+3,g(x)=log2x,则函数h(x)=min{f(x),g(x)}的最大值是________.解析:依题意,h(x)=错误!当0<x≤2时,h(x)=log2x是增函数,当x>2时,h(x)=—x +3是减函数,所以h(x)在x=2时,取得最大值h(2)=1.答案:14.(2018·徐州一模)已知函数y=f(x)和y=g(x)的图象关于y轴对称,当函数y=f(x)和y=g(x)在区间[a,b]上同时递增或者同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”,若区间[1,2]为函数f(x)=|2x—t|的“不动区间”,则实数t的取值范围是________.解析:因为函数y=f(x)与y=g(x)的图象关于y轴对称,所以g(x)=f(—x)=|2—x—t|.因为区间[1,2]为函数f(x)=|2x—t|的“不动区间”,所以函数f(x)=|2x—t|和函数g(x)=|2—x—t|在[1,2]上单调性相同,因为y=2x—t和函数y=2—x—t的单调性相反,所以(2x—t)(2—x—t)≤0在[1,2]上恒成立,即2—x≤t≤2x在[1,2]上恒成立,解得错误!≤t≤2.答案:错误!5.(2018·金陵中学月考)定义在[—2,2]上的函数f(x)满足(x1—x2)[f(x1)—f(x2)]>0,x1≠x2,且f(a2—a)>f(2a—2),则实数a的取值范围为________.解析:函数f(x)满足(x1—x2)[f(x1)—f(x2)]>0,x1≠x2,所以函数在[—2,2]上单调递增,所以错误!所以错误!所以0≤a<1.答案:[0,1)6.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(—2),f(π),f (—3)的大小关系为____________(用“<”表示).解析:因为f(x)是偶函数,所以f(—3)=f(3),f(—2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),所以f(—2)<f(—3)<f(π).答案:f(—2)<f(—3)<f(π)7.(2018·苏州高三暑假测试)已知函数f(x)=x+错误!(a>0),当x∈[1,3]时,函数f(x)的值域为A,若A⊆[8,16],则a的值等于________.解析:因为A⊆[8,16],所以8≤f(x)≤16对任意的x∈[1,3]恒成立,所以错误!对任意的x∈[1,3]恒成立,当x∈[1,3]时,函数y=16x—x2在[1,3]上单调递增,所以16x—x2∈[15,39],函数y=8x—x2在[1,3]上也单调递增,所以8x—x2∈[7,15],所以错误!即a的值等于15.答案:158.若函数f(x)=a x(a>0,a≠1)在[—1,2]上的最大值为4,最小值为m,且函数g(x)=(1—4m)错误!在[0,+∞)上是增函数,则a=________.解析:函数g(x)在[0,+∞)上为增函数,则1—4m>0,即m<错误!.若a>1,则函数f(x)在[—1,2]上的最小值为错误!=m,最大值为a2=4,解得a=2,错误!=m,与m<错误!矛盾;当0<a<1时,函数f(x)在[—1,2]上的最小值为a2=m,最大值为a—1=4,解得a=错误!,m=错误!.所以a=错误!.答案:错误!9.已知函数f(x)=a—错误!.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.解:(1)证明:当x∈(0,+∞)时,f(x)=a—错误!,设0<x1<x2,则x1x2>0,x2—x1>0,f(x2)—f(x1)=错误!—错误!=错误!—错误!=错误!>0,所以f(x)在(0,+∞)上是增函数.(2)由题意a—错误!<2x在(1,+∞)上恒成立,设h(x)=2x+错误!,则a<h(x)在(1,+∞)上恒成立.任取x1,x2∈(1,+∞)且x1<x2,h(x1)—h(x2)=(x1—x2)错误!.因为1<x1<x2,所以x1—x2<0,x1x2>1,所以2—错误!>0,所以h(x1)<h(x2),所以h(x)在(1,+∞)上单调递增.故a≤h(1),即a≤3,所以实数a的取值范围是(—∞,3].10.(2019·江阴期中)设函数f(x)=错误!是定义在(—1,1)上的奇函数,且f错误!=错误!.(1)求函数f(x)的解析式;(2)用单调性定义证明f(x)在(—1,1)上是增函数;(3)解不等式f(|t|—1)+f(t2)<f(0).解:(1)因为f(x)=错误!是定义在(—1,1)上的奇函数,所以f(0)=b=0,所以f(x)=错误!,而f错误!=错误!=错误!,解得a=1,所以f(x)=错误!,x∈(—1,1).(2)证明:任取x1,x2∈(—1,1)且x1<x2,则f(x1)—f(x2)=错误!—错误!=错误!.因为x1<x2,所以x1—x2<0,又因为x1,x2∈(—1,1),所以1—x1x2>0,所以f(x1)—f(x2)<0,即f(x1)<f(x2),所以函数f(x)在(—1,1)上是增函数.(3)由题意,不等式f(|t|—1)+f(t2)<f(0)可化为f(|t|—1)+f(t2)<0,即f(t2)<—f(|t|—1),因为f(x)是定义在(—1,1)上的奇函数,所以f(t2)<f(1—|t|),所以错误!解得错误!<t<错误!且t≠0,所以该不等式的解集为错误!∪错误!.三上台阶,自主选做志在冲刺名校1.f(x)是定义在(0,+∞)上的单调增函数,满足f(xy)=f(x)+f(y),f(3)=1,当f (x)+f(x—8)≤2时,x的取值范围是____________.解析:因为f(9)=f(3)+f(3)=2,所以由f(x)+f(x—8)≤2,可得f[x(x—8)]≤f (9),因为f(x)是定义在(0,+∞)上的增函数,所以有错误!解得8<x≤9.答案:(8,9]2.已知定义在区间(0,+∞)上的函数f(x)满足f错误!=f(x1)—f(x2),且当x>1时,f (x)<0.(1)证明:f(x)为单调递减函数;(2)若f(3)=—1,求f(x)在[2,9]上的最小值.解:(1)证明:任取x1,x2∈(0,+∞),且x1>x2,则错误!>1,由于当x>1时,f(x)<0,所以f错误!<0,即f(x1)—f(x2)<0,因此f(x1)<f(x2),所以函数f(x)在区间(0,+∞)上是单调递减函数.(2)因为f(x)在(0,+∞)上是单调递减函数,所以f(x)在[2,9]上的最小值为f(9).由f错误!=f(x1)—f(x2)得,f错误!=f(9)—f(3),而f(3)=—1,所以f(9)=—2.所以f(x)在[2,9]上的最小值为—2.。
2019苏教版高考一轮优化探究理数练习:第二章 第一节 函数及其表示 Word版含解析

一、填空题1.已知f (x )=⎩⎨⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f (43)+f (-43)的值等于________. 解析:f (43)=12;f (-43)=f (-13)+1=f (23)+2 =52,f (43)+f (-43)=3. 答案:32.已知f (1-x 1+x )=1-x 21+x 2,则f (x )的解析式可取为________.解析:(换元法)令t =1-x 1+x ,由此得x =1-t1+t,所以f (t )=1-(1-t 1+t )21+(1-t 1+t)2=2t1+t2,从而f (x )的解析式可取为2x1+x 2. 答案:2x1+x 23.设f (x )=⎩⎪⎨⎪⎧|x -1|-2,|x |≤1,11+x 2,|x |>1,则f [f (12)]=________. 解析:f [f (12)]=f (-32)=413. 答案:4134.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R),f (1)=2,则f (-3)等于________. 解析:令x =-3,y =1,则f(-2)=f(1)+f(-3)-6.又∵f(1)=2,∴f(-3)=f(-2)+4.令x=-2,y=1,则f(-1)=f(1)+f(-2)-4,∴f(-2)=f(-1)+2.令x=-1,y=1,f(0)=f(-1)+f(1)-2.又x=y=0时,f(0)=0,∴f(-1)=0,∴f(-3)=f(-2)+4=f(-1)+6=6.答案:65.已知函数f(x)=ax+bx-4(a,b为常数),f(lg 2)=0,则f(lg12)=________.解析:由题意得f(lg 2)=a lg 2+blg 2-4=0,有a lg 2+blg 2=4,则f(lg 12)=a lg12+blg12-4=-a lg 2-blg 2-4=-8.答案:-86.定义在R上的函数f(x)满足f(m+n2)=f(m)+2[f(n)]2,m,n∈R,且f(1)≠0,则f(2 014)=________.解析:令m=n=0,得f(0+02)=f(0)+2[f(0)]2,所以f(0)=0;令m=0,n=1,得f(0+12)=f(0)+2[f(1)]2,由于f(1)≠0,所以f(1)=12;令m=x,n=1,得f(x+12)=f(x)+2[f(1)]2,所以f(x+1)=f(x)+2×(12)2,即f(x+1)=f(x)+12,这说明数列{f(x)}(x∈Z)是首项为12,公差为12的等差数列,所以f(2 014)=12+(2 014-1)×12=1007.答案:1 0077.已知f (2x +1)=lg x ,则f (x )=________. 解析:令2x +1=t (t >1),则x =2t -1,∴f (t )=lg2t -1(t >1),f (x )=lg 2x -1(x >1). 答案:lg2x -1(x >1)8.函数f (x )在闭区间[-1,2]上的图象如图所示,则函数的解析式为________.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤29.已知a 、b 为实数,集合M =⎩⎨⎧⎭⎬⎫b a ,1,N ={a, 0},f :x → x 表示把集合M 中的元素x 映射到集合N 中仍为x ,则a +b =________.解析:由题意可知ba =0,a =1,解得a =1,b =0,所以a +b =1. 答案:1 二、解答题10.已知f (x )=x 2-1,g (x )=⎩⎨⎧x -1,x >0,2-x ,x <0,(1)求f [g (2)]和g [f (2)]的值; (2)求f [g (x )]和g [f (x )]的表达式. 解析:(1)由已知,g (2)=1,f (2)=3, ∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2. (2)当x >0时,g (x )=x -1, 故f [g (x )]=(x -1)2-1=x 2-2x ;当x <0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x +3,∴f [g (x )]=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g [f (x )]=f (x )-1=x 2-2; 当-1<x <1时, f (x )<0, 故g [f (x )]=2-f (x )=3-x 2.∴g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图象.解析:当0≤x ≤2时,△OEF 的高EF =12x , ∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x , ∴S =12×3×1-12(3-x )·(3-x ) =-12x 2+3x -3; 当x >3时,S =32.∴S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3)32(x >3).函数图象如图所示.12.已知定义域为R 的函数f (x )满足f (f (x )-x 2+x )=f (x )-x 2+x . (1)若f (2)=3,求f (1);又若f (0)=a ,求f (a );(2)若有且仅有一个实数x 0,使得f (x 0)=x 0,求函数f (x )的解析式. 解析: (1)因为对任意x ∈R 有 f (f (x )-x 2+x )=f (x )-x 2+x , 所以f (f (2)-22+2)=f (2)-22+2, 又f (2)=3,从而f (1)=1.又f (0)=a ,则f (a -02+0)=a -02+0,即f (a )=a . (2)因为对任意x ∈R , 有f (f (x )-x 2+x )=f (x )-x 2+x ,又有且仅有一个实数x 0,使得f (x 0)=x 0, 故对任意x ∈R ,有f (x )-x 2+x =x 0. 在上式中令x =x 0,有f (x 0)-x 20+x 0=x 0. 又因为f (x 0)=x 0, 所以x 0-x 20=0, 故x 0=0或x 0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0. 若x0=1,则有f(x)=x2-x+1,易验证该函数满足题设条件.综上,函数f(x)的解析式为f(x)=x2-x+1.。
