专题16 压轴题-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

合集下载

专题09 三角形-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(解析版)

专题09 三角形-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(解析版)

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*三角形**1.(2014年,内蒙古包头市,3分)长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种2.(2014年,内蒙古赤峰市,3分)如图,把一块含有30°角(∠A=30°)的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=40°,那么∠AFE=【】A. 50°B. 40°C. 20°D. 10°【答案】D.【解析】3.(2015年,内蒙古包头市、乌兰察布市,3分)在Rt △ABC 中,∠C =90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是( )A .13 B .3 C D .4.(2016年,内蒙古包头市,3分)如图,点O 在△ABC 内,且到三边的距离相等.若∠BOC=120°,则tanA 的值为( )A .B .C .D .【答案】A .考点:角平分线的性质;特殊角的三角函数值.5.(2016年,内蒙古包头市,3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=DE B.CE=DE C.CE=3DE D.CE=2DE【答案】B.考点:勾股定理;矩形的判定与性质;相似三角形的判定与性质.6.(2016年,内蒙古赤峰市,3分)等腰三角形有一个角是90°,则另两个角分别是()A.30°,60°B.45°,45°C.45°,90°D.20°,70°【答案】B【解析】考点:等腰三角形的性质1.(2014年,内蒙古包头市,3分)如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B 在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x 轴于点C.若S四边形ABCD=10,则k的值为.考点:1、相似三角形的判定与性质;2、反比例函数系数k的几何意义2.(2014年,内蒙古呼和浩特市,3分)等腰三角形一腰上的高与另一腰的夹角为360,则该等腰三角形的底角的度数为▲ .(2)如图当△EFG是钝角三角形时,FH⊥EG于H,则∠FHE=90°,3.(2016年,内蒙古通辽市)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.【答案】69°或21°.【解析】故答案为:69°或21°.考点:等腰三角形的性质;分类讨论.1.(2014年,内蒙古包头市,8分)如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠BCD=45°,点E 在BC上,且∠AEB=60°.若AB=2,AD=1,求CD和CE的长.(注意:本题中的计算过程和结果均保留根号)∵AB=23,2.(2014年,内蒙古包头市,12分)如图,已知∠MON=90°,A 是∠MON 内部的一点,过点A 作AB ⊥ON ,垂足为点B ,AB=3厘米,OB=4厘米,动点E ,F 同时从O 点出发,点E 以1.5厘米/秒的速度沿ON 方向运动,点F 以2厘米/秒的速度沿OM 方向运动,EF 与OA 交于点C ,连接AE ,当点E 到达点B 时,点F 随之停止运动.设运动时间为t 秒(t >0).(1)当t=1秒时,△EOF 与△ABO 是否相似?请说明理由; (2)在运动过程中,不论t 取何值时,总有EF ⊥OA .为什么?(3)连接AF ,在运动过程中,是否存在某一时刻t ,使得S △AEF =S 四边形ABOF ?若存在,请求出此时t 的值;若不存在,请说明理由.【答案】(1)△EOF ∽△ABO .理由见解析 (2)理由见解析 (3)存在,当t=23或t=34时,S △AEF =21S 四边形ABOF .3.(2014年,内蒙古赤峰市,10分)如图,已知△ABC中AB=AC(1)作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)条件下,连接CF,求证:∠E=∠ACF【答案】(1)作图见解析;(2)证明书见解析.【解析】考点:1.作图—复杂作图;2.全等三角形的判定和性质;3.等腰三角形的性质.4.(2014年,内蒙古赤峰市,10分)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图(11),王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A的仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保1.73≈0≈)tan52 1.28【答案】81米.【解析】5.(2014年,内蒙古呼和浩特市,6分)如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(结果用非特殊角的三角函数及根式表示即可)【答案】cos 25° .【解析】6.(2015年,内蒙古呼伦贝尔市、兴安盟,6分)如图,厂房屋顶人字架的跨度BC=10m.D为BC的中点,上弦AB=AC,∠B=36°,求中柱AD和上弦AB的长(结果保留小数点后一位).参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73.【答案】AD=3.65米,AB=6.17米.考点:解直角三角形的应用.7.(2015年,内蒙古呼和浩特市,6分)如图,热气球的探测器显示,从热气球A处看一栋高楼顶部B的仰角为30°,看这栋高楼底部C的俯角为65°,热气球与高楼的水平距离AD为120m.求这栋高楼的高度. (结果用含非特殊角的三角函数及根式表示即可)【答案】(+120·tan65°)米考点:三角函数的应用.8.(2015年,内蒙古通辽市)如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.9.(2016年,内蒙古古巴淖尔)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形EFDA是平行四边形.【解析】试题解析:(1)证明:∵△ABE是等边三角形,EF⊥AB,∴∠EAF=60°,AE=BE,∠EF A=90°.又∵∠ACB=90°,∠ABC=60°,∴∠EF A=∠ACB,∠EAF=∠ABC.在△ABC和△EAF中,∵∠EF A=∠ACB,∠EAF=∠ABC,AE=BE,∴△ABC≌△EAF.(2)结论:四边形EFDA是平行四边形.理由:∵△ABC≌△EAF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD,∠CAD=60°,∴AD=EF.又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EF A=∠BAD=90°,∴EF ∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.考点:全等三角形的判定与性质;等边三角形的性质.10.(2016年,内蒙古包头市,10分)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)【答案】(1)6﹣8;(2).(2))∵∠ABE=90°,AB=6,sinA==,∴设BE=4x,则AE=5x,得AB=3x,∴3x=6,得x=2,∴BE=8,AE=10,∴tanE====,解得,DE=,∴AD=AE﹣DE=10﹣=,即AD的长是.考点:解直角三角形.11.(2016年,内蒙古赤峰市)如图,正方形ABCD的边长为3cm,P,Q分别从B,A出发沿BC, AD方向运动,P点的运动速度是1cm/秒,Q点的运动速度是2cm/秒,连接A,P并过Q作QE⊥AP垂足为E.(1)求证:△ABP∽△QEA;(2)当运动时间t为何值时,△ABP≌△QEA;(3)设△QEA 的面积为y ,用运动时刻t 表示△QEA 的面积y (不要求考t 的取值范围).(提示:解答(2)(3)时可不分先后)【答案】(1)、证明过程见解析;(2)、3;(3)、y=2393tt . 【解析】(2)、∵△ABP ≌△QEA ; ∴AP=AQ (全等三角形的对应边相等);在RT △ABP 与RT △QEA 中根据勾股定理得AP 2=32+t 2,AQ 2=(2t )2 即32+t 2=(2t )2解得t 1=,t 2=﹣(不符合题意,舍去)答:当t 取时△ABP 与△QEA 全等.(3)、由(1)知△ABP ∽△QEA ; ∴=()2 ∴=()2整理得:y=.考点:相似形综合题12.(2016年,呼伦贝尔市、兴安盟,6分)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=34,求sinC的值.【答案】12 13.【解析】试题分析:在直角△ABD中,根据tan∠BAD=34,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.试题解析:∵在直角△ABD中,tan∠BAD=BDAD =34,∴BD=AD•tan∠BAD=12×34=9,∴CD=BC﹣BD=14﹣9=5,∴在直角△ACD中,由勾股定理得AC=13,∴sinC=ADAC =12 13.考点:解直角三角形.13.(2016年,内蒙古呼和浩特市)已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)本题要判定△ACE≌△BCD,已知△ACB 和△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA ,AC=BC ,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS 得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,AE=DB ,从而求出AD 2+DB 2=DE 2,即2CD 2=AD 2+DB 2.试题解析:(1)∵△ABC 和△ECD 都是等腰直角三角形,∴AC=BC,CD=CE ,∵∠ACB=∠DCE=90°,∴∠ACE+∠ACD=∠BCD+∠ACD,∴∠ACE=∠BCD,在△ACE 和△BCD 中, AC AB ACE BCD CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△BDC(SAS );(2)∵△ACB 是等腰直角三角形,∴∠B=∠BAC=45度.∵△ACE≌△BCD,∴∠B=∠CAE=45°∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD 2+AE 2=DE 2.由(1)知AE=DB ,∴AD 2+DB 2=DE 2,即2CD 2=AD 2+DB 2.考点:全等三角形的判定与性质14.(2016年,内蒙古呼和浩特市)如图,已知AD 是△ABC 的外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连接FB ,FC .(1)求证:∠FBC=∠FCB ;(2)已知FA •FD=12,若AB 是△ABC 外接圆的直径,FA=2,求CD 的长.【答案】(1)证明见解析(2)【解析】试题分析:(1)由圆内接四边形的性质和邻补角关系证出∠FBC=∠CAD,再由角平分线和对顶角相等得出∠FAB=∠CAD,由圆周角定理得出∠FAB=∠FCB,即可得出结论;(2)由(1)得:∠FBC=∠FCB,由圆周角定理得出∠FAB=∠FBC,由公共角∠BFA=∠BFD,证出△AFB∽△BFD,得出对应边成比例求出BF,得出FD、AD的长,由圆周角定理得出∠BFA=∠BCA=90°,由三角函数求出∠FBA=30°,再由三角函数求出CD的长即可.试题解析:(1)∵四边形AFBC内接于圆,∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB;(2)由(1)得:∠FBC=∠FCB,又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠BFD,∴△AFB∽△BFD,∴BF FA FD BF,∴BF2=FA•FD=12,,∵FA=2,∴FD=6,AD=4,∵AB 为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA=AF BF == ∴∠FBA=30°,又∵∠FDB=∠FBA=30°,. 考点:相似三角形的判定与性质;三角形的外接圆与外心。

专题05 数量和位置关系-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(解析版)

专题05 数量和位置关系-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(解析版)

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*数量与位置变化**1.(2014年,内蒙古呼和浩特市,3分)已知线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,7),则点B(–4,–1)的对应点D的坐标为【】A.(1,2)B.(2,9)C.(5,3)D.(–9,–4)【答案】A.【解析】考点:坐标与图形变化-平移.2.(2014年,内蒙古呼和浩特市,3分)实数a,b,c在数轴上对应的点如下图所示,则下列式子中正确的是【】A.ac > bc B.|a–b| = a–bC.–a <–b < c D.–a–c >–b–c【答案】D.【解析】3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)点A(3,﹣1)关于原点的对称点A′的坐标是()A.(﹣3,﹣1)B.(3,1)C.(﹣3,1)D.(﹣1,3)【答案】C.考点:关于原点对称的点的坐标.4.(2016年,内蒙古赤峰市,3分)平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于()A.y轴对称B.x轴对称C.原点对称 D.直线y=x对称【答案】B【解析】试题分析:根据关于x轴对称点的坐标特点:纵坐标互为相反数,横坐标不变可得答案.平面直角坐标系内的点A(﹣1,2)与点B(﹣1,﹣2)关于x轴对称.考点:关于x轴、y轴对称的点的坐标5.(2016年,呼伦贝尔市、兴安盟,3分)将点A(3,2)向左平移4个单位长度得点A′,则点A′关于y 轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,﹣2)D.(1,2)【答案】D.【解析】试题分析:将点A(3,2)向左平移4个单位长度得点A′,可得点A′的坐标为(﹣1,2),所以点A′关于y轴对称的点的坐标是(1, 2),故选D.考点:关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.1.(2014年,内蒙古赤峰市,3分)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标▲ .【答案】(-2,3).【解析】试题分析:如答图,以“马”的位置向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出兵的坐标,则兵的坐标为(-2,3).考点:坐标确定位置.2.(2016年,内蒙古呼和浩特市,3分)已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为.【答案】D(﹣2﹣a,﹣b),(2﹣a,﹣b)【解析】试题分析:根据平行四边形的性质得到CD=AB=2,根据已知条件得到B(2+a,b),或(a﹣2,b),如图1,然后由点D与点B关于原点对称,即可得到结论: D(﹣2﹣a,﹣b),(2﹣a,﹣b).考点:1、平行四边形的性质;2、坐标与图形性质1.(2015年,内蒙古赤峰市)如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(-3,4),B(-4,2),C(-2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.2.(2016年,内蒙古赤峰市)在平面直角坐标系内按下列要求完成作图(不要求写作法,保留作图痕迹).(1)以(0,0)为圆心,3为半径画圆;(2)以(0,﹣1)为圆心,1为半径向下画半圆;(3)分别以(﹣1,1),(1,1)为圆心,0.5为半径画圆;(4)分别以(﹣1,1),(1,1)为圆心,1为半径向上画半圆.(向上、向下指在经过圆心的水平线的上方和下方)【答案】答案见解析【解析】试题解析:(1)、如图所示:⊙O,即为所求;(2)、如图所示:半圆O1,即为所求;(3)、如图所示:⊙O2,⊙O3,即为所求;(4)、如图所示:半圆O2,半圆O3,即为所求.考点:作图—复杂作图。

