正弦量的三要素

合集下载

正弦量的三要素和有效值

正弦量的三要素和有效值
1.振幅值 正弦量的最大值称为振幅值,用大写字母表示,
如Im 、Um。
首页
2.角频率、周期、频率 正弦量在单位时间内所经历的电角度,称为角频率,用ω 表示,单位是弧度/秒,即

t
正弦量完成一次周期变化所需要的时间,称为周期,用T 表示,单位是秒。
正弦量在1秒钟内完成周期性变化的次数,称为频率,用 f 表示,单位是赫兹。
选零点为计时起点,则初相ψ =0,如图3-7所示是不同初相时
几种正弦电流的解析式和波形图。
首页
i
Im
i Im sint
0
t
a)
i i Im sin(t π 6)
i
i Im sin(t π 2)
0
t
b)
i i Im sin(t π 6)
0
t
0
t
π/6
π/6
首页
例3-3 两个同频率正弦电流的波形如图3-6所示,试写出 它们的解析式,并计算二者之间的相位差。
解 解析式
i/A 10 i1
i1

10 s in(314t

π )A 4
8
i2
i2
8 s in(314t Nhomakorabeaπ )A 4
0
4
4
0.02s
相位差
ωt/rad

i1
i2

π 4
(
c)
d)
图3-3 初相不同的几种正弦电流的波形图 a)初相为0; b)初相为π/2; c)初相为π/6; d)初相为-π/6
首页
注意:正弦量的初相、相位以及解析式都与参考方向有 关。改变参考方向,就是将正弦量的初相加上或减去π。

3-1正弦量的表示方法

3-1正弦量的表示方法

已知: i = 141.4 sin( 314t +
u = 311.1sin(314t −
π
6
) A
π
3 求: i 、u 的相量表达式及相量图。
) V
i = 141.4 sin( 314t +
u = 311.1sin(314t −
解:
π
π
6
3
) A
) V
I
141.4 j 30 j 30 I= e = 100e = 100∠ 30 A 2

u = 5 2 sin(ω t − 126 ⋅ 9 )

b. 复数的四则运算
已知:
jθ 1 A1 = a1 + jb1 = A1e
jθ 2 A2 = a 2 + jb2 = Ae
±A = ( a ± a ) + j( b ± b ) 加减:A 1 2 1 2 1 2
乘除:
⋅A = A ⋅ A e j ( θ 1 +θ 2 ) A 1 2 1 2
Im = 2
同理
Um U= 2
Em E= 2
•相位和初相位
i
i = 2 I sin (ω t + ϕ )
ωt
ϕ
相位(相位角): ωt + ϕ
单位:弧度( rad)、度( )
初相位: t = 0 时的相位,即 ϕ
相位差 两个同频率正弦量间的相位差(初相差)
i1
ϕ2
i2
ϕ1
ωt
i1 = I m 1 sin(ω t + ϕ 1 )
30 60

311.1 − j 60 U= e = 220∠ − 60 V 2 相位哪一个超前? 哪一个滞后?

正弦量的瞬时值、幅值和有效值(精)

正弦量的瞬时值、幅值和有效值(精)
电路基础
正弦量的瞬时值、幅值和有效值
3.2 正弦量的三要素
u U m sin(t u ) i I m sin(t i )
其中u、i分别为电压和电流的瞬时值; Um、Im分别为 电压和电流的幅值(或最大值); ω为角频率; φu, φi分别
为电压和电流的初相角, 如图所示。
注意: 交流电压、电流表测量数据为有效值 交流设备名牌标注的电压、电流均为有效值
u ~
i
R
+ U _
I
R
பைடு நூலகம்
通入正弦交流电,T时 间内,电流热效应:
T
通入直流电,T时间内, 电流热效应:
Q = I2 RT
Q
2 i Rdt 0
则有: 同理:
I
Im 2
U U m 2
E
Em 2
1.瞬时值、最大值、有效值
i I m sin t
母u, i, e 表示 。 母带下标m表示, 如:Im, 有效值。以大写字母I、U、
瞬时值 : 描述正弦量在任一瞬间的值 ,以小写字 最大值 :瞬时值中的最大数值,也称幅值 ,以大写字 Um, Em. 有效值 : 与交流热效应相等的直流定义为交流电的 E表示 。