2019版高考数学一轮复习第2章函数、导数及其应用第2讲

4.[2018·信阳模拟]已知函数 f(x)是 R 上的增函数,对 实数 a,b,若 a+b>0,则有( )
A.f(a)+f(b)>f(-a)+f(-b) B.f(a)+f(b)<f(-a)+f(-b) C.f(a)-f(b)>f(-a)-f(-b) D.f(a)-f(b)<f(-a)-f(-b)
)
A.有最小值 B.有最大值
C.是减函数 D.是增函数
解析 ∵f(x)=x2-2ax+a 在(0,+∞)上有最小值,∴ a>0.
∴g(x)=fxx=x+ax-2a 在(0, a)上单调递减,在( a, +∞)上单调递增,h(x)>h(1)=3.
∴g(x)在(0,+∞)上一定有最小值.
4.[2018·四川模拟]已知函数 f(x)=a-|1x|. (1)求证:函数 y=f(x)在(0,+∞)上是增函数; (2)若 f(x)<2x 在(1,+∞)上恒成立,求实数 a 的取值范 围.
解析 ∵a+b>0,∴a>-b,b>-a. ∴f(a)>f(-b),f(b)>f(-a).∴选 A.
5.若函数 y=f(x)在 R 上单调递增,且 f(m2+1)>f(-m
+1),则实数 m 的取值范围是( )
A.(-∞,-1) B.(0,+∞)
C.(-1,0)
D.(-∞,-1)∪(0,+∞)
解析 由题意得 m2+1>-m+1,故 m2+m>0,故 m<
为( )
A.(1,+∞) C.12,+∞
江苏专版2019版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测五函数及其表示5304

课时达标检测(五) 函数及其表示[练基础小题——强化运算能力]1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的序号是________.解析:①中的值域不对,②中的定义域错误,④不是函数的图象,由函数的定义可知③正确.答案:③2.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义,应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.即函数f (x )的定义域为[-3,6). 答案:[-3,6)3.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________.解析:f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1. 答案:x +1 4.若函数f (x )=2x 2+2ax -a-1的定义域为R ,则a 的取值范围为________.解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立, 即2 x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =________.解析:f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则2-52b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、填空题1.函数f (x )=10+9x -x2lg x -1的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg x -1≠0,即⎩⎪⎨⎪⎧x +1x -10≤0,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].答案:(1,2)∪(2,10]2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f x +1+1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:f ⎝ ⎛⎭⎪⎫43=-cos 4π3=cos π3=12;f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23+2=-cos 2π3+2=12+2=52.故f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=3.答案:33.已知函数f (x )=x |x |,若f (x 0)=4,则x 0=________. 解析:当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2. 答案:24.(2018·盐城检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx ,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么a =________,c =________.解析:因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c4=c2=30.②联立①②解得c =60,a =16. 答案:16 605.(2018·南京模拟)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1,log 21-x ,x <1,则f (f (4))=________;若f (a )<-1,则a 的取值范围为________________.解析:f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 2(1+31)=5.当a ≥1时,由-2a 2+1<-1得a 2>1,解得a >1;当a <1时,由log 2(1-a )<-1,得log 2(1-a )<log 212,∴0<1-a <12,∴12<a <1.即a 的取值范围为⎝ ⎛⎭⎪⎫12,1∪(1,+∞). 答案:5 ⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 6.已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足“倒负”变换;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x=-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.答案:①③7.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-348.若函数f (x )=ax 2+2bx +3的定义域为[-1,3],则函数g (x )=ln(3+2ax -bx 2)的定义域为________.解析:因为函数f (x )的定义域为[-1,3],所以ax 2+2bx +3≥0的解集为[-1,3],所以⎩⎪⎨⎪⎧a <0,-1+3=-2b a ,-1×3=3a,解得⎩⎪⎨⎪⎧a =-1,b =1,所以g (x )=ln(3-2x -x 2).由3-2x -x 2>0得-3<x <1,即函数g (x )=ln(3+2ax -bx 2)的定义域为(-3,1). 答案:(-3,1)9.(2018·连云港中学模拟)已知函数f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________. 解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2,f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是____________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 二、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4x +22,x ∈[-2,-1,-2x +12,x ∈[-1,0,x 2,x ∈[0,1],-12x -12,x ∈1,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
江苏专版2019版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时跟踪检测十对数与对数函数文52

课时跟踪检测(十) 对数与对数函数一抓基础,多练小题做到眼疾手快1.(2018·淮安调研)函数f (x )=log 2(3x -1)的定义域为________. 解析:由3x -1>0,解得x >13,所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,+∞. 答案:⎝ ⎛⎭⎪⎫13,+∞2.函数y =2+log 2x (x ≥1)的值域为________. 解析:因为x ≥1,所以log 2x ≥0,所以y =2+log 2x ≥2. 答案:[2,+∞)3.(2018·启中检测)计算log 23log 34+(3)log 34=________.解析:log 23 log 34+(3)log 34=lg 3lg 2·2lg 2lg 3+312log 34=2+3log 32=2+2=4.答案:44.已知函数f (x )={ log 4x ,x >0,2-x ,x ≤0,则f (f (-4))+f ⎝ ⎛⎭⎪⎫log 216=________.解析:f (f (-4))=f (24)=log 416=2, 因为log 216<0,所以f ⎝⎛⎭⎪⎫log 216=221log 6-=2log 26=6,即f (f (-4))+f ⎝ ⎛⎭⎪⎫log 216=2+6=8.答案:85.若函数f (x )={ -x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析:当x ≤2时,y =-x +6≥4. 因为f (x )的值域为[4,+∞),所以当a >1时,3+log a x >3+log a 2≥4,所以log a 2≥1,所以1<a ≤2;当0<a <1时,3+log a x <3+log a 2,不合题意.故a ∈(1,2]. 答案:(1,2]6.(2018·镇江期末)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-log 2x ,则不等式f (x )<0的解集是________.解析:当x <0时,f (x )=-f (-x )=log 2(-x )-1,f (x )<0,即log 2(-x )-1<0,解得-2<x <0;当x >0时,f (x )=1-log 2x ,f (x )<0,即1-log 2x <0,解得x >2,综上,不等式f (x )<0的解集是(-2,0)∪(2,+∞).答案:(-2,0)∪(2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=log 12(x 2-4)的单调递增区间为________.解析:因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).答案:(-∞,-2)2.(2018·镇江中学学情调研)已知函数f (x )=lg ⎝ ⎛⎭⎪⎫1-a 2x 的定义域是⎝ ⎛⎭⎪⎫12,+∞,则实数a 的值为________.解析:因为函数f (x )=lg ⎝ ⎛⎭⎪⎫1-a 2x 的定义域是⎝ ⎛⎭⎪⎫12,+∞,所以当x >12时,1-a 2x >0,即a 2x <1,所以a <2x,所以x >log 2a .令log 2a =12,得a =212=2,所以实数a 的值为 2.答案: 23.若函数f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,则a 的取值范围为________.解析:令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有{ g 1>0,a ≥1,即{ 2-a >0,a ≥1,解得1≤a <2,即a∈[1,2).答案:[1,2)4.(2018·连云港模拟)已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )=________.解析:因为f (x )=lg 1-x1+x 的定义域为-1<x <1,所以f (-x )=lg 1+x 1-x =-lg 1-x1+x =-f (x ),所以f (x )为奇函数,所以f (-a )=-f (a )=-12.答案:-125.函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为__________.解析:由⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,得⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3,故函数定义域为(2,3)∪(3,4].答案:(2,3)∪(3,4]6.(2018·苏州调研)若函数f (x )=⎩⎪⎨⎪⎧-x +8,x ≤2,log a x +5,x >2(a >0,且a ≠1)的值域为[6,+∞),则实数a 的取值范围是________.