专题07 统计与概率-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

专题07 统计与概率-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*统计与概率**1.(2014年,内蒙古包头市,3分)在一次信息技术考试中,抽得6名学生的成绩(单位:分)如下:8,8,10,8,7,9,则这6名学生成绩的中位数是()A.7 B.8C.9D.102.(2014年,内蒙古包头市,3分)下列说法正确的是()A.必然事件发生的概率为0B.一组数据1,6,3,9,8的极差为7C.“面积相等的两个三角形全等”这一事件是必然事件D.“任意一个三角形的外角和等于180°”这一事件是不可能事件3.(2014年,内蒙古赤峰市,3分)下面是扬帆中学九年级八班43名同学家庭人口的统计表:这43个家庭人口的众数和中位数分别是【】A. 5,6B. 3,4C. 3,5D. 4,64.(2014年,内蒙古呼和浩特市,3分)以下问题,不适合用全面调查的是【】A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解全校学生的课外读书时间D.了解一批灯泡的使用寿命5.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)下列说法正确的是()A.掷一枚硬币,正面一定朝上B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前的安检应采用抽样调查D.方差越大,数据的波动越大6.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A .800B .600C .400D .2007. (2015年,内蒙古呼和浩特市,3分)在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A. 12B. 13C. 14D. 168.(2015年,内蒙古呼和浩特市,3分)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 9路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( ) A .19 B .29 C .49 D .5910.(2015年,内蒙古包头市、乌兰察布市,3分)一组数据5,2,x ,6,4的平均数是4,这组数据的方差是( )A .2BC .10 D11.(2015年,内蒙古包头市、乌兰察布市,3分)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为1 2B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件12.(2015年,内蒙古赤峰市,3分)为了了解某校学生的课外阅读情况,随机抽查了10学生周阅读用时数,结果如下表:则关于这10名学生周阅读所用时间,下列说法正确的是()A.中位数是6.5 B.众数是12 C.平均数是3.9 D.方差是613.(2015年,内蒙古通辽市,3分)下列调查适合抽样调查的是()A.审核书稿中的错别字 B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查 D.对中学生目前的睡眠情况进行调查14.(2016年,内蒙古古巴淖尔)某校举行“中国梦•我的梦”演讲比赛,需要在初三年级选取一名主持人,共有12名同学报名参加,其中初三(1)班有2名,初三(2)班有4名,初三(3)班有6名,现从这12名同学中随机选取一名主持人,则选中的这名同学恰好是初三(1)班同学的概率是()A.112B.13C.12D.1615.(2016年,内蒙古包头市,3分)一组数据2,3,5,4,4,6的中位数和平均数分别是()A.4.5和4 B.4和4 C.4和4.8 D.5和416.(2016年,内蒙古包头市,3分)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.17.(2016年,内蒙古赤峰市,3分)从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A.B.C.D.6518.(2016年,呼伦贝尔市、兴安盟,3分)下列调查适合做抽样调查的是()A.对某小区的卫生死角进行调查B.审核书稿中的错别字C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查19.(2016年,呼伦贝尔市、兴安盟,3分)从一组数据中取出a个x1,b个x2,c个x3,组成一个样本,那么这个样本的平均数是()A.1233x x x++B.123ax ax axa b c++++ C.1233ax ax ax++D.3a b c++20.(2016年,内蒙古呼和浩特市,3分)下列说法正确的是()A.“任意画一个三角形,其内角和为360°”是随机事件B.已知某篮球运动员投篮投中的概率为0.6,则他投十次可投中6次C.抽样调查选取样本时,所选样本可按自己的喜好选取D.检测某城市的空气质量,采用抽样调查法21.(2016年,内蒙古呼和浩特市,3分)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为()A.16B.6πC.8πD.5π1.(2014年,内蒙古包头市,3分)某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为分.2.(2014年,内蒙古呼和浩特市,3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是▲ .3.(2015年,内蒙古呼和浩特市,3分)如图,四边形 ABCD是菱形, E、F、G、H分别是各边的中点,随机地向菱形ABCD内掷一粒米,则米粒落到阴影区域内的概率是__________.4.(2015年,内蒙古巴彦淖尔,3分)一组数据3,5,a,4,3的平均数是4,这组数据的方差为.5.(2015年,内蒙古包头市、乌兰察布市,3分)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为23,则n= .6.(2015年,内蒙古赤峰市,3分)在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为 .7.(2016年,内蒙古古巴淖尔)两组数据3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据,则这组新数据的众数为_____________,中位数为_____________.8.(2016年,内蒙古包头市,3分)已知一组数据为1,2,3,4,5,则这组数据的方差为.9.(2016年,内蒙古赤峰市,3分)数据499,500,501,500的中位数是.10.(2016年,呼伦贝尔市、兴安盟,6分)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0个﹣2,;乙袋中有3个完全相同的小球,分别标有数字﹣2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q 的坐标(x,y)(1)写出先Q所有可能的坐标;(2)求点Q在x轴上的概率.11.(2016年,内蒙古通辽市)有一组数据:2,x,4,6,7,已知这组数据的众数是6,那么这组数据的方差是.12.(2016年,内蒙古呼和浩特市,3分)如图是某市电视台记者为了解市民获取新闻的主要图径,通过抽样调查绘制的一个条形统计图.若该市约有230万人,则可估计其中将报纸和手机上网作为获取新闻的主要途径的总人数大约为万人.13.(2016年,内蒙古呼和浩特市,3分)在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率.1.(2014年,内蒙古包头市,8分)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.2.(2014年,内蒙古赤峰市,10分)自从中央公布“八项规定”以来,光明中学积极开展“厉行节约,反对浪费”活动.为此,学校学生会对九年级八班某日午饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃光;B.有剩饭但菜吃光;C.饭吃光但菜有剩;D.饭和菜都有剩.学生会根据统计结果,绘制如下两个统计图,根据统计图提供的信息回答下列问题:(1)九年级八班共有多少学生?(2)计算扇形统计图中B所在扇形的圆心角的度数,并补全条形统计图;(3)光明中学有学生2000名,请估计这顿午饭有剩饭的学生人数,按每人平均10克米饭计算,这顿午饭将浪费多少千克米饭?3.(2014年,内蒙古呼和浩特市,9分)学校为了了解初三年级学生体育跳绳的训练情况,从初三年级各班随机抽取了50名学生进行了60秒跳绳的测试,并将这50名学生的测试成绩(即60秒跳绳的个数)从低到高分成六段记为第一到六组,最后整理成下面的频数分布直方图:请根据直方图中样本数据提供的信息解答下列问题.(1)跳绳次数的中位数落在哪一组?由样本数据的中位数你能推断出学校初三年级学生关于60秒跳绳成绩的一个什么结论?(2)若用各组数据的组中值(各小组的两个端点的数的平均数)代表各组的实际数据,求这50名学生的60秒跳绳的平均成绩(结果保留整数);(3)若从成绩落在第一和第六组的学生中随机抽取2名学生,用列举法求抽取的2名学生恰好在同一组的概率.4.(2015年,内蒙古呼伦贝尔市、兴安盟,6分)在一个不透明的口袋装有三个完全相同的小球,分别标号为1、2、3.求下列事件的概率:(1)从中任取一球,小球上的数字为偶数;(2)从中任取一球,记下数字作为点A的横坐标x,把小球放回袋中,再从中任取一球记下数字作为点A的纵坐标y,点A(x,y)在函数3yx的图象上.5.(2015年,内蒙古呼伦贝尔市、兴安盟,7分)某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)甲(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.6.(2015年,内蒙古呼和浩特市,9分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如下表:(1)由表中成绩已算得甲的平均成绩为80. 25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.7.(2015年,内蒙古巴彦淖尔,9分)为了提高学生书写汉字的能力.增强保护汉字的意识,我区举办了“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?8.(2015年,内蒙古巴彦淖尔,9分)在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,他们的形状、大小、质地等完全相同.小兰先从盒子里随机取出一个小球,记下数字为x,放回盒子,摇匀后,再由小田随机取出一个小球,记下数字为y(1)用列表法或画树状图法表示出(x,y)的所有可能出现的结果;(2)求小兰、小田各取一次小球所确定的点(x,y)落在反比例函数6yx=的图象上的频率;(3)求小兰、小田各取一次小球所确定的数x,y满足6yx<的概率.9.(2015年,内蒙古包头市、乌兰察布市,8分)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.10.(2015年,内蒙古赤峰市)中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图1、图2补充完整;(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).11.(2015年,内蒙古通辽市)课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.12.(2016年,内蒙古古巴淖尔)某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是________环,乙的平均成绩是________环;(2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.13.(2016年,内蒙古古巴淖尔)张老师为了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)张老师一共调查了多少名同学?(2)C类女生有多少名?D类男生有多少名?并将两幅统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中各随机选取一位学生进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.14.(2016年,内蒙古包头市,8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为.(1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)15.(2016年,内蒙古赤峰市)下表是博文学校初三•一班慧慧、聪聪两名学生入学以来10次数学检测成绩(单位:分).回答下列问题:(1)分别求出慧慧和聪聪成绩的平均数;(2)分别计算慧慧和聪聪两组数据的方差;(3)根据(1)(2)你认为选谁参加全国数学竞赛更合适?并说明理由;(4)由于初三•二班、初三•三班和初三•四班数学成绩相对薄弱,学校打算派慧慧和聪聪分别参加三个班的数学业余辅导活动,求两名学生分别在初三•二班和初三•三班的概率.16.(2016年,呼伦贝尔市、兴安盟,7分)为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.17.(2016年,内蒙古通辽市)一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率等于12.(1)求口袋中有几个红球?(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.18.(2016年,内蒙古通辽市)我市某中学为了深入学习社会主义核心价值观,特对本校部分学生(随机抽样)进行了一次相关知识的测试(成绩分为A、B、C、D、E、五个组,x表示测试成绩),通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题.A组:90≤x≤100B组:80≤x<90C组:70≤x<80D组:60≤x<70E组:x<60(1)参加调查测试的学生共有人;请将两幅统计图补充完整.(2)本次调查测试成绩的中位数落在组内.(3)本次调查测试成绩在80分以上(含80分)为优秀,该中学共有3000人,请估计全校测试成绩为优秀的学生有多少人?19.(2016年,内蒙古呼和浩特市)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据中位数,推断他的成绩如何?。

2017年度内蒙古呼和浩特市中考数学试卷(含规范标准答案解析版)

2017年度内蒙古呼和浩特市中考数学试卷(含规范标准答案解析版)