7 正弦量与相量

7 正弦量与相量
+jຫໍສະໝຸດ C=A*B+j
C B
ϕb ϕb ϕa + ϕb A
C=A/B
+j
A
B
B jA A
-jB
+1 O C
+1
ϕ a- ϕ b
O 旋转因子示意 +1
O 复数的乘法
复数的除法
7.4 正弦量的相量表示法
一、正弦稳态电路的特点
1、角频率不变性:在线性电路中,如 角频率不变性:在线性电路中, 果电路的所有激励都是同频率的正弦量, 果电路的所有激励都是同频率的正弦量, 激励都是同频率的正弦量 则电路中各支路的稳态响应也为同频率 稳态响应也为 则电路中各支路的稳态响应也为同频率 的正弦量。 ( P208) 的正弦量。 2、计算的复杂性:在列写VCR、KCL、 计算的复杂性:在列写VCR、KCL、 KVL方程的时候会遇到微分、积分和 KVL方程的时候会遇到微分、积分和和 方程的时候会遇到微分 差化积的问题 的问题。 差化积的问题。
二、复数的四则运算
1、加减运算 1)定量运算 1)定量运算------用代数形式计算 定量运算------用代数形式计算
F1 ± F2 = (a1 + jb1 ) ± (a2 + jb2 ) = (a1 ± a2 ) + j (b1 ± b2 )
法则:实部加减,虚部加减。 法则:实部加减,虚部加减。
7 正弦量与相量
重点
1、正弦量的三要素 2、复数的几种表示形式的转换及计算 3、 KCL、KVL 、VCR的相量表示 KCL、 VCR的相量表示
难点
相量图的绘制
本章作业
P217 7.1 7.2 7.5 7.7 7.10 7.12

电路试题库(三)+答案

电路试题库(三)+答案

电路试题库(三)+答案一、填空题(建议较易填空每空0.5分,较难填空每空1分)1、正弦交流电的三要素是指正弦量的 最大值 、 角频率 和 初相 。

2、反映正弦交流电振荡幅度的量是它的 最大值 ;反映正弦量随时间变化快慢程度的量是它的 频率 ;确定正弦量计时始位置的是它的 初相 。

3、已知一正弦量A )30314sin(07.7︒-=t i ,则该正弦电流的最大值是 7.07 A ;有效值是 5 A ;角频率是 314 rad/s ;频率是 50 Hz ;周期是 0.02 s ;随时间的变化进程相位是 314t-30°电角 ;初相是 -30° ;合 -π/6 弧度。

4、正弦量的 有效 值等于它的瞬时值的平方在一个周期内的平均值的 开方 ,所以 有效 值又称为方均根值。

也可以说,交流电的 有效 值等于与其 热效应 相同的直流电的数值。

5、两个 同频率 正弦量之间的相位之差称为相位差, 不同 频率的正弦量之间不存在相位差的概念。

6、实际应用的电表交流指示值和我们实验的交流测量值,都是交流电的 有效 值。

工程上所说的交流电压、交流电流的数值,通常也都是它们的 有效 值,此值与交流电最大值的数量关系为: 最大值是有效值的1.414倍 。

7、电阻元件上的电压、电流在相位上是 同相 关系;电感元件上的电压、电流相位存在 正交 关系,且电压 超前 电流;电容元件上的电压、电流相位存在 正交 关系,且电压 滞后 电流。

8、 同相 的电压和电流构成的是有功功率,用P 表示,单位为 W ; 正交 的电压和电流构成无功功率,用Q 表示,单位为 Var 。

9、能量转换中过程不可逆的功率称 有 功功率,能量转换中过程可逆的功率称 无 功功率。

能量转换过程不可逆的功率意味着不但 有交换 ,而且还有 消耗 ;能量转换过程可逆的功率则意味着只 交换 不 消耗 。

10、正弦交流电路中,电阻元件上的阻抗z = R ,与频率 无关 ;电感元件上的阻抗z = X L ,与频率 成正比 ;电容元件上的阻抗z = X C ,与频率 成反比 。

正弦交流电路习题课

正弦交流电路习题课

0 由KCL, I1 I 2 I 3 j 2 1 2.263.4 A
U 40 在电压三角形中, arctg arctg 53.130 U2 30
I00 解:设 I
P 1 V1 I cos 1
Z1 Z1 1
240 171 4 cos 1
1 69.460 171 Z1 69.460 42.75 69.460 4 V V2 Z 2 2 60 2 Z1 Z 2 25 I I
提高功率因数的意义方法
• 提高功率因数能使电源设备的容量得到充 分利用; • 提高功率因数能减小线路功耗和电压损耗。 • 提高功率因数的方法通常是在感性负载 两端并联一个电容器,称之为补偿电容 器。补偿电容器的容量为:
正弦稳态电路的分析
• 用相量法分析电路时,线性电阻电路的 各种分析方法和电路定理可推广用于线 性电路的正弦稳态分析,差别仅在于所 得的电路方程是以相量形式表示的代数 方程以及用相量形式描述的电路定理, 而计算则为复数运算。
U I XC
U I XL
I CU
基尔霍夫定律的相量式
• 基尔霍夫定律的相量式与三种基本电路 元件伏安特性的相量形式,是分析正弦 交流电路的基础。 0 U
I 0