解析:当x ≤2时,f (x )∈[6,+∞),所以当x >2时,f (x )的取值集合A ⊆[6,+∞).当0<a <1时,A =()-∞,log a 2+5,不符合题意;当a >1时,A =(log a 2+5,+∞),若A ⊆[6,+∞),则有log a 2+5≥6,解得1<a ≤2.答案:(1,2]7.已知函数f (x )={ log 2x ,x >0,3x,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是______.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)8.函数f (x )=log 2x 2(2x )的最小值为______.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝ ⎛⎭⎪⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,因此函数f (x )的最小值为-14.答案:-149.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为f (x )=⎩⎨⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数, 所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).10.设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值. 解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2. 由{ 1+x >0,3-x >0,得x ∈(-1,3), 所以函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x ) =log 2(1+x )(3-x ) =log 2[-(x -1)2+4],所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是 f (1)=log 24=2.三上台阶,自主选做志在冲刺名校1.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值范围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数, 所以log a ⎝ ⎛⎭⎪⎫43-a >0,即0<43-a <1,解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1,解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1. 答案:⎝ ⎛⎭⎪⎫13,1 2.(2018·昆山测试)已知函数f (x )=lg kx -1x -1(k ∈R). (1)当k =0时,求函数f (x )的值域; (2)当k >0时,求函数f (x )的定义域;(3)若函数f (x )在区间[10,+∞)上是单调增函数,求实数k 的取值范围. 解:(1)当k =0时,f (x )=lg 11-x ,定义域为(-∞,1).因为函数y =11-x (x <1)的值域为(0,+∞),所以f (x )=lg11-x的值域为R. (2)因为k >0,所以关于x 的不等式kx -1x -1>0⇔(x -1)(kx -1)>0⇔(x -1)⎝ ⎛⎭⎪⎫x -1k >0.(*) ①若0<k <1,则1k>1,不等式(*)的解为x <1或x >1k;②若k =1,则不等式(*)即(x -1)2>0,其解为x ≠1; ③若k >1,则1k <1,不等式(*)的解为x <1k或x >1.综上,当0<k ≤1时,函数f (x )的定义域为(-∞,1)∪⎝ ⎛⎭⎪⎫1k,+∞;当k >1时,函数f (x )的定义域为⎝ ⎛⎭⎪⎫-∞,1k ∪(1,+∞).(3)令g (x )=kx -1x -1,则f (x )=lg g (x ). 因为函数f (x )在[10,+∞)上是单调增函数,且对数的底数10>1,所以当x ∈[10,+∞)时,g (x )>0,且函数g (x )在[10,+∞)上是单调增函数. 而g (x )=kx -1x -1=k x -1+k -1x -1=k +k -1x -1,若k -1≥0,则函数g (x )在[10,+∞)上不是单调增函数; 若k -1<0,则函数g (x )在[10,+∞)上是单调增函数. 所以k <1.①因为函数g (x )在[10,+∞)上是单调增函数,所以要使当x ∈[10,+∞)时,g (x )>0,必须g (10)>0, 即10k -110-1>0,解得k >110.② 综合①②知,实数k 的取值范围是⎝⎛⎭⎫110,1.附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
高考数学一轮复习专题2.2函数单调性与值域(测)(2021年整理)

(江苏专版)2019年高考数学一轮复习专题2.2 函数单调性与值域(测)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专版)2019年高考数学一轮复习专题2.2 函数单调性与值域(测))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专版)2019年高考数学一轮复习专题2.2 函数单调性与值域(测)的全部内容。
专题2。
2 函数单调性与值域班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:1.已知函数f (x)=错误!,则该函数的单调递增区间为________.【答案】[3,+∞)2.已知函数f(x)是定义在R上的偶函数, 且在区间[0,+∞)上单调递增.若实数a满足f(log2a)+f错误!≤2f(1),则a的取值范围是________.【答案】错误!【解析】因为log错误!a=-log2a,且f(x)是偶函数,所以f(log2a)+f(log错误!a)=2f(log2a)=2f(|log2a|)≤2f(1),即f(|log2a|)≤f(1),又函数在[0,+∞)上单调递增,所以0≤|log2a|≤1,即-1≤log2a≤1,解得错误!≤a≤2。
3.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于________.【答案】6【解析】由已知得当-2≤x≤1时,f(x)=x-2,当1<x≤2时,f(x)=x3-2。
因为f(x)=x-2,f(x)=x3-2在定义域内都为增函数.所以f(x)的最大值为f(2)=23-2=6。
(江苏专版)2019版高考数学文一轮复习学案:第二章函数的概念与基本初等函数Ⅰ+Word版含答案【KS5U+高考】
第二章 函数的概念与基本初等函数Ⅰ突破点(一) 函数的定义域2.函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.常见基本初等函数定义域的基本要求(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R. (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z. [例1] (1)(2018·苏北四市联考)y = x -12x-log 2(4-x 2)的定义域是________________.(2)(2018·连云港检测)函数y =sin x +tan x +π4的定义域是____________________.对于抽象函数定义域的求解(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[例2] (1)若函数y =f (x )的定义域是[0,2],则函数g (x )=f x x -1的定义域为____________.(2)(2018·苏州中学月考)函数f (2x -1)的定义域为(-1,5],则函数y =f (|x -1|)的定义域是____________.[例3] (2018·苏州模拟)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m的取值范围是________.练习:1.设函数y =4-x 2的定义域为A ,函数y =ln(1-x )的定义域为B ,则A ∩B =________.2.函数f (x )=log 12x -的定义域是________.3.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.4.若函数y =f (x )的定义域是[1,2 018],则函数g (x )=f x +x -1的定义域是________.5.[考点三]若函数f (x )=ax 2+abx +b 的定义域为{x |1≤x ≤2},则a +b 的值为________.突破点(二) 函数的表示方法1.函数的表示方法函数的表示方法有三种,分别为列表法、解析法和图象法.同一个函数可以用不同的方法表示.[典例] (1)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连结(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为_________.(2)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=____________________.(3)(2018·南通模拟)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝ ⎛⎭⎪⎫1x =3x+1,则函数f (x )的解析式为____________________.练习二、1.已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝ ⎛⎭⎪⎫1xx -1,则f (x )=____________________.2.(2018·南通中学月考)函数f (x )满足2f (x )+f (2-x )=2x ,则f (x )=____________________.3.(2018·如皋中学月考)已知f (sin x +cos x )=cos 2x -π4,则f (x )的解析式为____________________.4.已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式.突破点(三) 分段函数1.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的解析表达式,这样的函数通常叫做分段函数.2.分段函数的相关结论(1)分段函数虽由几个部分组成,但它表示的是一个函数.(2)分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.[例1] (1)设函数f (x )=⎩⎪⎨⎪⎧1+log 2-x ,x <1,2x -1,x ≥1,则f (-2)+f (log 212)=________.(2)(2018·启东中学检测)设函数f (x )满足f (x +2)=2f (x )+x ,且当0≤x <2时,f (x )=[x ],[x ]表示不超过x 的最大整数,则f (5.5)=________.(3)(2018·南通高三月考)已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (1+log 25)的值为________.[例2] (1)(2018·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2,x ≤0,若f (4)=2f (a ),则实数a 的值为________.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.(3)(2018·阜宁中学高三月考)设函数f (x )=⎩⎪⎨⎪⎧x ,x ∈-∞,a,x 2,x ∈[a ,+若f (2)=4,则a 的取值范围为________.课后练习1.[考点一]已知函数f (x )=⎩⎪⎨⎪⎧1-2x,x ≤0,x 2,x >0,则f (f (-1))=________.2.[考点一]已知f (x )=⎩⎨⎧3sin πx ,x ≤0,f x -+1,x >0,则f ⎝ ⎛⎭⎪⎫23的值为________. 3.[考点一]已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x+b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.4.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x+1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.5已知函数f (x )=⎩⎪⎨⎪⎧-log 2-x ,x <2,2x -2-1,x ≥2,若f (2-a )=1,则f (a )=________.6.