2017年内蒙古呼和浩特市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃ C.10℃D.15℃2.(3分)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2D.9.6×105km2 3.(3分)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)4.(3分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大5.(3分)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或06.(3分)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.96π5D.39√10π58.(3分)下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2B.a 2+1a−1﹣a﹣1=2aa−1C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)9.(3分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点,若AE=√5,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=13C.AF=√102D.四边形AFCE的面积为9410.(3分)函数y=x 2+1|x|的大致图象是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若式子√1−2x有意义,则x的取值范围是.12.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED 为°.13.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为.14.(3分)下面三个命题:①若{x=ay=b 是方程组{|x|=22x−y=3的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为.15.(3分)如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.16.(3分)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m个有序数对(x,y)(x,y是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n个,则据此可估计π的值为.(用含m,n的式子表示)三、解答题(本大题共9小题,共72分)17.(10分)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32; (2)先化简,再求值:x−2x 2+2x ÷x 2−4x+4x 2−4+12x ,其中x=﹣65. 18.(6分)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线.(1)求证:BD=CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.19.(10分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x (单位:℃)进行调查,并将所得的数据按照12≤x <16,16≤x <20,20≤x <24,24≤x <28,28≤x <32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.20.(7分)某专卖店有A ,B 两种商品,已知在打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元,A ,B 两种商品打相同折以后,某人买500件A 商品和450件B 商品一共比不打折少花1960元,计算打了多少折?21.(6分)已知关于x 的不等式2m−mx 2>12x ﹣1. (1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.22.(7分)如图,地面上小山的两侧有A ,B 两地,为了测量A ,B 两地的距离,让一热气球从小山西侧A 地出发沿与AB 成30°角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)23.(7分)已知反比例函数y=−k 2−1x(k 为常数). (1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小;(2)设点P(m,n)(m>0)是其图象上的一点,过点P作PM⊥x轴于点M.若tan∠POM=2,PO=√5(O为坐标原点),求k的值,并直接写出不等式kx+k 2+1 x>0的解集.24.(9分)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧BD̂的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH 的面积.25.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=﹣1和x=5对应的函数值相等.若点M在直线l:y=﹣12x+16上,点(3,﹣4)在抛物线上.(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(﹣72,0),试比较锐角∠PCO与∠ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围.(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QH⊥x轴于点H,将以点Q,H,O,C 为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S 可能取得的最大值.2017年内蒙古呼和浩特市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•呼和浩特)我市冬季里某一天的最低气温是﹣10℃,最高气温是5℃,这一天的温差为()A.﹣5℃B.5℃ C.10℃D.15℃【考点】1A:有理数的减法.【分析】用最高温度减去最低温度,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:5﹣(﹣10),=5+10,=15℃.故选D.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(3分)(2017•呼和浩特)中国的陆地面积约为9600000km2,将这个数用科学记数法可表示为()A.0.96×107km2B.960×104km2C.9.6×106km2D.9.6×105km2【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将9600000用科学记数法表示为:9.6×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•呼和浩特)图中序号(1)(2)(3)(4)对应的四个三角形,都是△ABC这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是()A.(1)B.(2)C.(3)D.(4)【考点】P3:轴对称图形.【专题】17 :推理填空题.【分析】轴对称是沿着某条直线翻转得到新图形,据此判断出通过轴对称得到的是哪个图形即可.【解答】解:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是(1).故选:A.【点评】此题主要考查了轴对称图形的性质和应用,要熟练掌握,解答此题的关键是要明确:轴对称是沿着某条直线翻转得到新图形,观察时要紧扣图形变换特点,进行分析判断.4.(3分)(2017•呼和浩特)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A.2010年至2014年间工业生产总值逐年增加B.2014年的工业生产总值比前一年增加了40亿元C.2012年与2013年每一年与前一年比,其增长额相同D.从2011年至2014年,每一年与前一年比,2014年的增长率最大【考点】VD:折线统计图.【分析】根据题意结合折线统计图确定正确的选项即可.【解答】解:A、2010年至2014年间工业生产总值逐年增加,正确,不符合题意;B、2014年的工业生产总值比前一年增加了40亿元,正确,不符合题意;C、2012年与2013年每一年与前一年比,其增长额相同,正确,不符合题意;D、从2011年至2014年,每一年与前一年比,2012年的增长率最大,故D 符合题意;故选:D.【点评】本题考查了折线统计图,计算增长率是解题关键.5.(3分)(2017•呼和浩特)关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为()A.2 B.0 C.1 D.2或0【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的两根为x1,x2,根据根与系数的关系得a2﹣2a=0,解得a=0或a=2,然后利用判别式的意义确定a的取值.【解答】解:设方程的两根为x1,x2,根据题意得x1+x2=0,所以a2﹣2a=0,解得a=0或a=2,当a=2时,方程化为x2+1=0,△=﹣4<0,故a=2舍去,所以a的值为0.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba ,x1x2=ca.也考查了根的判别式.6.(3分)(2017•呼和浩特)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F7:一次函数图象与系数的关系.【分析】根据y随x的增大而减小得:k<0,又kb>0,则b<0.再根据k,b 的符号判断直线所经过的象限.【解答】解:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.【点评】能够根据k,b的符号正确判断直线所经过的象限.7.(3分)(2017•呼和浩特)如图,CD为⊙O的直径,弦AB⊥CD,垂足为M,若AB=12,OM:MD=5:8,则⊙O的周长为()A.26πB.13πC.96π5D.39√10π5【考点】M2:垂径定理.【分析】连接OA,根据垂径定理得到AM=12AB=6,设OM=5x,DM=8x,得到OA=OD=13x,根据勾股定理得到OA=12×13,于是得到结论.【解答】解:连接OA,∵CD为⊙O的直径,弦AB⊥CD,∴AM=12AB=6,∵OM:MD=5:8,∴设OM=5x,DM=8x,∴OA=OD=13x,∴AM=12x=6,∴x=12,∴OA=12×13,∴⊙O的周长=2OA•π=13π,故选B.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.8.(3分)(2017•呼和浩特)下列运算正确的是()A.(a2+2b2)﹣2(﹣a2+b2)=3a2+b2B.a 2+1a−1﹣a﹣1=2aa−1C.(﹣a)3m÷a m=(﹣1)m a2m D.6x2﹣5x﹣1=(2x﹣1)(3x﹣1)【考点】6B:分式的加减法;4I:整式的混合运算;57:因式分解﹣十字相乘法等.【分析】直接利用分式的加减运算法则以及结合整式除法运算法则和因式分解法分别分析得出答案.【解答】解:A、(a2+2b2)﹣2(﹣a2+b2)=3a2,故此选项错误;B、a 2+1a−1﹣a﹣1=a2+1−(a+1)(a−1)a−1=2a−1,故此选项错误;C、(﹣a)3m÷a m=(﹣1)m a2m,正确;D、6x2﹣5x﹣1,无法在实数范围内分解因式,故此选项错误;故选:C.【点评】此题主要考查了分式的加减运算以及整式除法运算和因式分解等知识,正确掌握运算法则是解题关键.9.(3分)(2017•呼和浩特)如图,四边形ABCD是边长为1的正方形,E,F 为BD所在直线上的两点,若AE=√5,∠EAF=135°,则下列结论正确的是()A.DE=1 B.tan∠AFO=13C.AF=√102D.四边形AFCE的面积为94【考点】LE:正方形的性质;T7:解直角三角形.【分析】根据正方形的性质求出AO的长,用勾股定理求出EO的长,然后由∠MAN=135°及∠BAD=90°可以得到相似三角形,根据相似三角形的性质求出BF 的长,再一一计算即可判断.【解答】解:∵四边形ABCD是正方形,∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,∴OD=OB=OA=√22,∠ABF=∠ADE=135°,在Rt△AEO中,EO=√AE2−OA2=√5−12=32√2,∴DE=√2,故A错误.∵∠EAF=135°,∠BAD=90°, ∴∠BAF+∠DAE=45°,∵∠ADO=∠DAE+∠AED=45°, ∴∠BAF=∠AED , ∴△ABF ∽△EDA ,∴BF DA =AB DE , ∴BF 1=√2, ∴BF=√22,在Rt △AOF 中,AF=√OA 2+OF 2=√(√22)+(√2)=√102,故C 正确, tan ∠AFO=OAOF =√22√2=12,故B 错误,∴S 四边形AECF =12•AC •EF=12×√2×52√2=52,故D 错误,故选C .【点评】本题考查的是相似三角形的判定与性质,根据正方形的性质,运用勾股定理求出相应线段的长,再根据∠EAF=135°和∠BAD=90°,得到相似三角形,用相似三角形的性质求出BF 的长,然后根据对称性求出四边形的面积.10.(3分)(2017•呼和浩特)函数y=x 2+1|x|的大致图象是( )A .B .C .D .【考点】E6:函数的图象.【分析】本题可用排除法解答,根据y 始终大于0,可排除D ,再根据x ≠0可排除A ,根据函数y=x 2+1|x|和y=32x 有交点即可排除C ,即可解题.【解答】解:①∵|x|为分母,∴|x|≠0,即|x|>0,∴A 错误;②∵x 2+1>0,|x|>0,∴y=x 2+1|x|>0,∴D 错误;③∵当直线经过(0,0)和(1,32)时,直线解析式为y=32x ,当y=32x=x 2+1|x|时,x=√2,∴y=32x 与y=x 2+1|x|有交点,∴C 错误;④∵当直线经过(0,0)和(1,1)时,直线解析式为y=x ,当y=x=x 2+1|x|时,x 无解,∴y=x 与y=x 2+1|x|没有有交点,∴B 正确;故选B .【点评】此题主要考查了函数图象的性质,考查了平方根和绝对值大于等于0的性质,本题中求得直线与函数的交点是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)有意义,则x的取值范围是x<12.11.(3分)(2017•呼和浩特)若式子√1−2x【考点】72:二次根式有意义的条件;62:分式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数,再结合分式有意义的条件:分母≠0,可得不等式1﹣2x>0,再解不等式即可.【解答】解:由题意得:1﹣2x>0,,解得:x<12故答案为:x<12,【点评】此题主要考查了二次根式有意义的条件;用到的知识点为:二次根式有意义,被开方数为非负数.12.(3分)(2017•呼和浩特)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为114 °.【考点】JA:平行线的性质;IJ:角平分线的定义.【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114.【点评】本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.13.(3分)(2017•呼和浩特)如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为(225+25√2)π.【考点】U3:由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由圆柱体和圆锥体构成,从而根据三视图的特点得知高和底面直径,代入表面积公式计算即可.【解答】解:由三视图可知,几何体是由圆柱体和圆锥体构成,故该几何体的表面积为:20×10π+π×82+12×10π×√52+52=(225+25√2)π故答案是:(225+25√2)π.【点评】本题考查了由三视图判断几何体,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.14.(3分)(2017•呼和浩特)下面三个命题:①若{x=ay=b 是方程组{|x|=22x−y=3的解,则a+b=1或a+b=0;②函数y=﹣2x2+4x+1通过配方可化为y=﹣2(x﹣1)2+3;③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为②③.【考点】O1:命题与定理.【分析】①根据方程组的解的定义,把{x=ay=b 代入{|x|=22x−y=3,即可判断;②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断;③根据三角形内角和定理以及锐角三角形的定义即可判断.【解答】解:①把{x=ay=b 代入{|x|=22x−y=3,得{|a|=22a−b=3,如果a=2,那么b=1,a+b=3;如果a=﹣2,那么b=﹣7,a+b=﹣9.故命题①是假命题;②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题.所以正确命题的序号为②③. 故答案为②③.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义以及性质定理等知识.15.(3分)(2017•呼和浩特)如图,在▱ABCD 中,∠B=30°,AB=AC ,O 是两条对角线的交点,过点O 作AC 的垂线分别交边AD ,BC 于点E ,F ,点M 是边AB 的一个三等分点,则△AOE 与△BMF 的面积比为 3:4 .【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】作MH ⊥BC 于H ,设AB=AC=m ,则BM=13m ,MH=12BM=16m ,根据平行四边形的性质求得OA=OC=12AC=12m ,解直角三角形求得FC=√33m ,然后根据ASA 证得△AOE ≌△COF ,证得AE=FC=√33m ,进一步求得OE=12AE=√36m ,从而求得S △AOE =√324m 2,作AN ⊥BC 于N ,根据等腰三角形的性质以及解直角三角形求得BC=√3m ,进而求得BF=BC ﹣FC=√3m ﹣√33m=2√33m ,分别求得△AOE 与△BMF 的面积,即可求得结论. 【解答】解:设AB=AC=m ,则BM=13m ,∵O 是两条对角线的交点,∴OA=OC=12AC=12m ,∵∠B=30°,AB=AC ,∴∠ACB=∠B=30°, ∵EF ⊥AC ,∴cos ∠ACB=OCFC ,即cos30°=12m FC ,∴FC=√33m ,∵AE ∥FC , ∴∠EAC=∠FCA ,又∵∠AOE=∠COF ,AO=CO , ∴△AOE ≌△COF ,∴AE=FC=√33m , ∴OE=12AE=√36m ,∴S △AOE =12OA •OE=12×12m ×√36m=√324m 2,作AN ⊥BC 于N , ∵AB=AC ,∴BN=CN=12BC ,∵BN=√32AB=√32m ,∴BC=√3m ,∴BF=BC ﹣FC=√3m ﹣√33m=2√33m , 作MH ⊥BC 于H , ∵∠B=30°,∴MH=12BM=16m ,∴S △BMF =12BF •MH=12×2√33m ×16m=√318m 2,∴S △AOE S △BMF =√324m 2√318m =34. 故答案为3:4.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及解直角三角形等,熟练掌握性质定理是解题的关键.16.(3分)(2017•呼和浩特)我国魏晋时期数学家刘徽首创“割圆术”计算圆周率.随着时代发展,现在人们依据频率估计概率这一原理,常用随机模拟的方法对圆周率π进行估计,用计算机随机产生m 个有序数对(x ,y )(x ,y 是实数,且0≤x ≤1,0≤y ≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其内部.如果统计出这些点中到原点的距离小于或等于1的点有n 个,则据此可估计π的值为4n m.(用含m ,n 的式子表示)【考点】X8:利用频率估计概率;D2:规律型:点的坐标.【分析】根据落在扇形内的点的个数与正方形内点的个数之比等于两者的面积之比列出14⋅π1=nm,可得答案. 【解答】解:根据题意,点的分布如图所示:则有14⋅π1=nm, ∴π=4n m ,故答案为:4nm.【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.三、解答题(本大题共9小题,共72分)17.(10分)(2017•呼和浩特)(1)计算:|2﹣√5|﹣√2(√18﹣√102)+32; (2)先化简,再求值:x−2x 2+2x ÷x 2−4x+4x 2−4+12x ,其中x=﹣65.【考点】6D :分式的化简求值;2C :实数的运算.【专题】11 :计算题;513:分式.【分析】(1)原式利用绝对值的代数意义化简,去括号合并即可得到结果; (2)原式第一项利用除法法则变形,约分后利用同分母分式的加法法则计算得到最简结果,把x 的值代入计算即可求出值.【解答】解:(1)原式=√5﹣2﹣12+√5+32=2√5﹣1;(2)原式=x−2x(x+2)•(x+2)(x−2)(x−2)+12x =1x +12x =32x ,当x=﹣65时,原式=﹣54.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2017•呼和浩特)如图,等腰三角形ABC 中,BD ,CE 分别是两腰上的中线.(1)求证:BD=CE ;(2)设BD 与CE 相交于点O ,点M ,N 分别为线段BO 和CO 的中点,当△ABC 的重心到顶点A 的距离与底边长相等时,判断四边形DEMN 的形状,无需说明理由.【考点】KD :全等三角形的判定与性质;K5:三角形的重心;KH :等腰三角形的性质.【分析】(1)根据已知条件得到AD=AE ,根据全等三角形的性质即可得到结论;(2)根据三角形中位线的性质得到ED ∥BC ,ED=12BC ,MN ∥BC ,MN=12BC ,等量代换得到ED ∥MN ,ED=MN ,推出四边形EDNM 是平行四边形,由(1)知BD=CE ,求得DM=EN ,得到四边形EDNM 是矩形,根据全等三角形的性质得到OB=OC ,由三角形的重心的性质得到O 到BC 的距离=12BC ,根据直角三角形的判定得到BD ⊥CE ,于是得到结论. 【解答】(1)解:由题意得,AB=AC , ∵BD ,CE 分别是两腰上的中线,∴AD=12AC ,AE=12AB ,∴AD=AE ,在△ABD 和△ACE 中 {AB =AC∠A =∠A AD =AE,∴△ABD ≌△ACE (ASA ).∴BD=CE ;(2)四边形DEMN 是正方形, 证明:∵E 、D 分别是AB 、AC 的中点,∴AE=12AB ,AD=12AC ,ED 是△ABC 的中位线,∴ED ∥BC ,ED=12BC ,∵点M 、N 分别为线段BO 和CO 中点,∴OM=BM ,ON=CN ,MN 是△OBC 的中位线,∴MN ∥BC ,MN=12BC ,∴ED ∥MN ,ED=MN ,∴四边形EDNM 是平行四边形, 由(1)知BD=CE ,又∵OE=ON ,OD=OM ,OM=BM ,ON=CN , ∴DM=EN ,∴四边形EDNM 是矩形, 在△BDC 与△CEB 中,{BE =CDCE =BD BC =CB ,∴△BDC ≌△CEB , ∴∠BCE=∠CBD , ∴OB=OC ,∵△ABC 的重心到顶点A 的距离与底边长相等,∴O 到BC 的距离=12BC ,∴BD ⊥CE ,∴四边形DEMN 是正方形.【点评】本题考查了等腰三角形的性质、三角形中位线定理、矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握等腰三角形的性质和三角形中位线定理,并能进行推理论证是解决问题的关键.19.(10分)(2017•呼和浩特)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到如图频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V8:频数(率)分布直方图;W2:加权平均数;W4:中位数.【分析】(1)根据30天的最高气温总和除以总天数,即可得到这30天最高气温的平均数,再根据第15和16个数据的位置,判断中位数;(2)根据30天中,最高气温超过(1)中平均数的天数,即可估计这个季度中最高气温超过(1)中平均数的天数;(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,据此可得这两天都在气温最高一组内的概率. 【解答】解:(1)这30天最高气温的平均数为:14×8+18×6+22×10+26×2+30×430=20.4℃;∵中位数落在第三组内, ∴中位数为22℃;(2)∵30天中,最高气温超过(1)中平均数的天数为16天,∴该地这个季度中最高气温超过(1)中平均数的天数为1630×90=48(天);(3)从6天中任选2天,共有15种等可能的结果,其中两天都在气温最高一组内的情况有6种,故这两天都在气温最高一组内的概率为615=25.【点评】本题主要考查了频数分布直方图,平均数以及中位数的计算,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.解题时注意:如果一组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.20.(7分)(2017•呼和浩特)某专卖店有A,B两种商品,已知在打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元,A,B两种商品打相同折以后,某人买500件A商品和450件B商品一共比不打折少花1960元,计算打了多少折?【考点】9A:二元一次方程组的应用.【分析】设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据“买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元”,即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再算出打折前购买500件A商品和450件B商品所需钱数,结合少花钱数即可求出折扣率.【解答】解:设打折前A商品的单价为x元/件、B商品的单价为y元/件,根据题意得:{60x+30y=1080,50x+10y=840,解得:{x=16y=4500×16+450×4=9800(元),9800−1960=0.8.9800答:打了八折.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.21.(6分)(2017•呼和浩特)已知关于x的不等式2m−mx2>12x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.【考点】C3:不等式的解集.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】(1)把m=1代入不等式,求出解集即可;(2)不等式去分母,移项合并整理后,根据有解确定出m的范围,进而求出解集即可.【解答】解:(1)当m=1时,不等式为2−x2>x2﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当x<﹣1时,不等式的解集为x>2.【点评】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.22.(7分)(2017•呼和浩特)如图,地面上小山的两侧有A,B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟40m 的速度直线飞行,10分钟后到达C 处,此时热气球上的人测得CB 与AB 成70°角,请你用测得的数据求A ,B 两地的距离AB 长.(结果用含非特殊角的三角函数和根式表示即可)【考点】T8:解直角三角形的应用.【分析】过点C 作CM ⊥AB 交AB 延长线于点M ,通过解直角△ACM 得到AM 的长度,通过解直角△BCM 得到BM 的长度,则AB=AM ﹣BM . 【解答】解:过点C 作CM ⊥AB 交AB 延长线于点M , 由题意得:AC=40×10=400(米). 在直角△ACM 中,∵∠A=30°,∴CM=12AC=200米,AM=√32AC=200√3米.在直角△BCM 中,∵tan20°=BMCM,∴BM=200tan20°,∴AB=AM ﹣BM=200√3﹣200tan20°=200(√3﹣tan20°), 因此A ,B 两地的距离AB 长为200(√3﹣tan20°)米.【点评】本题考查解直角三角形的应用、三角函数等知识,解题的关键是添加辅助线,构造直角三角形,记住三角函数的定义,以及特殊三角形的边角关系,属于中考常考题型.23.(7分)(2017•呼和浩特)已知反比例函数y=−k 2−1x(k 为常数).(1)若点P 1(1−√32,y 1)和点P 2(﹣12,y 2)是该反比例函数图象上的两点,试利用反比例函数的性质比较y 1和y 2的大小;(2)设点P (m ,n )(m >0)是其图象上的一点,过点P 作PM ⊥x 轴于点M .若tan ∠POM=2,PO=√5(O 为坐标原点),求k 的值,并直接写出不等式kx+k 2+1x>0的解集.【考点】G6:反比例函数图象上点的坐标特征;T7:解直角三角形.【分析】(1)先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再根据P 1、P 2两点的横坐标判断出两点所在的象限,故可得出结论.(2)根据题意求得﹣n=2m ,根据勾股定理求得m=1,n=﹣2,得到P (1,﹣2),即可得到﹣k 2﹣1=﹣2,即可求得k 的值,然后分两种情况借助反比例函数和正比例函数图象即可求得. 【解答】解:(1)∵﹣k 2﹣1<0,∴反比例函数y=−k 2−1x在每一个象限內y 随x 的增大而增大,∵﹣12<1−√32<0,∴y 1>y 2;(2)点P (m ,n )在反比例函数y=−k 2−1x的图象上,m >0,∴n <0,∴OM=m ,PM=﹣n , ∵tan ∠POM=2,∴PM OM =−nm=2,∴﹣n=2m,∵PO=√5,∴m2+(﹣n)2=5,∴m=1,n=﹣2,∴P(1,﹣2),∴﹣k2﹣1=﹣2,解得k=±1,①当k=﹣1时,则不等式kx+k 2+1x>0的解集为:x<﹣√2或0<x<√2;②当k=1时,则不等式kx+k 2+1x>0的解集为:x>0.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式;也考查了反比例函数和一次函数的交点.24.(9分)(2017•呼和浩特)如图,点A,B,C,D是直径为AB的⊙O上的四个点,C是劣弧BD̂的中点,AC与BD交于点E.(1)求证:DC2=CE•AC;(2)若AE=2,EC=1,求证:△AOD是正三角形;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,求△ACH 的面积.【考点】MR:圆的综合题.。