• 应用基尔霍夫定律及单一参数电路所得 出的结论,对R、L、C串联、并联电路 进行了分析,分别引出了阻抗Z和导纳Y 的概念。
正弦稳态电路的分析
习题总结课
正弦量及其三要素
1、随时间按正弦规律变化的电流、电压、 电动势等统称为正弦量。 2、正弦量的有效值(振幅)、频率(周期 或角频率)和初相是正弦量的三要素。 三要素是确定一个正弦量的充要条件。 3、直流电的大小和方向恒定不变,在直流 计算时只考虑其大小即可。而在交流电 的分析与计算时,除了考虑大小外,还 要考虑其相位。

正弦量的三要素

正弦量的三要素

设一交变电流i通过电阻R,在一个周期内该电阻消耗的 电能是:
W~ = ∫ i Rdt = R∫ i dt
2 2 0 0
T
T
i
R
如果有一个直流电流I通过同一电阻R,在同一时间T内 所消耗的电能为:
W = I RT
2
I
R
在一个周期时间内,W~=W—, 于是
R∫ i dt = I RT
2 2 0
T
1 T 2 I= ∫0 i dt T
最大值(幅值) 最大值(幅值):在一个周期里 最大的瞬时值叫最大值, 最大的瞬时值叫最大值,它是交 流电的振幅,通常用大写字母并 流电的振幅, 加注下标m表示。 加注下标m表示。如Im、Um及Em。 可见, 可见,最大值实际上就是最大的 瞬时值,也是与时间有关的量。 瞬时值,也是与时间有关的量。
Im
ω
= 2πf
Um
ψu
e = Em sin( ωt +ψe )V
Em
ψe
相位差:两个同频率的正弦交流电在相位上的差值 定义位相位差,用φ表示。
ui = (ωt +ψu ) (ωt +ψi ) =ψu ψi
同频率的两个正弦交流电的相位差等于它们的 初相之差。 i, u i, u
ψi ψu
0
t
ψu 0
Im i t4 t
t3 0 t1 t2
.
每秒时间内重复变化的周期数称 T 为频率,用字母 表示,它的单位是赫 为频率 用字母 f 表示 它的单位是赫 简称赫,周期和频率互为倒数 兹(Hz),简称赫 周期和频率互为倒数 简称赫 周期和频率互为倒数, 1 2π 即有 f = ωT = 2π ω = = 2πf T T 的交流电(称为工频交流电),其角 例如频率 f =50Hz的交流电 称为工频交流电 其角 的交流电 称为工频交流电 频率和周期分别为: 频率和周期分别为 ω=2π f=314 rad/s T=0.02s

正弦量的三要素及相量表示法基尔霍夫

正弦量的三要素及相量表示法基尔霍夫

三 相位差
第五章
正弦电流电路
相位差 :两个同频率正弦量间的相位之差,即初相位 之差。
i
u
如:
u
t
i
u U m sin t u
i I m sin t i 则相位差为:
t u t i u i
第五章 正弦电流电路 两个正弦量的相位关系
上述相量图是根据平行四边形法则进行加、减获得的。实际上, 可采用三角形法则作图。如下图所示。
I1
0
I2
I I1 I 2
0
I2
I1
I I1 I 2
两相量相加
两相量相减
第五章 正弦电流电路
5.4基尔霍夫定律的相量形式
一 基尔霍夫电流定律(KCL) 瞬时值形式:
i 0
0 相量形式(同频率的正弦量) : I
◆周期量:每个值在经过相等的时间间隔后循环出现的 时变电压和电流。 ◆交流量:一个循环内波形面积平均值为零的周期量。
u i i
O
t
时变电压
O
t
周期量
O
t
交流量
第五章 正弦电流电路 二 正弦量的三要素
正弦量:按正弦规 律变化的交流量。 设正弦电流
Im

i
O

T
2
t
i I m sin(ωt ψ )
二 基尔霍夫电压定律(KVL)
瞬时值形式:
u 0
相量形式(同频率的正弦量) : U 0
第五章 正弦电流电路 二 旋转矢量与正弦量 设正弦量: i I m sin(ωt ψ )
j B ω t1
0
i
Im
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正弦量的三要素、正弦量的有效值、正弦量的复数表示法
一、内容提要:
本讲主要是讲正弦量的三要素、正弦量的有效值、正弦量的复数表示法、单相交流电路、RLC串联交流电路、并联交流电路、三相交流电路
二、本讲的重点是:
正弦量的有效值的有效值的计算、单相交流电路电压与电流之间的关系、RLC串联交流电路的有关计算。

本讲的难点是:正弦量的复数表示法、三相交流电路的有关计算。

三、内容讲解:
1、正弦量的三要素:
交流电:是指大小和方向都随时间作周期性变化的交变电动势、交变电压和交变电流。

实际中普遍采用的是按正弦规律变化的交流电,称正弦交流电。

正弦量:随时间按正弦规律变化的物理量如电动势、电压和电流等,统称为正弦量。

正弦量在任一瞬间的数值叫做瞬时值,用小写字母表示,如e,u,i分别表示电动势、电压和电流的瞬时值。

瞬时值中最大的数值叫做最大值或幅值,用带下标。

相关文档
最新文档