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-x -2,x >0,使f (x )≥-1成立的x 的取值范围是________.练习三、1.下列图象可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的序号是________.2.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义,应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6.即函数f (x )的定义域为[-3,6). 答案:[-3,6)3.已知f (x )是一次函数,且f (f (x ))=x +2,则f (x )=________.解析:f (x )是一次函数,设f (x )=kx +b ,f (f (x ))=x +2,可得k (kx +b )+b =x +2,即k 2x +kb +b =x +2,所以k 2=1,kb +b =2.解得k =1,b =1.即f (x )=x +1. 答案:x +14.若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 解析:因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.答案:[-1,0]5.设函数f (x )=⎩⎪⎨⎪⎧3x -b ,x <1,2x,x ≥1.若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫56=4,则b =________.解析:f ⎝ ⎛⎭⎪⎫56=3×56-b =52-b ,若52-b <1,即b >32,则3×⎝ ⎛⎭⎪⎫52-b -b =152-4b =4,解得b =78,不符合题意,舍去;若52-b ≥1,即b ≤32,则252-b =4,解得b =12.答案:12[练常考题点——检验高考能力]一、填空题1.函数f (x )=10+9x -x2x -的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,x -,即⎩⎪⎨⎪⎧x +x -,x >1,x ≠2,解得1<x ≤10,且x ≠2,所以函数f (x )的定义域为(1,2)∪(2,10].答案:(1,2)∪(2,10]2.已知f (x )=⎩⎪⎨⎪⎧-cos πx ,x >0,f x ++1,x ≤0,则f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43的值等于________.解析:f ⎝ ⎛⎭⎪⎫43=-cos 4π3=cos π3=12;f ⎝ ⎛⎭⎪⎫-43=f ⎝ ⎛⎭⎪⎫-13+1=f ⎝ ⎛⎭⎪⎫23+2=-cos 2π3+2=12+2=52.故f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=3.答案:33.已知函数f (x )=x |x |,若f (x 0)=4,则x 0=________. 解析:当x ≥0时,f (x )=x 2,f (x 0)=4, 即x 20=4,解得x 0=2.当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2. 答案:24.(2018·盐城检测)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎪⎨⎪⎧cx,x <a ,ca ,x ≥a ,(a ,c 为常数).已知工人组装第4件产品用时30分钟,组装第a 件产品用时15分钟,那么a =________,c =________.解析:因为组装第a 件产品用时15分钟, 所以ca=15,① 所以必有4<a ,且c4=c2=30.② 联立①②解得c =60,a =16.答案:16 605.(2018·南京模拟)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1,log 2-x ,x <1,则f (f (4))=________;若f (a )<-1,则a 的取值范围为________________.解析:f (4)=-2×42+1=-31,f (f (4))=f (-31)=log 2(1+31)=5.当a ≥1时,由-2a 2+1<-1得a 2>1,解得a >1;当a <1时,由log 2(1-a )<-1,得log 2(1-a )<log 212,∴0<1-a <12,∴12<a <1.即a 的取值范围为⎝ ⎛⎭⎪⎫12,1∪(1,+∞).答案:5 ⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 6.已知具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________.解析:对于①,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足“倒负”变换;对于②,f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x ),不满足“倒负”变换;对于③,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x=⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝ ⎛⎭⎪⎫1x =-f (x ),满足“倒负”变换.综上可知,满足“倒负”变换的函数是①③.答案:①③7.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a =________.解析:当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a , 解得a =-34,所以a 的值为-34.答案:-348.若函数f (x )=ax 2+2bx +3的定义域为[-1,3],则函数g (x )=ln(3+2ax -bx 2)的定义域为________.解析:因为函数f (x )的定义域为[-1,3],所以ax 2+2bx +3≥0的解集为[-1,3],所以⎩⎪⎨⎪⎧a <0,-1+3=-2b a ,-1×3=3a,解得⎩⎪⎨⎪⎧a =-1,b =1,所以g (x )=ln(3-2x -x 2).由3-2x -x 2>0得-3<x <1,即函数g (x )=ln(3+2ax -bx 2)的定义域为(-3,1). 答案:(-3,1)9.(2018·连云港中学模拟)已知函数f (x )满足对任意的x ∈R 都有f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2成立,则f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=________. 解析:由f ⎝ ⎛⎭⎪⎫12+x +f ⎝ ⎛⎭⎪⎫12-x =2,得f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫78=2,f ⎝ ⎛⎭⎪⎫28+f ⎝ ⎛⎭⎪⎫68=2,f ⎝ ⎛⎭⎪⎫38+f ⎝ ⎛⎭⎪⎫58=2,又f ⎝ ⎛⎭⎪⎫48=12⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫48+f ⎝ ⎛⎭⎪⎫48=12×2=1,∴f ⎝ ⎛⎭⎪⎫18+f ⎝ ⎛⎭⎪⎫28+…+f ⎝ ⎛⎭⎪⎫78=2×3+1=7.答案:710.定义函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则不等式(x +1)f (x )>2的解集是____________.解析:①当x >0时,f (x )=1,不等式的解集为{x |x >1};②当x =0时,f (x )=0,不等式无解;③当x <0时,f (x )=-1,不等式的解集为{x |x <-3}.所以不等式(x +1)·f (x )>2的解集为{x |x <-3或x >1}.答案:{x |x <-3或x >1} 二、解答题11.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧x +2,x ∈[-2,-,-x +2,x ∈[-1,,x 2,x ∈[0,1],-12x -2,x ∈,2].12.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎪⎨⎪⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.1.单调函数的定义如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做函数y=f(x)的单调区间.1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”.2.函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,有增+增→增,增-减→增,减+减→减,减-增→减;(2)若k>0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单调性相反;(3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f x单调性相反;(4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =fx 单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.[例1] (1)下列四个函数中,在(0,+∞)上为增函数的序号是________. ①f (x )=3-x ;②f (x )=x 2-3x ; ③f (x )=-1x +1;④f (x )=-|x |. (2)已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________. [解析] (1)当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. (2)设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). [答案] (1)③ (2)[3,+∞) [易错提醒](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则. (2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连结,也不能用“或”连结.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.函数单调性的应用应用(一) [例2] (1)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为____________. (2)(2017·天津高考改编)已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系为____________.[解析] (1)由f (x )的图象关于直线x =1对称,可得f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝ ⎛⎭⎪⎫52>f (e),∴b >a >c . (2)由f (x )为奇函数,知g (x )=xf (x )为偶函数. 因为f (x )在R 上单调递增,f (0)=0, 所以当x >0时,f (x )>0,所以g (x )在(0,+∞)上单调递增,且g (x )>0.又a =g (-log 25.1)=g (log 25.1),b =g (20.8),c =g (3), 3=log 28>log 25.1>log 24=2>20.8, 所以c >a >b .[答案] (1)b >a >c (2)c >a >b 应用(二) 解函数不等式[例3] f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是________.[解析] 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x ) 是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -,解得8<x ≤9.[答案] (8,9] [方法技巧]含“f ”号不等式的解法原不等式――→函数的性质fg x >f h x――→函数的单调性去“f ”号,转化为“g (x )>h (x )”型具体的不等式――→解不等式求得原不等式的解集[提醒] 上述g (x )与h (x )的值域应在外层函数f (x )的定义域内.应用(三) 求参数的取值范围[例4] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是________.