专题11 圆-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

专题11 圆-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*圆**1.(2014年,内蒙古包头市,3分)如图,在正方形ABCD 中,对角线BD 的长为.若将BD 绕点B 旋转后,点D 落在BC 延长线上的点D ′处,点D 经过的路径为,则图中阴影部分的面积是( )A .﹣1B . ﹣C . ﹣D . π﹣22. (2014年,内蒙古赤峰市,3分)如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,CD ⊥AB ,若∠DAB=65°,则∠BOC=【 】A. 25°B. 50°C.130°D.155°3.(2014年,内蒙古呼和浩特市,3分)已知⊙O 的面积为2π,则其内接正三角形的面积为【 】A .B .CD 4.(2015年,内蒙古巴彦淖尔,3分)如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积为( )A .1π-B .21π-C .112π-D .122π-5.(2015年,内蒙古包头市、乌兰察布市,3分)已知圆内接正三角形的边心距为1,则这个三角形的面积为( )A .B .C .D .6.(2016年,内蒙古古巴淖尔)如图,线段AB 是⊙O 的直径,弦CD ⊥AB ,∠CAB =40°,则∠ABD 与∠AOD 分别等于( )A .40°,80°B .50°,100°C .50°,80°D .40°,100°7.(2016年,内蒙古古巴淖尔)如图,⊙O 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 2π- B 32π C .23π- D 3π- 8.(2016年,内蒙古包头市,3分)120°的圆心角对的弧长是6π,则此弧所在圆的半径是( ) A .3 B .4 C .9 D .189. (2016年,内蒙古赤峰市,3分)如图,⊙O 的半径为1,分别以⊙O 的直径AB 上的两个四等分点O 1,O 2为圆心,为半径作圆,则图中阴影部分的面积为( )A .πB .πC .πD .2π10.(2016年,内蒙古通辽市)如图,AB 是⊙O 的直径,CD ⊥AB ,∠ABD =60°,CD =的面积为( )A.23B.πC.2πD.4π1.(2014年,内蒙古包头市,3分)如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为.2.(2014年,内蒙古呼和浩特市,3分)一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为▲ .3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是.4.(2015年,内蒙古呼和浩特市,3分)一个圆锥的侧面积为8π,母线长为4,则这个圆锥的全面积为__________.5.(2015年,内蒙古巴彦淖尔,3分)如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧BD 的2倍;⑤AE=BC,其中正确的序号是.6.(2015年,内蒙古包头市、乌兰察布市,3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,sinB=14,则线段AC的长为.7.(2015年,内蒙古赤峰市,3分)如图,AB是⊙O的直径,OB=3,BC是⊙O的弦,∠ABC的平分线交⊙O 于点D,连接OD,若∠BAC=20°,则AD的长等于.8.(2015年,内蒙古赤峰市,3分)如图,平行四边形ABCD中,AB=AC=4,AB⊥AC,O是对角线的交点,若⊙O过A、C两点,则图中阴影部分的面积之和为.9.(2015年,内蒙古通辽市,3分)如图,⊙O是△ABC的外接圆,连接OA,OB,∠OBA=48°,则∠C的度数为.10.(2016年,内蒙古包头市,3分)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB 的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.11.(2016年,内蒙古赤峰市,3分)如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是.12.(2016年,呼伦贝尔市、兴安盟,3分)小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.13.(2016年,内蒙古呼和浩特市,3分)在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为.1.(2014年,内蒙古包头市,10分)如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE ⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.2.(2014年,内蒙古呼和浩特市,8分)如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使BC = CD,连接AD与CM交于点E,若⊙O的半径为3,ED = 2,求∆ACE的外接圆的半径.3.(2015年,内蒙古呼伦贝尔市、兴安盟,8分)如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若PC=O的半径.4.(2015年,内蒙古呼和浩特市,9分)如图,⊙O是△ABC的外接圆,P是⊙O外的一点,AM是⊙O的直径,∠PAC=∠ABC(1) 求证:PA是⊙O的切线;⌒的中点,且∠DCF=∠P,求证:(2) 连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为BCBD FD CD==PD ED AD5.(2015年,内蒙古巴彦淖尔,10分)如图,AB是⊙O的直径,点C是AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线BD于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OC BH的长.6.(2015年,内蒙古包头市、乌兰察布市,10分)如图,AB是⊙O的直径,点D是AE上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;DE=DF•DB;(2)若BD平分∠ABE,求证:2(3)在(2)的条件下,延长ED,BA交于点P,若P A=AO,DE=2,求PD的长和⊙O的半径.7.(2015年,内蒙古赤峰市)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥P O 交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是的切线.(2)若PB=6,DB=8,求⊙O的半径.8.(2015年,内蒙古通辽市)如图,MN是⊙O的直径,QN是⊙O的切线,连接MQ交⊙O于点H,E为上一点,连接ME,NE,NE交MQ于点F,且2ME=EF•EN.(1)求证:QN=QF;(2)若点E到弦MH的距离为1,cos∠Q=35,求⊙O的半径.9.(2016年,内蒙古古巴淖尔)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:A C是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:C D=HF;(3)若CD=1,EH=3,求BF及AF长.10.(2016年,内蒙古包头市,10分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O 交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.11.(2016年,内蒙古赤峰市)如图,在平面直角坐标系中,O(0,0),A(0,﹣6),B(8,0)三点在⊙P上.(1)求圆的半径及圆心P的坐标;(2)M为劣弧的中点,求证:AM是∠OAB的平分线;(3)连接BM并延长交y轴于点N,求N,M点的坐标.12.(2016年,呼伦贝尔市、兴安盟,8分)如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O 相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)当OE=10时,求BC的长.。