[解析] (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综上所述得-14≤a ≤0.(2)作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.[答案] (1)⎣⎢⎡⎦⎥⎤-14,0 (2)(-∞,1]∪[4,+∞) [易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的. (2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.能力练通抓应用体验的“得”与“失”3. 解析:由3-4x +x 2>0得x <1或x >3.易知函数y =3-4x +x 2的单调递减区间为(-∞,2),函数y =log 3x 在其定义域上单调递增,由复合函数的单调性知,函数f (x )的单调递减区间为(-∞,1).答案:(-∞,1) 2.[考点二·应用一已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则f (a ),f (b ),f (c )的大小关系为________________.解析:由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).答案:f (c )>f (a )>f (b ) 3.[考点二·应用二已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x的取值范围是________.解析:由f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.答案:(-1,0)∪(0,1) 4.[考点二·应用三设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,那么a 的取值范围是________.解析:f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,因为函数f (x )在区间(-2,+∞)上是增函数.所以⎩⎪⎨⎪⎧2a 2-1>0,-2a ≤-2⇒⎩⎪⎨⎪⎧2a 2-1>0,a ≥1⇒a ≥1.答案:[1,+∞)5.[考点一]用定义法讨论函数f (x )=x +ax(a >0)的单调性.解:函数的定义域为{x |x ≠0}.任取x 1,x 2∈{x |x ≠0},且x 1<x 2,则f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=x 1-x 2x 1x 2-a x 1·x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2.令x 1=x 2=x 0,1-a x 20=0可得到x 0=±a ,这样就把f (x )的定义域分为(-∞,-a ],[-a ,0),(0,a ],[a ,+∞)四个区间,下面讨论它的单调性.若0<x 1<x 2≤a ,则x 1-x 2<0,0<x 1x 2<a , 所以x 1x 2-a <0.所以f (x 1)-f (x 2)=x 1+a x 1-x 2-a x 2=x 1-x 2x 1x 2-ax 1·x 2>0,即f (x 1)>f (x 2),所以f (x )在(0,a ]上单调递减.同理可得,f (x )在[a ,+∞)上单调递增,在(-∞,-a ]上单调递增,在[-a ,0)上单调递减.故函数f (x )在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减.突破点(二) 函数的最值(1)设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意x ∈A ,都有f (x )≤f (x 0),那么称f (x 0)为y =f (x )的最大值,记为y max =f (x 0).(2)设函数y =f (x )的定义域为A ,如果存在x 0∈A ,使得对于任意x ∈A ,都有f (x )≥f (x 0),那么称f (x 0)为y =f (x )的最小值,记为y min =f (x 0).2.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(2)开区间上的“单峰”函数一定存在最大或最小值.1(1)判断或证明函数的单调性; (2)计算端点处的函数值; (3)确定最大值和最小值. 2.分段函数的最值由于分段函数在定义域不同的子区间上对应不同的解析式,因而求其最值的常用方法是先求出分段函数在每一个子区间上的最值,然后取各区间上最大值中的最大者作为分段函数的最大值,各区间上最小值中的最小者作为分段函数的最小值.[典例] (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)(2016·北京高考)设函数f (x )=⎩⎪⎨⎪⎧x 3-3x ,x ≤a ,-2x ,x >a .①若a =0,则f (x )的最大值为________;②若f (x )无最大值,则实数a 的取值范围是________. [解析] (1)法一:令t =x -1,且t ≥0,则x =t 2+1,∴原函数变为y =t 2+1+t ,t ≥0.配方得y =⎝ ⎛⎭⎪⎫t +122+34,又∵t ≥0,∴y ≥14+34=1.故函数y =x +x -1的最小值为1.法二:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=x 2-x ++1x 2-x +1=2+1x 2-x +1=2+1⎝ ⎛⎭⎪⎫x -122+34. ∵⎝ ⎛⎭⎪⎫x -122+34≥34, ∴2<2+1⎝ ⎛⎭⎪⎫x -122+34≤2+43=103.故函数的值域为⎝⎛⎦⎥⎤2,103.(3)当x ≤a 时,由f ′(x )=3x 2-3=0,得x =±1.如图是函数y =x 3-3x 与y =-2x 在没有限制条件时的图象.①若a =0,则f (x )max =f (-1)=2. ②当a ≥-1时,f (x )有最大值;当a <-1时,y =-2x 在x >a 时无最大值,且-2a >(x 3-3x )max , 所以a <-1.[答案] (1)1 (2)⎝⎛⎦⎥⎤2,103 (3)①2 ②(-∞,-1) [方法技巧] 求函数最值的五种常用方法1.已知a >0,设函数f (x )= 2 018x+1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =________.解析:由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x+1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x+1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a+1=4 034. 答案:4 0342.(2018·宜兴月考)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -2⊕x ,x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数,且1-2=13-2=-1.∴f (x )的最大值为f (2)=23-2=6.答案:63.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析:∵y =⎝ ⎛⎭⎪⎫13x 和y =-log 2(x +2)都是[-1,1]上的减函数,∴f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上是减函数,∴函数f (x )在区间[-1,1]上的最大值为f (-1)=3.答案:34.(2018·常州模拟)已知函数f (x )的值域为⎣⎢⎡⎦⎥⎤38,49,则函数g (x )=f (x )+1-2f x的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f x≤12.令t =1-2f x ,则f (x )=12(1-t 2)⎝ ⎛⎭⎪⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎝ ⎛⎭⎪⎫13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎢⎡⎦⎥⎤79,78.答案:⎣⎢⎡⎦⎥⎤79,785.(2017·浙江高考改编)若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则关于M -m 的结果中,叙述正确的序号是________.①与a 有关,且与b 有关;②与a 有关,但与b 无关; ③与a 无关,且与b 无关;④与a 无关,但与b 有关.解析:f (x )=⎝ ⎛⎭⎪⎫x +a 22-a24+b ,当0≤-a2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;当-a2<0时,f (x )在[0,1]上单调递增,∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关; 当-a2>1时,f (x )在[0,1]上单调递减,∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关. 综上所述,M -m 与a 有关,但与b 无关. 答案:②1.下列函数中,在区间(0,+∞)上为增函数的序号是________. ①y =ln(x +2);②y =-x +1; ③y =⎝ ⎛⎭⎪⎫12x;④y =x +1x .解析:函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数;y =-x +1与y =⎝ ⎛⎭⎪⎫12x在(0,+∞)上是减函数;y =x +1x 在(0,1)上为减函数,在(1,+∞)上为增函数.答案:①2.(2017·浙江高考)已知a ∈R ,函数f (x )=⎪⎪⎪⎪⎪⎪x +4x-a +a 在区间[1,4]上的最大值是5,则a 的取值范围是________.解析:∵x ∈[1,4],∴x +4x∈[4,5],①当a ≤92时,f (x )max =|5-a |+a =5-a +a =5,符合题意;②当a >92时,f (x )max =|4-a |+a =2a -4=5,解得a =92(矛盾),故a 的取值范围是⎝ ⎛⎦⎥⎤-∞,92. 答案:⎝⎛⎦⎥⎤-∞,923.函数y =|x |(1-x )的单调增区间为________.⎩⎪⎨⎪⎧x-x ,x ≥0,-x -x ,x <0解析:y =|x |(1-x )==⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+14,x ≥0,⎝ ⎛⎭⎪⎫x -122-14,x <0.画出函数的大致图象,如图所示.由图易知函数在⎣⎢⎡⎦⎥⎤0,12上单调递增.答案:⎣⎢⎡⎦⎥⎤0,12 4.(2018·扬州中学单元检测)对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=3-x 是减函数,且log 22=1=-2+3,则h (x )max =h (2)=1.答案:15.已知f (x )=⎩⎪⎨⎪⎧-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12,即a 的取值范围是⎣⎢⎡⎭⎪⎫-1,12.答案:⎣⎢⎡⎭⎪⎫-1,12[练常考题点——检验高考能力]一、填空题1.给定函数:①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数的序号是________.解析:①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x+1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.答案:②③2.定义在R 上的函数f (x )的图象关于直线x =2对称,且f (x )在(-∞,2)上是增函数,则f (-1)与f (3)的大小关系是________.解析:依题意得f (3)=f (1),且-1<1<2,于是由函数f (x )在(-∞,2)上是增函数得f (-1)<f (1)=f (3).答案:f (-1)<f (3)3.函数y =⎝ ⎛⎭⎪⎫132x 2-3x +1的单调递增区间为________.解析:令u =2x 2-3x +1=2⎝ ⎛⎭⎪⎫x -342-18.因为u =2⎝ ⎛⎭⎪⎫x -342-18在⎝ ⎛⎦⎥⎤-∞,34上单调递减,函数y =⎝ ⎛⎭⎪⎫13u 在R 上单调递减.所以y =⎝ ⎛⎭⎪⎫132x 2-3x +1在⎝ ⎛⎦⎥⎤-∞,34上单调递增,即该函数的单调递增区间为⎝⎛⎦⎥⎤-∞,34.答案:⎝⎛⎦⎥⎤-∞,34 4.(2018·宜兴第一中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧a -x ,x ≥2,⎝ ⎛⎭⎪⎫12x-1,x <2是R 上的单调递减函数,则实数a 的取值范围是________.解析:因为函数f (x )为R 上的单调递减函数,所以⎩⎪⎨⎪⎧a -2<0,a -⎝ ⎛⎭⎪⎫122-1,解得a ≤138.答案:⎝⎛⎦⎥⎤-∞,1385.(2018·淮安模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,x +,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.解析:∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.答案:(-2,1)6.(2018·连云港海州中学模拟)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析:∵f (x )=-x 2+2ax 在[1,2]上是减函数,∴a ≤1,又∵g (x )=a x +1在[1,2]上是减函数,∴a >0,∴0<a ≤1.答案:(0,1]7.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析:当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2]. 答案:(1,2]9.已知函数f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+,x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x-3≥2x ·2x -3=22-3,当且仅当x =2x,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-310.(2018·苏州模拟)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.解析:作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.答案:(-∞,-2) 二、解答题 11.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=x 1-x 2x 1+x 2+.∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立, ∴a ≤1.综上所述知a 的取值范围是(0,1].12.已知函数f (x )=ax +1a(1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎪⎫a -1a x +1a,当a >1时,a -1a>0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a=1, ∴当a =1时,g (a )取最大值1.1.函数的奇偶性(1)如果函数f (x )是奇函数,且在x =0上有意义,则f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇→奇,偶±偶→偶,奇×奇→偶,偶×偶→偶,奇×偶→奇.考点贯通抓高考命题的“形”与“神”函数奇偶性的判断[例1] (1)f (x )=x lg(x +x 2+1); (2)f (x )=(1-x )1+x1-x; (3)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(4)f (x )=4-x2|x +3|-3.[解] (1)∵x 2+1>|x |≥0,∴函数f (x )的定义域为R ,关于原点对称, 又f (-x )=(-x )lg(-x +-x2+1)=-x lg(x 2+1-x )=x lg(x 2+1+x )=f (x ), 即f (-x )=f (x ),∴f (x )是偶函数.(2)当且仅当1+x1-x ≥0时函数有意义,∴-1≤x <1,由于定义域关于原点不对称,∴函数f (x )是非奇非偶函数. (3)函数的定义域为{x |x ≠0},关于原点对称, 当x >0时,-x <0,f (-x )=x 2-2x -1=-f (x ), 当x <0时,-x >0,f (-x )=-x 2-2x +1=-f (x ), ∴f (-x )=-f (x ),即函数f (x )是奇函数.(4)∵⎩⎪⎨⎪⎧4-x 2≥0,|x +3|≠3,解得-2≤x ≤2且x ≠0,∴函数的定义域关于原点对称, ∴f (x )=4-x 2x +3-3=4-x 2x .又f (-x )=4--x2-x=-4-x2x,∴f (-x )=-f (x ),即函数f (x )是奇函数. [方法技巧]判断函数奇偶性的两种方法(1)定义法(2)图象法函数是奇(偶)函数⇔函数图象关于原点(y 轴)对称.函数奇偶性的应用[例2] (1)2,则f (-a )的值为________.(2)(2018·姜堰中学月考)已知函数f (x )=⎩⎪⎨⎪⎧m log 2 017x +3sin x ,x >0log 2 017-x +n sin x ,x <0为偶函数,则m -n =________.(3)(2018·盐城高三第一次检测)设f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x+3x +b ,则f (-1)=________.[解析] (1)设F (x )=f (x )-1=x 3+sin x ,显然F (x )为奇函数,又F (a )=f (a )-1=1,所以F (-a )=f (-a )-1=-F (a )=-1,从而f (-a )=0.(2)因为f (x )为偶函数,所以f (-x )=⎩⎪⎨⎪⎧m log 2 017-x -3sin x ,x <0log 2 017x -n sin x ,x >0=f (x ),所以m =1,n =-3,∴m -n =4.(3)因为f (x )是定义在R 上的奇函数,所以f (0)=0,f (-1)=-f (1),而f (0)=1+b =0,解得b =-1.所以f (-1)=-f (1)=-(21+3-1)=-4.[答案] (1)0 (2)4 (3)-4 [方法技巧]利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解. (2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f (-x )=-f (x )或偶函数满足f (-x )=f (x )列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f (0)=0列式求解,若不能确定则不可用此法.能力练通抓应用体验的“得”与“失”①f (x )=x -1;②f (x )=x 2+|x |; ③f (x )=2x-2-x;④f (x )=x 2+cos x .答案:②④2.[考点一]下列函数中,既不是奇函数,也不是偶函数的序号是________. ①f (x )=1+x 2;②f (x )=x +1x;③f (x )=2x +12x ;④f (x )=x +e x.解析:①的定义域为R ,由于f (-x )=1+-x2=1+x 2=f (x ),所以是偶函数.②的定义域为{x |x ≠0},由于f (-x )=-x -1x=-f (x ),所以是奇函数.③的定义域为R ,由于f (-x )=2-x +12=12+2x=f (x ),所以是偶函数.④的定义域为R ,由于f (-x )=-x +e -x=1e x -x ,所以是非奇非偶函数.答案:④3.[考点二]设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.[考点二]设函数f (x )=x +x +ax 为奇函数,则a =________.解析:∵f (x )=x +x +ax为奇函数,∴f (1)+f (-1)=0, 即++a1+-1+-1+a-1=0,∴a =-1.答案:-15.[考点二]已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________.解析:当x <0时,-x >0,则f (-x )=(-x )2-(-x )-1=x 2+x -1,∵f (x )是定义在R 上的偶函数,∴f (x )=f (-x )=x 2+x -1.答案:x 2+x -16.[考点二](2018·徐州期初测试)已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≥0,bx 2-4x ,x <0为偶函数,则不等式f (x )<5的解集为________.解析:因为f (x )为偶函数,x ≥0时f (x )=x 2+ax ,所以x <0 时,f (x )=f (-x )=(-x )2+a (-x )=x 2-ax ,所以x 2-ax =bx 2-4x 对于x <0恒成立,所以b =1,a =4,即f (x )=⎩⎪⎨⎪⎧x 2+4x ,x ≥0,x 2-4x ,x <0,即f (x )=x 2+4|x |.由f (x )<5得x 2+4|x |<5,解得|x |<1,所以原不等式的解集为(-1,1).答案:(-1,1)突破点(二) 函数的周期性1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.f (x +a )=-1f xf (x +a )=1f x[典例] (1)(2017·扬州模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=f {f [f …f n 个(x )]},那么f 2 019(2)的值为________. (2)设定义在R 上的函数f (x )满足f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=2x -x 2,则f (0)+f (1)+f (2)+…+f (2 018)=________.[解析] (1)∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2, ∴f n (2)的值具有周期性,且周期为3, ∴f 2 019(2)=f 3×673(2)=f 3(2)=2. (2)∵f (x +2)=f (x ), ∴函数f (x )的周期T =2. 又当x ∈[0,2)时,f (x )=2x -x 2, 所以f (0)=0,f (1)=1,所以f (0)=f (2)=f (4)=…=f (2 018)=0,f (1)=f (3)=f (5)=…=f (2 017)=1.故f (0)+f (1)+f (2)+…+f (2 018)=1 009. [答案] (1)2 (2)1 009 [方法技巧]函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.能力练通抓应用体验的“得”与“失”1.设f (x )是定义在R 上的周期为3的函数,当x ∈(-2,1]时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2<x ≤0,x ,0<x ≤1,则f ⎝ ⎛⎭⎪⎫52+f (4)=________.解析:因为f (x )是周期为3的周期函数,所以f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫-12+3=f ⎝ ⎛⎭⎪⎫-12=4×⎝ ⎛⎭⎪⎫-122-2=-1,f (4)=f (1+3)=f (1)=1.所以f ⎝ ⎛⎭⎪⎫52+f (4)=0.答案:02.(2018·丹阳模拟)函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫52的值为________. 解析:∵f (x +1)=-f (x ),∴f (x +2)=-f (x +1)=f (x ),即函数f (x )的周期为2.∴f ⎝ ⎛⎭⎪⎫52=f ⎝⎛⎭⎪⎫12+2=f ⎝ ⎛⎭⎪⎫12=2×12×⎝ ⎛⎭⎪⎫1-12=12.答案:123.(2016·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0,⎪⎪⎪⎪⎪⎪25-x ,0≤x <1,其中a ∈R.若f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92,则f (5a )的值是________.解析:因为函数f (x )的周期为2,结合在[-1,1)上f (x )的解析式,得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=-12+a ,f ⎝ ⎛⎭⎪⎫92=f ⎝⎛⎭⎪⎫4+12=f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪25-12=110. 由f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫92得-12+a =110,解得a =35. 所以f (5a )=f (3)=f (4-1)=f (-1)=-1+35=-25.答案:-254.