专题16 二次函数解答题压轴题(35题)(原卷版)--2024年中考数学真题分类汇编

专题16 二次函数解答题压轴题(35题)(原卷版)--2024年中考数学真题分类汇编

专题16二次函数解答题压轴题(35题)一、解答题1.(2024·内蒙古赤峰·中考真题)如图,是某公园的一种水上娱乐项目.数学兴趣小组对该项目中的数学问题进行了深入研究.下面是该小组绘制的水滑道截面图,如图1,人从点A处沿水滑道下滑至点B处腾空飞出后落入水池.以地面所在的水平线为x轴,过腾空点B与x轴垂直的直线为y轴,O为坐标原点,建立平面直角坐标系.他们把水滑道和人腾空飞出后经过的路径都近似看作是抛物线的一部分.根据测量和调查得到的数据和信息,设计了以下三个问题,请你解决.(1)如图1,点B与地面的距离为2米,水滑道最低点C与地面的距离为78米,点C到点B的水平距离为3米,则水滑道ACB所在抛物线的解析式为______;(2)如图1,腾空点B与对面水池边缘的水平距离12OE 米,人腾空后的落点D与水池边缘的安全距离DE 不少于3米.若某人腾空后的路径形成的抛物线BD恰好与抛物线ACB关于点B成中心对称.①请直接写出此人腾空后的最大高度和抛物线BD的解析式;②此人腾空飞出后的落点D是否在安全范围内?请说明理由(水面与地面之间的高度差忽略不计);(3)为消除安全隐患,公园计划对水滑道进行加固.如图2,水滑道已经有两条加固钢架,一条是水滑道距地面4米的点M处竖直支撑的钢架MN,另一条是点M与点B之间连接支撑的钢架BM.现在需要在水滑道下方加固一条支撑钢架,为了美观,要求这条钢架与BM平行,且与水滑道有唯一公共点,一端固定在钢架MN上,另一端固定在地面上.请你计算出这条钢架的长度(结果保留根号).2.(2024·广东深圳·中考真题)为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x,y轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,求a 的值.3.(2024·四川广元·中考真题)在平面直角坐标系xOy 中,已知抛物线F :2y x bx c =-++经过点()3,1A --,与y 轴交于点()0,2B .(1)求抛物线的函数表达式;(2)在直线AB 上方抛物线上有一动点C ,连接OC 交AB 于点D ,求CD OD的最大值及此时点C 的坐标;(3)作抛物线F 关于直线1y =-上一点的对称图象F ',抛物线F 与F '只有一个公共点E (点E 在y 轴右侧),G 为直线AB 上一点,H 为抛物线F '对称轴上一点,若以B ,E ,G ,H 为顶点的四边形是平行四边形,求G 点坐标.4.(2024·天津·中考真题)已知抛物线()20y ax bx c a b c a =++>,,为常数,的顶点为P ,且20a b +=,对称轴与x 轴相交于点D ,点(),1M m 在抛物线上,1m O >,为坐标原点.(1)当11a c ==-,时,求该抛物线顶点P 的坐标;(2)当132OM OP ==时,求a 的值;(3)若N 是抛物线上的点,且点N 在第四象限,90MDN DM DN ∠=︒=,,点E 在线段MN 上,点F 在线段DN 上,2NE NF +,当DE MF +15a 的值.5.(2024·内蒙古包头·中考真题)如图,在平面直角坐标系中,抛物线22y x bx c =-++与x 轴相交于()1,0A ,B 两点(点A 在点B 左侧),顶点为()2,M d ,连接AM .(1)求该抛物线的函数表达式;(2)如图1,若C 是y 轴正半轴上一点,连接,AC CM .当点C 的坐标为10,2⎛⎫ ⎪⎝⎭时,求证:ACM BAM ∠=∠;(3)如图2,连接BM ,将ABM 沿x 轴折叠,折叠后点M 落在第四象限的点M '处,过点B 的直线与线段AM '相交于点D ,与y 轴负半轴相交于点E .当87BD DE =时,3ABD S △与2M BD S '△是否相等?请说明理由.6.(2024·吉林·中考真题)小明利用一次函数和二次函数知识,设计了一个计算程序,其程序框图如图(1)所示,输入x 的值为2-时,输出y 的值为1;输入x 的值为2时,输出y 的值为3;输入x 的值为3时,输出y 的值为6.(1)直接写出k ,a ,b 的值.(2)小明在平面直角坐标系中画出了关于x 的函数图像,如图(2).Ⅰ.当y 随x 的增大而增大时,求x 的取值范围.Ⅱ.若关于x 的方程230ax bx t ++-=(t 为实数),在04x <<时无解,求t 的取值范围.Ⅲ.若在函数图像上有点P ,Q (P 与Q 不重合).P 的横坐标为m ,Q 的横坐标为1m -+.小明对P ,Q 之间(含P ,Q 两点)的图像进行研究,当图像对应函数的最大值与最小值均不随m 的变化而变化,直接写出m 的取值范围.7.(2024·四川达州·中考真题)如图1,抛物线23y ax kx =+-与x 轴交于点()3,0A -和点()1,0B ,与y 轴交于点C .点D 是抛物线的顶点.(1)求抛物线的解析式;(2)如图2,连接AC ,DC ,直线AC 交抛物线的对称轴于点M ,若点P 是直线AC 上方抛物线上一点,且2PMC DMC S S =△△,求点P 的坐标;(3)若点N 是抛物线对称轴上位于点D 上方的一动点,是否存在以点N ,A ,C 为顶点的三角形是等腰三角形,若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由.8.(2024·四川泸州·中考真题)如图,在平面直角坐标系xOy 中,已知抛物线23y ax bx =++经过点()3,0A ,与y 轴交于点B ,且关于直线1x =对称.(1)求该抛物线的解析式;(2)当1x t -≤≤时,y 的取值范围是021y t ≤≤-,求t 的值;(3)点C 是抛物线上位于第一象限的一个动点,过点C 作x 轴的垂线交直线AB 于点D ,在y 轴上是否存在点E ,使得以B ,C ,D ,E 为顶点的四边形是菱形?若存在,求出该菱形的边长;若不存在,说明理由.9.(2024·四川南充·中考真题)已知抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B .(1)求抛物线的解析式;(2)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD 面积为1S ,PBE △面积为2S ,求12S S 的值;(3)如图2,点K 是抛物线对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线l x ∥轴,点Q 是直线l 上一动点.求QM QN +的最小值.10.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =-->与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB '' .将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.11.(2024·四川德阳·中考真题)如图,抛物线2y x x c =-+与x 轴交于点()1,0A -和点B ,与y 轴交于点C .(1)求抛物线的解析式;(2)当02x <≤时,求2y x x c =-+的函数值的取值范围;(3)将拋物线的顶点向下平移34个单位长度得到点M ,点P 为抛物线的对称轴上一动点,求55PA +的最小值.12.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.13.(2024·上海·中考真题)在平面直角坐标系中,已知平移抛物线213y x =后得到的新抛物线经过50,3A ⎛⎫- ⎪⎝⎭和(5,0)B .(1)求平移后新抛物线的表达式;(2)直线x m =(0m >)与新抛物线交于点P ,与原抛物线交于点Q .①如果PQ 小于3,求m 的取值范围;②记点P 在原抛物线上的对应点为P ',如果四边形P BPQ '有一组对边平行,求点P 的坐标.14.(2024·四川遂宁·中考真题)二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对称轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.15.(2024·四川凉山·中考真题)如图,抛物线2y x bx c =-++与直线2y x =+相交于()()20,3,A B m -,两点,与x 轴相交于另一点C .(1)求抛物线的解析式;(2)点P 是直线AB 上方抛物线上的一个动点(不与,A B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E ,当2PE ED =时,求P 点坐标;(3)抛物线上是否存在点M 使ABM 的面积等于ABC 面积的一半?若存在,请直接写出点M 的坐标;若不存在,请说明理由.16.(2024·江苏连云港·中考真题)在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,D a +分别作y轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.17.(2024·江苏苏州·中考真题)如图①,二次函数2y x bx c =++的图象1C 与开口向下....的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.18.(2024·内蒙古呼伦贝尔·中考真题)如图,在平面直角坐标系中,二次函数()20y ax bx c a =++≠的图像经过原点和点()4,0A .经过点A 的直线与该二次函数图象交于点()1,3B ,与y 轴交于点C .(1)求二次函数的解析式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,当点P 在直线AB 上方时,过点P 作PE x ⊥轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①m 为何值时线段PD 的长度最大,并求出最大值;②是否存在点P ,使得BPD △与AOC 相似.若存在,请求出点P 坐标;若不存在,请说明理由.19.(2024·山东威海·中考真题)已知抛物线()20y x bx c b =++<与x 轴交点的坐标分别为()1,0x ,()2,0x ,且12x x <.(1)若抛物线()2110y x bx c b =+++<与x 轴交点的坐标分别为()3,0x ,()4,0x ,且34x x <.试判断下列每组数据的大小(填写<、=或>):①12x x +________34x x +;②13x x -________24x x -;③23x x +________14x x +.(2)若11x =,223x <<,求b 的取值范围;(3)当01x ≤≤时,()20y x bx c b =++<最大值与最小值的差为916,求b 的值.20.(2024·河北·中考真题)如图,抛物线21:2C y ax x =-过点(4,0),顶点为Q .抛物线22211:()222C y x t t =--+-(其中t 为常数,且2t >),顶点为P .(1)直接写出a 的值和点Q 的坐标.(2)嘉嘉说:无论t 为何值,将1C 的顶点Q 向左平移2个单位长度后一定落在2C 上.淇淇说:无论t 为何值,2C 总经过一个定点.请选择其中一人的说法进行说理.(3)当4t =时,①求直线PQ 的解析式;②作直线l PQ ∥,当l 与2C 的交点到x 轴的距离恰为6时,求l 与x 轴交点的横坐标.(4)设1C 与2C 的交点A ,B 的横坐标分别为,A B x x ,且A B x x <.点M 在1C 上,横坐标为()2B m m x ≤≤.点N 在2C 上,横坐标为()A n x n t ≤≤.若点M 是到直线PQ 的距离最大的点,最大距离为d ,点N 到直线PQ 的距离恰好也为d ,直接用含t 和m 的式子表示n .21.(2024·四川宜宾·中考真题)如图,抛物线2y x bx c =++与x 轴交于点()1,0A -和点B ,与y 轴交于点()0,4C -,其顶点为D .(1)求抛物线的表达式及顶点D 的坐标;(2)在y 轴上是否存在一点M ,使得BDM 的周长最小.若存在,求出点M 的坐标;若不存在,请说明理由;(3)若点E 在以点()3,0P 为圆心,1为半径的P 上,连接AE ,以AE 为边在AE 的下方作等边三角形AEF ,连接BF .求BF 的取值范围.22.(2024·湖南·中考真题)已知二次函数2y x c =-+的图像经过点()2,5A -,点()11,P x y ,()22,Q x y 是此二次函数的图像上的两个动点.(1)求此二次函数的表达式;(2)如图1,此二次函数的图像与x 轴的正半轴交于点B ,点P 在直线AB 的上方,过点P 作PC x ⊥轴于点C ,交AB 于点D ,连接AC DQ PQ ,,.若213x x =+,求证DCPDQ A S S △△的值为定值;(3)如图2,点P 在第二象限,212x x =-,若点M 在直线PQ 上,且横坐标为11x -,过点M 作MN x ⊥轴于点N ,求线段MN 长度的最大值.23.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =-+(a 为常数且0a >)与y 轴交于点A.(1)若1a =,求抛物线的顶点坐标;(2)若线段OA (含端点)上的“完美点”个数大于3个且小于6个,求a 的取值范围;(3)若抛物线与直线y x =交于M 、N 两点,线段MN 与抛物线围成的区域(含边界)内恰有4个“完美点”,求a 的取值范围.24.(2024·四川眉山·中考真题)如图,抛物线2y x bx c =-++与x 轴交于点()3,0A -和点B ,与y 轴交于点()0,3C ,点D 在抛物线上.(1)求该抛物线的解析式;(2)当点D 在第二象限内,且ACD 的面积为3时,求点D 的坐标;(3)在直线BC 上是否存在点P ,使OPD △是以PD 为斜边的等腰直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.(2024·黑龙江绥化·中考真题)综合与探究如图,在平面直角坐标系中,已知抛物线2y x bx c =-++与直线相交于A ,B 两点,其中点()3,4A ,()0,1B .(1)求该抛物线的函数解析式.(2)过点B 作BC x ∥轴交抛物线于点C ,连接AC ,在抛物线上是否存在点P 使1tan tan 6BCP ACB ∠=∠.若存在,请求出满足条件的所有点P 的坐标;若不存在,请说明理由.(提示:依题意补全图形,并解答)(3)将该抛物线向左平移2个单位长度得到()2111110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点D ,点E 为原抛物线对称轴上的一点,F 是平面直角坐标系内的一点,当以点B 、D 、E 、F 为顶点的四边形是菱形时,请直接写出点F 的坐标.26.(2024·黑龙江齐齐哈尔·中考真题)综合与探究:如图,在平面直角坐标系中,已知直线122y x =-与x 轴交于点A ,与y 轴交于点C ,过A ,C 两点的抛物线()20y ax bx c a =++≠与x 轴的另一个交点为点(10)B -,,点P 是抛物线位于第四象限图象上的动点,过点P 分别作x 轴和y 轴的平行线,分别交直线AC 于点E ,点F .(1)求抛物线的解析式;(2)点D 是x 轴上的任意一点,若ACD 是以AC 为腰的等腰三角形,请直接写出点D 的坐标;(3)当EF AC =时,求点P 的坐标;(4)在(3)的条件下,若点N 是y 轴上的一个动点,过点N 作抛物线对称轴的垂线,垂足为M ,连接NA MP ,,则NA MP +的最小值为______.27.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求52PD PE +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC 552PD PE +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.28.(2024·重庆·中考真题)如图,在平面直角坐标系中,抛物线()240y ax bx a =++≠经过点()1,6-,与y轴交于点C ,与x 轴交于A B ,两点(A 在B 的左侧),连接tan 4AC BC CBA ∠=,,.(1)求抛物线的表达式;(2)点P 是射线CA 上方抛物线上的一动点,过点P 作PE x ⊥轴,垂足为E ,交AC 于点D .点M 是线段DE 上一动点,MN y ⊥轴,垂足为N ,点F 为线段BC 的中点,连接AM NF ,.当线段PD 长度取得最大值时,求AM MN NF ++的最小值;(3)将该抛物线沿射线CA 方向平移,使得新抛物线经过(2)中线段PD 长度取得最大值时的点D ,且与直线AC 相交于另一点K .点Q 为新抛物线上的一个动点,当QDK ACB ∠∠=时,直接写出所有符合条件的点Q 的坐标.29.(2024·广东广州·中考真题)已知抛物线232:621(0)G y ax ax a a a =--++>过点()1,2A x 和点()2,2B x ,直线2:l y m x n =+过点(3,1)C ,交线段AB 于点D ,记CDA 的周长为1C ,CDB △的周长为2C ,且122C C =+.(1)求抛物线G 的对称轴;(2)求m 的值;(3)直线l 绕点C 以每秒3︒的速度顺时针旋转t 秒后(045)t ≤<得到直线l ',当l AB '∥时,直线l '交抛物线G 于E ,F 两点.①求t 的值;②设AEF △的面积为S ,若对于任意的0a >,均有S k ≥成立,求k 的最大值及此时抛物线G 的解析式.30.(2024·四川广安·中考真题)如图,抛物线223y x bx c =-++与x 轴交于A ,B 两点,与y 轴交于点C ,点A 坐标为(1,0)-,点B 坐标为(3,0).(1)求此抛物线的函数解析式.(2)点P 是直线BC 上方抛物线上一个动点,过点P 作x 轴的垂线交直线BC 于点D ,过点P 作y 轴的垂线,垂足为点E ,请探究2PD PE +是否有最大值?若有最大值,求出最大值及此时P 点的坐标;若没有最大值,请说明理由.(3)点M 为该抛物线上的点,当45∠=︒MCB 时,请直接写出所有满足条件的点M 的坐标.31.(2024·山东烟台·中考真题)如图,抛物线21y ax bx c =++与x 轴交于A ,B 两点,与y 轴交于点C ,OC OA =,4AB =,对称轴为直线1:1l x =-,将抛物线1y 绕点O 旋转180︒后得到新抛物线2y ,抛物线2y 与y 轴交于点D ,顶点为E ,对称轴为直线2l .(1)分别求抛物线1y 和2y 的表达式;(2)如图1,点F 的坐标为()6,0-,动点M 在直线1l 上,过点M 作MN x ∥轴与直线2l 交于点N ,连接FM ,DN .求FM MN DN ++的最小值;(3)如图2,点H 的坐标为()0,2-,动点P 在抛物线2y 上,试探究是否存在点P ,使2PEH DHE ∠=∠?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.32.(2024·甘肃·中考真题)如图1,抛物线()2y a x h k =-+交x 轴于O ,()4,0A 两点,顶点为(2,B .点C 为OB 的中点.(1)求抛物线2()y a x h k =-+的表达式;(2)过点C 作CH OA ⊥,垂足为H ,交抛物线于点E .求线段CE 的长.(3)点D 为线段OA 上一动点(O 点除外),在OC 右侧作平行四边形OCFD .①如图2,当点F 落在抛物线上时,求点F 的坐标;②如图3,连接BD ,BF ,求BD BF +的最小值.33.(2024·湖北·中考真题)如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.34.(2024·湖北武汉·中考真题)抛物线215222y x x =+-交x 轴于A ,B 两点(A 在B 的右边),交y 轴于点C .(1)直接写出点A ,B ,C 的坐标;(2)如图(1),连接AC ,BC ,过第三象限的抛物线上的点P 作直线PQ AC ∥,交y 轴于点Q .若BC 平分线段PQ ,求点P 的坐标;(3)如图(2),点D 与原点O 关于点C 对称,过原点的直线EF 交抛物线于E ,F 两点(点E 在x 轴下方),线段DE 交抛物线于另一点G ,连接FG .若90EGF ∠=︒,求直线DE 的解析式.35.(2024·吉林长春·中考真题)在平面直角坐标系中,点O 是坐标原点,抛物线22y x x c =++(c 是常数)经过点()2,2--.点A 、B 是该抛物线上不重合的两点,横坐标分别为m 、m -,点C 的横坐标为5m -,点C 的纵坐标与点A 的纵坐标相同,连结AB 、AC .(1)求该抛物线对应的函数表达式;(2)求证:当m 取不为零的任意实数时,tan CAB ∠的值始终为2;(3)作AC 的垂直平分线交直线AB 于点D ,以AD 为边、AC 为对角线作菱形ADCE ,连结DE .①当DE 与此抛物线的对称轴重合时,求菱形ADCE 的面积;②当此抛物线在菱形ADCE 内部的点的纵坐标y 随x 的增大而增大时,直接写出m 的取值范围.。

专题03 方程(组)与不等式(组)-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

专题03 方程(组)与不等式(组)-备战2017年中考2014-2016年内蒙古中考数学试卷分类汇编(原卷版)

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*方程(组)与不等式(组)**1.(2014年,内蒙古包头市,3分)关于x 的一元二次方程x 2+2(m ﹣1)x+m 2=0的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是( ) A .m ≤B . m≤且m ≠0C . m <1D . m <1且m ≠02.(2014年,内蒙古呼和浩特市,3分)已知函数1y x=的图象在第一象限的一支曲线上有一点A (a ,c ),点B (b ,c +1)在该函数图象的另外一支上,则关于一元二次方程ax 2+bx +c = 0的两根x 1,x 2判断正确的是【 】 A .x 1 + x 2 >1,x 1·x 2 > 0 B .x 1 + x 2 < 0,x 1·x 2 > 0C .0 < x 1+ x 2 < 1,x 1·x 2 > 0D .x 1 + x 2与x 1·x 2 的符号都不确定3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( ) A .221x = B .1(1)212x x -= C .21212x = D .(1)21x x -= 4.(2015年,内蒙古巴彦淖尔,3分)不等式组23411(3)23x x x -<+⎧⎪⎨+≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .5.(2015年,内蒙古包头市、乌兰察布市,3分)不等式组3(2)25123x x x x +>+⎧⎪-⎨≤⎪⎩的最小整数解是( )A .﹣1B .0C .1D .26. (2015年,内蒙古赤峰市,3分)解不等式组2311(3)2x x x +≤-⎧⎪⎨⎪⎩>的解集在数轴上表示正确的是( )7.(2016年,内蒙古包头市,3分)不等式﹣≤1的解集是( )A .x ≤4B .x ≥4C .x ≤﹣1D .x ≥﹣18.(2016年,内蒙古包头市,3分)若关于x 的方程x 2+(m+1)x+12=0的一个实数根的倒数恰是它本身,则m 的值是( )A .﹣B .C .﹣或D .19.(2016年,内蒙古呼和浩特市,3分)已知a ≥2,m 2﹣2am+2=0,n 2﹣2an+2=0,则(m ﹣1)2+(n ﹣1)2的最小值是( ) A .6 B .3 C .﹣3 D .1.(2014年,内蒙古包头市,3分)方程﹣=0的解为x= .2.(2014年,内蒙古呼和浩特市,3分)已知m ,n 是方程x 2+2x-5=0的两个实数根,则m 2-mn+3m+n=______ 3.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)不等式4321x x -<+的解集为 .4. (2015年,内蒙古呼和浩特市,3分)若实数a 、b 满足(4a+4b) (4a+4b -2)-8=0,则a+b=__________. 5.(2015年,内蒙古巴彦淖尔,3分)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的方程为 .6.(2015年,内蒙古包头市、乌兰察布市,3分)已知关于x的一元二次方程210x -=有两个不相等的实数根,则k 的取值范围是 .7. (2015年,内蒙古赤峰市,3分)若关于x 的一元二次方程x 2-(a+5)x+8a=0的两个实数根分别为2和b ,则ab= .8. (2015年,内蒙古通辽市,3分)某市为处理污水,需要铺设一条长为5000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m ,结果提前15天完成任务.设原计划每天铺设管道x m ,则可得方程 .9.(2016年,呼伦贝尔市、兴安盟,3分)不等式组211841x x x x -+⎧⎨+-⎩的解集是 . 10.(2016年,内蒙古通辽市)已知a 、b 满足方程组23319a b a b -=⎧⎨+=⎩= .11.(2016年,内蒙古通辽市)有背面完全相同的9张卡片,正面分别写有1﹣9这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a ,则数字a 使不等式组132x x a+⎧≥⎪⎨⎪<⎩有解的概率为 .1. (2014年,内蒙古赤峰市,6分)求不等式组()4x 13x x 4x 523⎧++>⎪⎨--≤⎪⎩ ① ② 的正整数解.2.(2014年,内蒙古呼和浩特市,10分)计算 (1)(5分)计算:)112cos 3022-︒+-+-(2)(5分)解方程:22310x 2x x 2x-=+- 3.(2014年,内蒙古呼和浩特市,5分)已知实数a 是不等于3的常数,解不等式组()2x 3311x 2a x <022-+≥-⎧⎪⎨-⎪⎩ ,并依据a 的取值情况写出其解集.4.(2014年,内蒙古呼和浩特市,7分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格. 我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和 410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?5.(2015年,内蒙古呼伦贝尔市、兴安盟,6分)解方程:214111x x x ++=--. 6. (2015年,内蒙古呼和浩特市,6分)若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x+y >-32,求出满足条件的m 的所有正整数值. 7.(2015年,内蒙古巴彦淖尔,6分)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?8. (2015年,内蒙古赤峰市)解二元一次方程组:27320x y x y -=⎧⎨+=⎩.9. (2015年,内蒙古通辽市)(1)计算:011(()2p --+--tan30°(2)解方程:23193xx x +=--; (3)解不等式组32424y y y y ì?ïí-+ïî,并把解集在数轴上表示出来.10.(2016年,呼伦贝尔市、兴安盟,6分)解方程:233011x x x +-=--.11.(2016年,内蒙古呼和浩特市)已知关于x 的不等式组523(1)138222x x x x a +-⎧⎪⎨-+⎪⎩>≤有四个整数解,求实数a 的取值范围.。

2017年中考数学试题分类汇编专题16:压轴题(内蒙古含解析)

2017年中考数学试题分类汇编专题16:压轴题(内蒙古含解析)