若对任意x ∈R ,函数f (x )满足f (x +2 017)=-f (x +2 018),且f (2 018)=-2 017,则f (-1)=________.解析:由f (x +2 017)=-f (x +2 018),得f (x +2 017)=-f (x +2 017+1),令x +2 017=t ,即f (t +1)=-f (t ),所以f (t +2)=f (t ),即函数f (x )的周期是2.令x =0,得f (2 017)=-f (2 018)=2 017,即f (2 017)=2 017,又f (2 017)=f (1)=f (-1),所以f (-1)=2 017.答案:2 0175.定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 019)的值.解:∵f (x +6)=f (x ),∴T =6. ∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12)=…=f (2 005)+f (2 006)+…+f (2 010)=f (2 011)+f (2 012)+…+f (2 016)=1, ∴f (1)+f (2)+…+f (2 016)=1×2 0166=336.而f (2 017)+f (2 018)+f (2 019)=f (1)+f (2)+f (3)=1+2-1=2. ∴f (1)+f (2)+…+f (2 019)=336+2=338.突破点(三) 函数性质的综合问题1.函数的奇偶性、周期性及单调性是函数的三大性质,常将它们综合在一起考查,其中奇偶性多与单调性结合,而周期性多与抽象函数结合,并结合奇偶性求函数值.2.函数的奇偶性体现的是一种对称关系,而函数的单调性体现的是函数值随自变量变化而变化的规律.因此在解题时,往往需要借助函数的奇偶性和周期性来确定另一区间上的单调性,即先实现区间的转换,再利用单调性解决相关问题.奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.[例1] (1)已知奇函数f (x )的定义域为[-2,2],且在区间[-2,0]上递减,则满足f (1-m )+f (1-m 2)<0的实数m 的取值范围为________.(2)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a-1|)>f (-2),则a 的取值范围是________. [解析] (1)∵f (x )的定义域为[-2,2],∴⎩⎪⎨⎪⎧-2≤1-m ≤2,-2≤1-m 2≤2,解得-1≤m ≤ 3.①又f (x )为奇函数,且在[-2,0]上递减, ∴f (x )在[-2,2]上递减,∴f (1-m )<-f (1-m 2)=f (m 2-1), 即1-m >m 2-1,解得-2<m <1.② 综合①②可知,-1≤m <1. 即实数m 的取值范围是[-1,1).(2)∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,。
江苏专版2019版高考数学一轮复习第二章函数的概念与基本初等函数Ⅰ课时达标检测七函数的奇偶性及周期性
课时达标检测(七) 函数的奇偶性及周期性[练基础小题——强化运算能力]1.(2018·肇庆模拟)在函数y =x cos x ,y =e x +x 2,y =lg x 2-2,y =x sin x 中,偶函数的个数是________.解析:y =x cos x 是奇函数,y =lg x 2-2和y =x sin x 是偶函数,y =e x +x 2是非奇非偶函数,所以偶函数的个数是2.答案:22.(2017·北京高考改编)已知函数f (x )=3x-⎝ ⎛⎭⎪⎫13x ,则________.①f (x )在R 上是增函数;②f (x )在R 上是减函数; ③f (x )是偶函数;④f (x )是奇函数.解析:因为f (x )=3x-⎝ ⎛⎭⎪⎫13x ,且定义域为R ,所以f (-x )=3-x -⎝ ⎛⎭⎪⎫13-x =⎝ ⎛⎭⎪⎫13x -3x =-3x-⎝ ⎛⎭⎪⎫13x =-f (x ),即函数f (x )是奇函数.又y =3x 在R 上是增函数,y =⎝ ⎛⎭⎪⎫13x 在R 上是减函数,所以f (x )=3x-⎝ ⎛⎭⎪⎫13x 在R 上是增函数.答案:①④3.奇函数f (x )的周期为4,且当x ∈[0,2]时,f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解析:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1.答案:-14.(2018·贵州适应性考试)已知f (x )是奇函数,g (x )=2+f xf x.若g (2)=3,则g (-2)=________.解析:由题意可得g (2)=2+f 2f 2=3,则f (2)=1,又f (x )是奇函数,则f (-2)=-1,所以g (-2)=2+f -2f -2=2-1-1=-1.答案:-15.(2018·海门中学月考)已知函数f (x )=log 1e⎝⎛⎭⎪⎫x 2+1e -⎪⎪⎪⎪⎪⎪x e ,则使得f (x +1)<f (2x-1)成立的x 的范围是________.解析:由题意得,函数f (x )定义域是R , ∵f (-x )=log 1e⎝⎛⎭⎪⎫-x 2+1e -⎪⎪⎪⎪⎪⎪-x e =log 1e⎝⎛⎭⎪⎫x 2+1e -⎪⎪⎪⎪⎪⎪x e =f (x ),∴函数f (x )是偶函数.∵偶函数f (x )在(0,+∞)上单调递减,由f (x +1)<f (2x -1)得|x +1|>|2x -1|,解得0<x <2.即x 的范围是(0,2).答案:(0,2)[练常考题点——检验高考能力]一、填空题1.设f (x )是定义在R 上且周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上且周期为4的奇函数,所以-ax +b =f (-x )=-f (x )=-ax +1,所以b =1.而f (-2)=f (-2+4)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:02.(2017·淮安中学模拟)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为________.解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2.答案:23.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f⎝ ⎛⎭⎪⎫23π6=________.解析:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0,∴f ⎝⎛⎭⎪⎫5π6=0,∴f ⎝ ⎛⎭⎪⎫-π6+π=f ⎝ ⎛⎭⎪⎫-π6+sin ⎝ ⎛⎭⎪⎫-π6=0,∴f ⎝ ⎛⎭⎪⎫-π6=12,∴f ⎝ ⎛⎭⎪⎫23π6=f ⎝ ⎛⎭⎪⎫4π-π6=f ⎝ ⎛⎭⎪⎫-π6=12.答案:124.(2017·全国卷Ⅰ改编)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是________.解析:∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3. 答案:[1,3]5.已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=________. 解析:由题意知当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (x +1)=f (x ).又当-1≤x ≤1时,f (-x )=-f (x ),∴f (6)=f (1)=-f (-1).又当x <0时,f (x )=x 3-1,∴f (-1)=-2, ∴f (6)=2.答案:26.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (-2)=4,则f (2 018)=________.解析:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2 018)=f (168×12+2)=f (2)=-f (-2)=-4.答案:-47.(2018·扬州江都中学模拟)已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎪⎫2 0185+lg 14=________. 解析:由函数f (x )是周期为2的奇函数得f ⎝ ⎛⎭⎪⎫2 0185=f ⎝ ⎛⎭⎪⎫85=f ⎝ ⎛⎭⎪⎫-25=-f ⎝ ⎛⎭⎪⎫25,又当x ∈[0,1)时,f (x )=lg(x +1),所以f ⎝⎛⎭⎪⎫2 0185=-f ⎝ ⎛⎭⎪⎫25=-lg 75=lg 57,故f ⎝ ⎛⎭⎪⎫2 0185+lg14=lg 57+lg 14=lg 10=1.答案:18.函数f (x )=e x+x (x ∈R)可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________.解析:由题意可知h (x )+g (x )=e x+x ①,用-x 代替x 得h (-x )+g (-x )=e -x-x ,因为h (x )为奇函数,g (x )为偶函数,所以-h (x )+g (x )=e -x-x ②.由(①+②)÷2得g (x )=e x+e -x2,所以g (0)=e 0+e 02=1.答案:19.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x-1.则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=________.解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫32+f (2)+f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12+f (1)+f ⎝ ⎛⎭⎪⎫-12+f (0)+f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫12+f (1)+f (0)=212-1+21-1+20-1= 2.答案: 210.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f⎝ ⎛⎭⎪⎫-52+f (1)=________. 解析:∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0.∵f (x )=4x,x ∈(0,1),∴f ⎝ ⎛⎭⎪⎫-52=f -52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2.∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2.答案:-2 二、解答题11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx , 所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.函数f (x )的定义域为D ={x |x ≠0},且满足对任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (x -1)<2, 且f (x )在(0,+∞)上是增函数,求x 的取值范围. 解:(1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0. (2)f (x )为偶函数.证明:令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.令x 1=-1,x 2=x ,有f (-x )=f (-1)+f (x ),∴f (-x )=f (x ),∴f (x )为偶函数.(3)依题设有f (4×4)=f (4)+f (4)=2,由(2)知,f (x )是偶函数, ∴f (x -1)<2⇔f (|x -1|)<f (16). 又f (x )在(0,+∞)上是增函数. ∴0<|x -1|<16, 解得-15<x <17且x ≠1. ∴x 的取值范围是(-15,1)∪(1,17).附:什么样的考试心态最好大部分学生都不敢掉以轻心,因此会出现很多过度焦虑。
2019苏教版高考一轮优化探究理数练习:选修4-4 第二节 参数方程 Word版含解析