2017年中考数学试题分类汇编专题16:压轴题(内蒙古含解析) 1.(201 5年,内蒙古呼伦贝尔市、兴安盟,3分)如图:把△ABC沿 AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB= ,则此三角形移动的距离AA′是() A. B. C.1 D.【答案】A.考点:1.相似三角形的判定与性质;2.平移的性质. 2. (2015年,内蒙古呼和浩特市,3分)函数的图象为( ) A. B. C. D. 【答案】D 考点:函数的图象. 3.(2015年,内蒙古巴彦淖尔,3分)如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE�ED�DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若 P 、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是() A.AE=12cm B.sin∠EBC= C.当0<t≤8时, D.当t=9s时,△PBQ是等腰三角形【答案】D.【解析】1.(2014年,内蒙古包头市,3分)如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若 = ,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)【答案】①③④ 则AE=DH, 2.(2015年,内蒙古包头市、乌兰察布市,3分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,取EF的中点G,连接CG,BG,BD,DG,下列结论:①BE=CD;②∠ DGF=135°;③∠ABG+∠ADG=180°;④若,则.其中正确的结论是.(填写所有正确结论的序号) 3.(2016年,内蒙古包头市,3分)如图,已知△ABC是等边三角形,点D、E 分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF,CF,连接BE并延长交CF于点G.下列结论:①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,则GF=2EG.其中正确的结论是.(填写所有正确结论的序号)【答案】①②③④. 【解析】考点:三角形综合题.1.(2014年,内蒙古包头市,12分)已知抛物线y=ax2+x+c(a≠0)经过A(�1,0),B(2,0)两点,与y轴相交于点C,该抛物线的顶点为点M,对称轴与BC相交于点N,与x轴交于点D.(1)求该抛物线的解析式及点M的坐标;(2)连接ON,AC,证明:∠NOB=∠ACB;(3)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC 的距离为时,求点E的坐标;(4)在满足(3)的条件下,连接EN,并延长EN交y轴于点F,E、F两点关于直线BC对称吗?请说明理由.(4)对称;理由见解析∴AB=3,BC=2 ,OB=2,BN= ,(4)如图2,延长EF交y轴于Q,∵m=1,∴直线EF为y=x+1, 2. (2014年,内蒙古赤峰市,14分)如图,抛物线与x轴交于点两点,与y 轴交于点 . (1)求该抛物线的解析式及顶点M的坐标;(2)求△BCM 面积与△ABC面积的比;(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,随着P点的运动,在抛物线上是否存在这样的点Q,使以A、P、Q、C为顶点的四边形为平行四边形?若存在请求出Q点的坐标;若不存在,请说明理由. 【答案】(1),;(2)1:2;(3)或或 . 【解析】∴可设抛物线解析式为. ∴ . (3)存在.分两种情况:考点:1.二次函数综合题;2.单动点和平行四边形存在性问题;3. 待定系数法的应用;4.曲线上点的坐标与方程的关系;5.二次函数的性质;6.三角形的面积;7.全等三角形的总协定和性质;8.转换思想、分类思想和方程思想的应用. 4.(2014年,内蒙古呼和浩特市,12分)如图,已知直线l的解析式为,抛物线y = ax2+bx+2经过点A(m,0),B(2,0),D 三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点 P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E, 延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P 与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.【答案】(1),(�C4,0),作图见解析;(2),其中�C4 < x < 0,12,(�C2,2);(3)证明见解析. 【解析】试题分析:(1)根据点在曲线上点的坐标满足方程的关系,由y = ax2+bx+2经过B(2,0),D ,将两点坐标分别代入得关于a,b的二元一次方程组,解之即可得抛物线的解析式为;将A(m,0)代入所∴抛物线的解析式为. ∵A(m,0)在抛物线上,∴ ,解得. ∴A (�C4,0). 作抛物线的大致图象如下:(2)∵由题设知直线l 的解析式为,∴ . 又∵AB=6,∴ . ∴将四边形PAFB的面积S表示为点P的横坐标x的函数为,其中�C4 < x < 0. ∵ ,∴S最大= 12,此时点P的坐标为(�C2,2). 5.(2015年,内蒙古呼伦贝尔市、兴安盟,13分)直线与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线 EF折叠后,与点A对应的点记作点C,与点B 对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.【答案】(1)作图见试题解析;(2);(3),当S=4时,S最大值为6.考点:1.一次函数综合题;2.分段函数;3.分类讨论;4.二次函数的最值;5.最值问题;6.综合题;7.压轴题. 6. (2015年,内蒙古呼和浩特市,12分)已知:抛物线y= +(2m-1)x+ -1经过坐标原点,且当x<0时,y随x的增大而减小. (1)求抛物线的解析式,并写出y<0时,对应x的取值范围; (2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C. ①当BC=1时,直接写出矩形ABCD的周长; ②设动点A的坐标为 (a,b),将矩形ABCD 的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由. 【答案】y= -3x,0<x<3;6;,( ,- )或( ,- ) 考点:二次函数的综合应用. 6.(2015年,内蒙古巴彦淖尔,12分)如图所示,抛物线与x轴交于A,B两点,与y轴交于C点,且A(�2,0)、B(4,0),其顶点为D,连接BD,点P是线段BD上的一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)设P点的坐标为(x,y),△PBE的面积为S,求S与x之间的函数关系式,写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取值最大值时,过点P作x轴的垂线,垂足为F,连接EF,△PEF沿直线EF折叠,点P的对应点为点P′,请直接写出P′点的坐标,并判断点P′是否在该抛物线上. 7.(2015年,内蒙古包头市、乌兰察布市,10分)如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:=DF•DB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径. 8.(2015年,内蒙古包头市、乌兰察布市,12分)已知抛物线经过A(�1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为,和,用等式表示,、之间的数量关系,并说明理由;(3)点M 是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M 的坐标和此时刻直线MN的解析式;若不存在,请说明理由. 9. (2015年,内蒙古赤峰市)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF 时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA 的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?∴DF=DE;(2)DF=DE.理由如下:考点:几何变换综合题. 10. (2015年,内蒙古赤峰市)已知二次函数y= ax2+bx�3a经过点A(�1 ,0)、C(0,3),与x 轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△P DC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由. 11. (2015年,内蒙古通辽市)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x 轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2= ]. 12.(2016年,内蒙古古巴淖尔)如图所示,抛物线经过原点O与点A(6,0)两点,过点A作AC⊥x轴,交直线y=2x�2于点C,且直线y=2x�2与x轴交于点D.(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x�2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值.【答案】(1),C(6,10),D(1,0);(2)A′(�2,4),A′在抛物线上;(3)l= ,(�2<x≤6),l的最大值为.【解析】试题解析:(1)把点O(0,0),A(6,0)代入,得:,解得:,∴抛物线解析式为.当x=6时,y=2×6�2=10,当y=0时,2x�2=0,解得x=1,∴点C坐标(6, 10),点D的坐标(1,0);(2)过点A′作AF⊥x 轴于点F,∵点D(1,0),A(6,0),可得AD=5,在Rt△ACD中,CD= = ,∵点A与点A′关于直线y=2x�2对称,∴∠AED=90°,∴S△ADC= × •AE=×5×10,解得AE= ,∴AA′=2AE= ,DE= = ,∵∠AED=∠AFA′=90°,∠DAE=∠A′AF,∴△ADE∽△AA′F,∴ ,解得AF=4,A′F=8,∴OF=8�6=2,∴点A′坐标为(�2,4),当x=�2时,y= ,∴A′在抛物线上.考点:二次函数综合题;二次函数的最值;最值问题;动点型;压轴题. 13.(2016年,内蒙古包头市,12分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx�2(a≠0)与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,�1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x�h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t >0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】(1)y=�(x�2)2+ ;(2).(3)�;(4)在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).试题解析:(1)∵抛物线y=ax2+bx�2(a≠0)与x轴交于A(1,0)、B(3,0)两点,∴ ∴ ,∴抛物线解析式为y=� x2+ x�2=�(x�2)2+ ;(2)如图1,过点A作AH∥y轴交BC于H,BE于G,由(1)有,C(0,�2),∵B (0,3),∴直线BC解析式为y= x�2,∵H(1,y)在直线BC上,∴y=�,∴H(1,�),∵B(3,0),E(0,�1),∴直线BE 解析式为y=�x�1,∴G(1,�),∴GH= ,(3)如图2,由(1)有y=� x2+ x�2,∵D为抛物线的顶点,∴D(2,),∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴设M(2,m),(m>),∴OM2=m2+4,BM2=m2+1,AB2=9,∵∠OMB=90°,∴OM2+BM2=AB2,∴m2+4+m2+1=9,∴m= 或m=�(舍),∴M(0,),∴MD= �,学科网∵一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,∴t= �;联立①②得,或(舍),∴P(,),即:在x轴上方的抛物线上,存在点P,使得∠PBF被BA平分,P(,).考点:二次函数综合题. 14. (2016年,内蒙古赤峰市)在平面直角坐标系中,已知点A (�2,0),B(2,0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.【答案】(1)、y=x+2;y= -4;(2)、P(0, - );(3)、( , ) 【解析】试题分析:(1) 、利用抛物线和x轴的两个交点坐标,设出抛物线的解析式y=a(x�x1)(x�x2),代入即可得出抛物线的解析式,再设出直线AC的解析式,利用待定系数法即可得出答案;(2)、先求得抛物线的顶点D的坐标,再设点P坐标(0,Py),根据A,B,D三点在⊙P上,得PB=PD,列出关于Py的方程,求解即可得出P点的坐标;(3)、假设抛物线上存在这样的点Q使直线AQ与⊙P相切,设 Q点的坐标为(m,m2�4),根据平面内两点间的距离公式,即可得出关于m的方程,求出m的值,即可得出点Q的坐标.学科&网 (2)、设P点的坐标为( 0,Py),由(1)知D点的坐标为(0,�4);∵A,B,D三点在⊙P上;∴PB=PD;∴22+Py2=(�4�Py)2,解得:Py=�;∴P点的坐标为(0,�);(3)、在抛物线上存在这样的点Q使直线AQ与⊙P相切.理由如下:设Q点的坐标为(m,m2�4);根据平面内两点间的距离公式得:AQ2=(m+2)2+(m2�4)2,PQ2=m2+(m2�4+ )2;∵AP= ,∴AP2= ;∵直线AQ是⊙P的切线,∴AP⊥AQ;∴PQ2=AP2+AQ2,即:m2+(m2�4+ )2= +[(m+2)2+(m2�4)2] 解得:m1= ,m2=�2(与A 点重合,舍去)∴Q点的坐标为(,).考点:二次函数综合题15.(2016年,呼伦贝尔市、兴安盟,10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【答案】(1)血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y= (4≤x≤10);(2)血液中药物浓度不低于4微克/毫升的持续时间6小时.【解析】(2)当y=4,则4=2x,解得:x=2,当y=4,则4= ,解得:x=8,∵8�2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.学科网考点:反比例函数的应用;一次函数的应用. 16.(2016年,呼伦贝尔市、兴安盟,13分)如图,抛物线y=�x2+2x+3与x轴相交的于A,B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.( 1)直接写出A,B,C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点(P不与C,B两点重合),过点P作PF∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形.②设△BCF的面积为S,求S与m的函数关系式;当m为何值时,S有最大值.【答案】(1)A(�1,0),B (3,0),C(0,3),抛物线对称轴为直线x=1;(2)①PF=�m2+3m,当m=2时,四边形PEDF为平行四边形;②S=� m2+ m(0<m<3),当m= 时,S取得最大值.【解析】试题解析:(1)对于抛物线y=�x2+2x+3,令x=0,得到y=3;令y=0,得到�x2+2x+3=0,即(x�3)(x+1)=0,解得:x=�1或x=3,则A(�1,0),B(3, 0),C(0,3),抛物线对称轴为直线x=1;(2)①设直线BC的函数解析式为y=kx+b,把B( 3,0),C(0,3)分别代入得:,解得:k=�1,b=3,∴直线BC的解析式为y=�x+3,②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF= PF•BM+ PF•OM= PF(BM+OM)= PF•OB,∴S= ×3(�m2+3m)=�m2+ m(0<m<3),则当m= 时,S取得最大值.学科@网考点:二次函数综合题. 17.(2016年,内蒙古通辽市)已知抛物线经过A(�1,0),B(4,0),C(0,�2)三点.(1)请直接写出抛物线的解析式.(2)连接BC,将直线 BC平移,使其经过点A,且与抛物线交于点D,求点D的坐标.(3)在(2)中的线段AD上有一动点E(不与点A、点D重合),过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,△AFD的面积最大?求出此时点E的坐标和△AFD的最大面积.【答案】(1);(2)D (5,2);(3)EF=3,E(1,1),△AFD的最大面积为9.【解析】试题解析:(1)∵抛物线经过A(�1,0),B(4,0),∴设抛物线解析式为y=a(x+1)(x�4),∵C(0,�2)在抛物线上,∴�2=a ×1×(�4),∴a= ,∴抛物线的解析式为y= (x+1)(x�4),即;(2)设直线BC解析式为y=kx�2,∵B(4,0),∴4k�2=0,∴k= ,∴直线BC解析式为,∵直线BC平移,使其经过点A(�1,0),且与抛物线交于点D,∴直线AD解析式为,联立,解得:(舍)或,∴D(5,2);考点:二次函数综合题;最值问题;动点型;压轴题. 18.(2016年,内蒙古呼和浩特市)已知二次函数y=ax2�2ax+c(a<0)的最大值为4,且抛物线过点(,�),点P(t,0)是x 轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC�PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2�2a|x|+c的图象只有一个公共点,求t的取值.