1.已知曲线C 的参数方程为⎩⎪⎨⎪⎧ x =t -1t ,y =3(t +1t )(t 为参数,t >0).求曲线C 的普通方程. 解析:由x =t -1t 平方得x 2=t +1t -2,又y =3(t +1t ),则t +1t =y3,代入x 2=t +1t -2,得x 2=y3-2.∴3x 2-y +6=0(y ≥6).故曲线C 的普通方程为3x 2-y +6=0(y ≥6).2.已知直线l :3x +4y -12=0与圆C :⎩⎨⎧x =-1+2cos θ,y =2+2sin θ(θ为参数),试判断它们的公共点个数.解析:圆的方程可化为(x +1) 2+(y -2)2=4,其圆心为C (-1,2),半径为2.由于圆心到直线l 的距离d =|3×(-1)+4×2-12|32+42=75<2,所以直线l 与圆C 相交.故直线l 与圆C 的公共点的个数为2.3.已知点P (x ,y )是椭圆x 24+y 2=1上的动点.(1)求z =x 2+y 2的最大值和最小值;(2)求t =2x +y 的最大值和最小值.解析:椭圆的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =sin θ,(θ为参数),则 (1)∵z =x 2+y 2=4cos 2θ+sin 2θ=1+3cos 2θ,∴当cos θ=±1,即x =±2时,z 的最大值为4;当cos θ=0,即x =0时,z 的最小值为1.(2)∵t =2x +y =4cos θ+sin θ=17sin(θ+φ),其中tan φ=4,当sin(θ+φ)=1时,t 的最大值为17;当sin(θ+φ)=-1时,t 的最小值为-17.4.已知直线l 的参数方程:⎩⎨⎧x =t ,y =1+2t(t 为参数)和圆C 的极坐标方程:ρ=22sin(θ+π4)(θ为参数).(1)将直线l 的参数方程和圆C 的极坐标方程化为直角坐标方程;(2)判断直线l 和圆C 的位置关系.解析:(1)消去参数t ,得直线l 的直角坐标方程为y =2x +1;ρ=22sin(θ+π4),即ρ=2(sin θ+cos θ),两边同乘以ρ得ρ2=2(ρsin θ+ρcos θ),消去参数θ,得圆C 的直角坐标方程为:(x -1)2+(y -1)2=2.(2)圆心C 到直线l 的距离d =|2-1+1|22+(-1)2=255<2, 所以直线l 和圆C 相交.。
【精编】一轮优化探究理数(苏教版)练习:第二章第二节 函数的定义域和值域
一、填空题1.函数f (x )=x 2-2x +c 在[-2,2]上的最大值是________.解析:因为二次函数f (x )的对称轴为x =1并且开口向上,所以在区间[-2,2]上的最大值为f (-2)=8+c .答案:8+c2.若f (x )的定义域为[-2,3],则f (x )+log 2(x 2-3)的定义域为________. 解析:∵f (x )的定义域为-2≤x ≤3,由log 2(x 2-3)≥0,则x 2-3≥1,x ≥2或x ≤-2.即f (x )+log 2(x 2-3)的定义域为2≤x ≤3或x =-2.答案:{-2}∪{x |2≤x ≤3}3.y =133x -9-|x |-2的定义域为________.解析:依题意⎩⎨⎧|x |-2≥03x -9≠0, 由此解得x ≤-2或x ≥2,且x ≠3,即函数的定义域是{x ∈R|x ≤-2或2≤x <3或x >3}.答案:{x ∈R|x ≤-2或2≤x <3或x >3}4.若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是________. 解析:若m =0,则f (x )=x -43的定义域为R ;若m ≠0,则Δ=16m 2-12m <0,得0<m <34,综上可知,所求的实数m 的取值范围为[0,34).答案:[0,34)5.函数y =|x +2|+(x -3)2的值域为________.解析:y =|x +2|+(x -3)2=|x +2|+|x -3| =⎩⎨⎧ -2x +1 (x ≤-2),5 (-2<x <3),2x -1 (x ≥3).当x ≤-2时,-2x +1≥-2×(-2)+1=5;当x ≥3时, 2x -1≥2×3-1=5,∴y ≥5.答案:[5,+∞)6.函数y =log 2 (4-x )的定义域是________.解析:由⎩⎨⎧ 4-x >0log 2 (4-x )≥0, 即⎩⎨⎧4-x >04-x ≥1,得x ≤3. 答案:(-∞,3]7.已知函数f (x )=x +p x -1(p 为常数,且p >0),若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+p x -1+1≥2p +1,当且仅当x =p +1时,取等号,则2p +1=4,解得p =94.答案:948.对a ,b ∈R ,记min {a ,b }=⎩⎨⎧a (a <b ),b (a ≥b ),函数f (x )=min ⎩⎨⎧⎭⎬⎫12x ,-|x -1|+2(x ∈R)的最大值为________.解析:y =f (x )是y =12x 与y =-|x -1|+2两者中的较小者,数形结合可知,函数的最大值为1.答案:19.定义:区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1.已知函数y =2|x |的定义域为[a ,b ],值域为[1,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:[a ,b ]的长度取得最大值时[a ,b ]=[-1,1],区间[a ,b ]的长度取得最小值时[a ,b ]可取[0,1]或[-1,0],因此区间[a ,b ]的长度的最大值与最小值的差为1. 答案:1二、解答题10.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域.解析:(1)∵函数的值域为[0,+∞),∴Δ=16a 2-4(2a +6)=0⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R ,函数值均为非负数,∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32,∴a +3>0,∴g (a )=2-a |a +3|=-a 2-3a +2=-(a +32)2+174(a ∈[-1,32]).∵二次函数g (a )在[-1,32]上单调递减,∴g (32)≤g (a )≤g (-1),即-194≤g (a )≤4,∴g (a )的值域为[-194,4].11.已知函数y =log a (ax 2+2x +1).(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(-∞,-2-2)∪(-2+2,+∞),求a 的值.解析:(1)ax 2+2x +1>0,Δ=4-4a ,∵定义域为R.∴a >0,Δ<0,∴a >1.(2)由题意,ax 2+2x +1>0的解集为(-∞,-2-2)∪(-2+2,+∞).∴⎩⎪⎨⎪⎧ -2a =-4,1a =2,∴a =12.12.设f (x )=2x 2x +1,g (x )=ax +5-2a (a >0). (1)求f (x )在x ∈[0,1]上的值域;(2)若对于任意x 1∈[0,1],总存在x 0∈[0, 1],使得g (x 0)=f (x 1)成立,求a 的取值范围.解析:(1)(导数法) f ′(x )=4x (x +1)-2x 2(x +1)2=2x 2+4x (x +1)2≥0在x ∈[0,1]上恒成立. ∴f (x )在[0,1]上单调递增,∴f (x )在[0,1]上的值域为[0,1].(2)f (x )在[0,1]上的值域为[0,1],g (x )=ax +5-2a (a >0)在x ∈[0,1]上的值域为[5-2a,5-a ].由条件,只需[0,1]⊆[5-2a,5-a ],∴⎩⎨⎧5-2a ≤05-a ≥1⇒52≤a ≤4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时 [a,b]可取 [0,1]或 [-1,0],因此区间 [a,b]的长度的最大值与最小值的差为 1.
答案: 1
二、解答题
2
10.已知函数 f(x)= x2+4ax+2a+ 6. (1)若函数 f(x)的值域为 [0,+∞ ),求 a 的值; (2)若函数 f(x)的函数值均为非负数,求 g(a)= 2-a|a+3|的值域. 解析: (1)∵函数的值域为 [0,+ ∞), ∴ Δ= 16a2-4(2a+6)= 0 ? 2a2- a- 3= 0? a=- 1 或 a=32.
数
形结合可知,函数的最大值为 1.
答案: 1 9.定义:区间 [x1, x2](x1<x2)的长度为 x2- x1.已知函数 y=2|x|的定义域为 [ a, b],
值域为 [1,2] ,则区间 [a,b]的长度的最大值与最小值的差为 ________.
解析: [ a,b] 的长度取得最大值时 [ a,b] =[- 1,1],区间 [a,b]的长度取得最小值
x-4 解析: 若 m=0,则 f(x)= 3 的定义域为
R;若
m≠0,则 Δ= 16m2- 12m<0,
得 0<m<34,综上可知,所求的实数 m 的取值范围为 [0,34).
3 答案: [0,4)
5.函数 y=|x+2|+ x-3 2的值域为 ________.
解析: y= |x+2|+ x-3 2= |x+2|+|x-3|
一、填空题 1.函数 f(x)=x2- 2x+c 在[ -2,2]上的最大值是 ________.
解析:因为二次函数 f(x)的对称轴为 x= 1 并且开口向上, 所以在区间 [ -2,2]上的
最大值为 f(-2)=8+c.
答案: 8+c
2.若 f(x)的定义域为 [ -2,3],则 f(x)+ log2 x2-3 的定义域为 ________.
|x|-2≥0
解析: 依题意
,
3x-9≠0
由此解得 x≤ -2 或 x≥ 2,且 x≠3, 即函数的定义域是 { x∈R|x≤- 2 或 2≤x<3 或 x>3} . 答案: { x∈ R|x≤- 2 或 2≤ x<3 或 x>3}
x-4 4.若函数 f(x)= mx2+4mx+3的定义域为 R,则实数 m 的取值范围是 ________.
5-2a≤ 0 ∴
5-a≥1
? 52≤ a≤ 4.
4
解析: 由
,
log2 4-x ≥0
4-x>0
即
,得 x≤ 3.
.已知函数
f(x)=x+x-p
(p 1
为常数,且
p>0),若 f(x)在(1,+∞ )上的最小值为
4,则实数 p 的值为 ________.
p 解析:由题意得 x-1>0,f(x)=x-1+x-1+1≥2 p+ 1,当且仅当 x= p+ 1 时,
即- 149≤ g(a)≤4,
∴ g(a)的值域为 [ -149,4] . 11.已知函数 y=loga (ax2+2x+ 1).
(1)若此函数的定义域为 R,求 a 的取值范围;
(2)若此函数的定义域为 (-∞,- 2- 2)∪ (-2+ 2,+∞ ),求 a 的值. 解析: (1)ax2+ 2x+1>0, Δ= 4- 4a,∵定义域为 R.
解析: ∵ f(x)的定义域为- 2≤x≤3, 由 log2(x2- 3)≥0,则 x2-3≥1,x≥2 或 x≤ -2.
即 f(x)+ log2 x2-3 的定义域为 2≤x≤3 或 x=- 2.
答案: { -2} ∪ { x|2≤x≤3}
1
3.y=
- |x|-2的定义域为 ________.
3 3x-9
(2)∵对一切 x∈R,函数值均为非负数,
∴ Δ= 8(2a2-a- 3)≤0? -1≤a≤32,
∴ a+ 3>0, ∴ g(a)=2-a|a+3|=- a2-3a+ 2
=-
(a+
32)2
+
17 4 (a∈
[-
1,
3 2])
.
∵二次函数
g(a)在
[-1,
3 2]上单调递减,
3 ∴ g(2)≤g(a)≤ g(-1),
取等号,则
2
p+ 1= 4,解得
p=
9 4.
答案:
9 4
a a<b , 8.对 a,b∈R,记 min { a, b} =
b a≥b ,
1 函数 f(x)=min 2x,- |x- 1|+ 2 (x∈R) 的最大值为 ________.
解析:y=f(x)是
y=
1 2x
与
y=- |x-1|+2 两者中的较小者,
-2x+1 x≤ -2 , = 5 -2<x<3 ,
2x-1 x≥3 .
1
当 x≤-2 时,- 2x+ 1≥ -2×(- 2)+1=5; 当 x≥3 时, 2x- 1≥ 2× 3- 1= 5,∴ y≥ 5. 答案: [5,+∞ )
6.函数 y= log2 4-x 的定义域是 ________.
4-x>0
∴ a>0,Δ<0,∴ a>1. (2)由题意, ax2+2x+ 1>0 的解集为
(-∞,- 2- 2)∪(-2+ 2,+ ∞).
-2a=- 4, ∴
1a= 2,
1 ∴a=2.
3
2x2 12.设 f(x)= x+ 1, g(x)=ax+ 5-2a(a>0).
(1)求 f(x)在 x∈ [0,1] 上的值域; (2)若对于任意 x1∈[0,1] ,总存在 x0∈ [0, 1],使得 g(x0)=f(x1)成立,求 a 的取值 范围.
4x x+1 -2x2 解析: (1)(导数法 ) f′ (x)= x+1 2
2x2+ 4x = x+1 2 ≥0 在 x∈ [0,1] 上恒成立. ∴ f(x)在 [0,1] 上单调递增, ∴ f(x)在 [0,1] 上的值域为 [0,1] . (2)f(x)在 [0,1] 上的值域为 [0,1] ,g(x)=ax+ 5-2a(a>0)在 x∈ [0,1] 上的值域为 [5 - 2a,5-a]. 由条件,只需 [0,1] ? [5-2a,5-a],