【答案】(1)y=�x2+2x+3,(1,4);(2)(�3,0);;(3)≤t<3或t= 或t≤�3 【解析】试题分析:(1 )先利用对称轴公式x=�计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式;(2)根据三角形的三边关系:可知P、C、D三点共线时|PC�PD|取得最大值,求出直线CD与x轴的交点坐标,就是此时点P的坐标;(3)先把函数中的绝对值化去,可知,此函数是两个二次函数的一部分,分三种情况进行计算:①当线段PQ过点(0,3),即点Q与点C重合时,两图象有一个公共点,当线段PQ过点(3,0),即点P与点(3,0)重合时,两函数有两个公共点,写出t的取值;②线段PQ与当函数y=a|x|2�2a|x |+c(x≥0)时有一个公共点时,求t的值;③当线段PQ过点(�3,0),即点P与点(�3,0)重合时,线段PQ与当函数y=a|x|2�2a|x|+c(x<0)时也有一个公共点,则当t≤�3时,都满足条件;综合以上结论,得出t的取值.(2)∵C、D两点的坐标为(0,3)、(1,4);由三角形两边之差小于第三边可知: |PC�PD|≤|CD|,∴P、C、D三点共线时|PC�PD|取得最大值,此时最大值为 |CD|= ,由于CD所在的直线解析式为y=x+3,将P(t,0)代入得t=�3,∴此时对应的点P为(�3,0);(3)y=a|x|2�2a|x|+c的解析式可化为:设线段PQ所在的直线解析式为y=kx+b,将P(t,0),Q(0,2t)代入得:线段PQ所在的直线解析式:y=�2x+2t,∴①当线段PQ过点(0,3),即点Q与点C重合时,线段PQ与函数有一个公共点,此时t= ,当线段PQ过点(3,0),即点P与点(3,0)重合时,t=3,此时线段PQ与有两个公共点,所以当≤t<3时,线段PQ与有一个公共点,③当线段PQ过点(�3,0),即点P与点(�3,0)重合时,线段PQ只与 y=�x2�2x+3(x<0)有一个公共点,此时t=�3,所以当t≤�3时,线段PQ与也有一个公共点,综上所述,t的取值是≤t<3或t= 或t≤�3.考点:二次函数综合题 19. (2017年内蒙古通辽市第26题)在平面直角坐标系中,抛物线过点,,与轴交于点 . (1)求抛物线的函数表达式;(2)若点在抛物线的对称轴上,求的周长的最小值;(3)在抛物线的对称轴上是否存在点,使是直角三角形?若存在,直接写出点的坐标,若不存在,请说明理由. 【答案】(1)y=� x2+ x+2(2)△ACD的周长的最小值是2 +2 (3)存在,点P的坐标为(1,1)或(1,�3)试题解析:(1)把点A(�2,0),B(2,2)代入抛物线y=ax2+bx+2中,,解得:,∴抛物线函数表达式为:y=�x2+ x+2;答:△ACD的周长的最小值是2 +2 ,(3)存在,分两种情况:① 当∠ACP=90°时,△ACP是直角三角形,如图2,② 当∠CAP=90°时,△ACP是直角三角形,如图3,设P(1,y),则△PEA∽△AOC,∴ ,∴ ,∴PE=3,∴P(1,�3);综上所述,△ACP是直角三角形时,点P的坐标为(1,1)或(1,�3).考点:二次函数综合题 20.(2017年内蒙古包头市第25题)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.【答案】(1)DD′=3,A′F= 4�;(2);(3).试题解析:(1)①如图①中,∵矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=3∠A′D′C=∠ADC=90°,∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=3.②如图①中,连接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF= ∠DCD′=30°,在Rt△CD′F 中,∵tan∠D′CF= ,∴D′F= ,∴A′F=A′D′�D′F=4�.考点:相似形综合题;旋转的性质;压轴题. 21.(2017年内蒙古包头市第26题)如图,在平面直角坐标系中,已知抛物线与x轴交于A(�1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=�x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点 M关于y轴的对称点为点M',点H的坐标为(1,0).若四边形OM'NH的面积为.求点H到OM'的距离d的值.【答案】(1);(2)①n=�2;②△AGF与△CGD全等;(3).(3)根据轴对称的性质得出OH=1=M'N,进而判定四边形OM'NH是平行四边形,再根据四边形OM'NH的面积,求得OP的长,再根据点M的坐标得到PM'的长,Rt△OPM'中,运用勾股定理可得OM'的值,最后根据OM'×d= ,即可得到d的值.试题解析:(1)∵抛物线与x轴交于A(�1,0),B(2,0)两点,∴ ,解得:,∴该抛物线的解析式;(2)①如图,过点E作EE'⊥x轴于E',则EE'∥OC,∴ ,∵BE=4EC,∴BE'=4OE',设点E的坐标为(x,y),则OE'=x,BE'=4x,∵B(2,0),∴OB=2,即x+4x=2,∴x= ,∵抛物线与y轴交于点C,∴C(0,�3),设直线BC的解析式为y=kx+b',∵B(2,0),C(0,�3),∴ ,解得:,∴直线BC的解析式为,当x= 时,y=�,∴E(,�),把E的坐标代入直线y=�x+n,可得� +n=�,解得n=�2;②△AGF与△CGD全等.理由如下:∵直线EF的解析式为y=�x�2,∴当y=0时,x=�2,∴F(�2,0),OF=2,∵A(�1,0),∴OA=1,∴AF=2�1=1,由,解得:或,∵点D在第四象限,∴点D的坐标为(1,�3),∵点C的坐标为(0,�3),∴CD∥x轴,CD=1,∴∠AFG=∠CDG,∠FAG=∠DCG,∴△AGF≌△CGD;考点:二次函数综合题;探究型;压轴题. 22. (2017年内蒙古呼和浩特市第25题)在平面直角坐标系中,抛物线与轴交于点,其顶点记为,自变量和对应的函数值相等.若点在直线:上,点在抛物线上.(1)求该抛物线的解析式;(2)设对称轴右侧轴上方的图象上任一点为,在轴上有一点,试比较锐角与的大小(不必证明),并写出相应的点横坐标的取值范围;(3)直线与抛物线另一点记为,为线段上一动点(点不与重合).设点坐标为,过作轴于点,将以点,,,为顶点的四边形的面积表示为的函数,标出自变量的取值范围,并求出可能取得的最大值.【答案】(1)抛物线的解析式为y=4x2�16x+8;(2)当x= 时,∠PCO=∠ACO,当2+ <x<时,∠PCO<∠ACO,当<x<4时,∠PCO>∠ACO;(3)祥见解析. (3)解方程组得到D(�1,28得到Q(t,�12t+16)(�1≤t <2),①当�1≤t<0时,②当0<t<时,③当<t<2时,求得二次函数的解析式即可得到结论.(2)由题意得:C(0,8),M(2,�8),如图,当∠PCO=∠ACO时,过P作PH⊥y轴于H,设CP的延长线交x轴于D,则△ACD是等腰三角形,∴OD=OA= ,∵P点的横坐标是x,∴P点的纵坐标为4x2�16x+8,∵PH∥OD,∴△CHP∽△COD,∴ ,∴x= ,过C作CE∥x轴交抛物线与E,则CE=4,设抛物线与x轴交于F,B,则B(2+ ,0),∴y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,∴当x= 时,∠PCO=∠ACO,当2+ <x<时,∠PCO<∠ACO,当<x<4时,∠PCO>∠ACO;(3)解方程组,解得:,∴D(�1,28),∵Q为线段BM上一动点(点Q不与M重合),∴Q(t,�12t+16)(�1≤t<2),①当�1≤t<0时,S= (�t)(�12t+16�8)+8(�t)=6t2�12t=6(t�1)2�6,∵�1≤t<0,∴当t=-1时,S最大=18;②当0<t<时,S= t•8+ t(�12t+16)=�6t2+12t=�6(t�1)2+6,∵0<t<,∴当t=1时,S最大=6;③当<t<2时,S= t•8+ (12t�16)=6t2�4t=6(t�)2�,∵ <t<2,∴此时S=16为最大值.考点:二次函数综合题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017版[中考3年]内蒙古2014-2016年中考数学试题分项解析专题*压轴题**1.(2015年,内蒙古呼伦贝尔市、兴安盟,3分)如图:把△ABC 沿AB 边平移到△A ′B ′C ′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC 面积的一半,若AB ,则此三角形移动的距离AA ′是( )A 1-B .C .1D .122. (2015年,内蒙古呼和浩特市,3分)函数xx x y 22+=的图象为( )A. B. C. D.3.(2015年,内蒙古巴彦淖尔,3分)如图1,E 为矩形ABCD 边AD 上的一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是2cm /s .若P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 的函数关系图象如图2,则下列结论错误的是( )A .AE =12cmB .sin ∠EBC C .当0<t ≤8时,2516y t =D .当t =9s 时,△PBQ 是等腰三角形1.(2014年,内蒙古包头市,3分)如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论:①∠AEF=∠BCE ;②AF+BC >CF ;③S △CEF =S △EAF +S △CBE ;④若=,则△CEF ≌△CDF .其中正确的结论是 .(填写所有正确结论的序号)2.(2015年,内蒙古包头市、乌兰察布市,3分)如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE =CD ;②∠DGF =135°;③∠ABG +∠ADG =180°; ④若23AB AD =,则ΔBDG ΔDGF 313S S =. 其中正确的结论是 .(填写所有正确结论的序号)3.(2016年,内蒙古包头市,3分)如图,已知△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,且CD=CE ,连接DE 并延长至点F ,使EF=AE ,连接AF ,CF ,连接BE 并延长交CF 于点G .下列结论: ①△ABE ≌△ACF ;②BC=DF ;③S △ABC =S △ACF +S △DCF ;④若BD=2DC ,则GF=2EG .其中正确的结论是 .(填写所有正确结论的序号)1.(2014年,内蒙古包头市,12分)已知抛物线y=ax 2+x+c (a ≠0)经过A (﹣1,0),B (2,0)两点,与y 轴相交于点C ,该抛物线的顶点为点M ,对称轴与BC 相交于点N ,与x 轴交于点D .(1)求该抛物线的解析式及点M 的坐标;(2)连接ON ,AC ,证明:∠NOB=∠ACB ;(3)点E 是该抛物线上一动点,且位于第一象限,当点E 到直线BC 的距离为时,求点E 的坐标;(4)在满足(3)的条件下,连接EN ,并延长EN 交y 轴于点F ,E 、F 两点关于直线BC 对称吗?请说明理由.2. (2014年,内蒙古赤峰市,14分)如图,抛物线()2y ax bx c a 0=++≠与x 轴交于点()()A 1,0,B 3,0- 两点,与y 轴交于点()C 0,3-.(1)求该抛物线的解析式及顶点M 的坐标;(2)求△BCM 面积与△ABC 面积的比;(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,随着P 点的运动,在抛物线上是否存在这样的点Q ,使以A 、P 、Q 、C 为顶点的四边形为平行四边形?若存在请求出Q 点的坐标;若不存在,请说明理由.4.(2014年,内蒙古呼和浩特市,12分)如图,已知直线l 的解析式为1y x 12=-,抛物线y = ax 2+bx +2经过点A (m ,0),B (2,0),D 51,4⎛⎫ ⎪⎝⎭三点. (1)求抛物线的解析式及A 点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点 P (x ,y )为抛物线在第二象限部分上的一个动点,过点P 作PE 垂直x 轴于点E, 延长PE 与直线l 交于点F ,请你将四边形PAFB 的面积S 表示为点P 的横坐标x 的函数, 并求出S 的最大值及S 最大时点P 的坐标;(3)将(2)中S 最大时的点P 与点B 相连,求证:直线l 上的任意一点关于x 轴的对称点一定在PB 所在直线上.5.(2015年,内蒙古呼伦贝尔市、兴安盟,13分)直线6y x =-与x 轴、y 轴分别交于A 、B 两点,点E 从B 点出发,以每秒1个单位长度的速度沿线段BO 向O 点移动(不考虑点E 与B 、O 两点重合的情况),过点E 作EF ∥AB ,交x 轴于点F ,将四边形ABEF 沿直线EF 折叠后,与点A 对应的点记作点C ,与点B 对应的点记作点D ,得到四边形CDEF ,设点E 的运动时间为t 秒.(1)画出当t =2时,四边形ABEF 沿直线EF 折叠后的四边形CDEF (不写画法);(2)在点E 运动过程中,CD 交x 轴于点G ,交y 轴于点H ,试探究t 为何值时,△CGF 的面积为258; (3)设四边形CDEF 落在第一象限内的图形面积为S ,求S 关于t 的函数解析式,并求出S 的最大值.6. (2015年,内蒙古呼和浩特市,12分)已知:抛物线y=2x +(2m -1)x+2m -1经过坐标原点,且当x <0时,y 随x 的增大而减小.(1)求抛物线的解析式,并写出y <0时,对应x 的取值范围;(2)设点A 是该抛物线上位于x 轴下方的一个动点,过点A 作x 轴的平行线交抛物线于另一点D ,再作AB ⊥x 轴于点B , DC ⊥x 轴于点C.①当BC=1时,直接写出矩形ABCD 的周长;②设动点A 的坐标为 (a ,b),将矩形ABCD 的周长L 表示为a 的函数并写出自变量的取值范围,判断周长是否存在最大值,如果存在,求出这个最大值,并求出此时点A 的坐标;如果不存在,请说明理由.6.(2015年,内蒙古巴彦淖尔,12分)如图所示,抛物线24y ax bx =++与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣2,0)、B (4,0),其顶点为D ,连接BD ,点P 是线段BD 上的一个动点(不与B 、D 重合),过点P 作y 轴的垂线,垂足为E ,连接BE .(1)求抛物线的解析式,并写出顶点D 的坐标;(2)设P 点的坐标为(x ,y ),△PBE 的面积为S ,求S 与x 之间的函数关系式,写出自变量x 的取值范围,并求出S 的最大值;(3)在(2)的条件下,当S 取值最大值时,过点P 作x 轴的垂线,垂足为F ,连接EF ,△PEF 沿直线EF 折叠,点P 的对应点为点P ′,请直接写出P ′点的坐标,并判断点P ′是否在该抛物线上.7.(2015年,内蒙古包头市、乌兰察布市,10分)如图,AB 是⊙O 的直径,点D 是AE 上一点,且∠BDE =∠CBE ,BD 与AE 交于点F .(1)求证:BC 是⊙O 的切线;(2)若BD 平分∠ABE ,求证:2DE =DF •DB ;(3)在(2)的条件下,延长ED ,BA 交于点P ,若P A =AO ,DE =2,求PD 的长和⊙O 的半径.8.(2015年,内蒙古包头市、乌兰察布市,12分)已知抛物线2y x bx c =++经过A (﹣1,0),B (3,0)两点,与y 轴相交于点C ,该抛物线的顶点为点D .(1)求该抛物线的解析式及点D 的坐标;(2)连接AC ,CD ,BD ,BC ,设△AOC ,△BOC ,△BCD 的面积分别为1S ,2S 和3S ,用等式表示1S ,2S 、3S 之间的数量关系,并说明理由;(3)点M 是线段AB 上一动点(不包括点A 和点B ),过点M 作MN ∥BC 交AC 于点N ,连接MC ,是否存在点M 使∠AMN =∠ACM ?若存在,求出点M 的坐标和此时刻直线MN 的解析式;若不存在,请说明理由.9.(2015年,内蒙古赤峰市)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?10.(2015年,内蒙古赤峰市)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.11.(2015年,内蒙古通辽市)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x 于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:=21)].12.(2016年,内蒙古古巴淖尔)如图所示,抛物线23 2y ax x c=-+经过原点O与点A(6,0)两点,过点A作AC⊥x轴,交直线y=2x﹣2于点C,且直线y=2x﹣2与x轴交于点D.(1)求抛物线的解析式,并求出点C和点D的坐标;(2)求点A关于直线y=2x﹣2的对称点A′的坐标,并判断点A′是否在抛物线上,并说明理由;(3)点P(x,y)是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点Q,设线段PQ的长为l,求l与x的函数关系式及l的最大值.13.(2016年,内蒙古包头市,12分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x 轴交于A(1,0)、B(3,0)两点,与y轴交于点C,其顶点为点D,点E的坐标为(0,﹣1),该抛物线与BE交于另一点F,连接BC.(1)求该抛物线的解析式,并用配方法把解析式化为y=a(x﹣h)2+k的形式;(2)若点H(1,y)在BC上,连接FH,求△FHB的面积;(3)一动点M从点D出发,以每秒1个单位的速度平沿行与y轴方向向上运动,连接OM,BM,设运动时间为t秒(t>0),在点M的运动过程中,当t为何值时,∠OMB=90°?(4)在x轴上方的抛物线上,是否存在点P,使得∠PBF被BA平分?若存在,请直接写出点P的坐标;若不存在,请说明理由.14.(2016年,内蒙古赤峰市)在平面直角坐标系中,已知点A(﹣2,0),B(2, 0),C(3,5).(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.15.(2016年,呼伦贝尔市、兴安盟,10分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?16.(2016年,呼伦贝尔市、兴安盟,13分)如图,抛物线y=﹣x 2+2x +3与x 轴相交的于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A ,B ,C 三点的坐标和抛物线的对称轴;(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点(P 不与C ,B 两点重合),过点P 作PF ∥DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形.②设△BCF 的面积为S ,求S 与m 的函数关系式;当m 为何值时,S 有最大值.17.(2016年,内蒙古通辽市)已知抛物线2y ax bx c =++经过A (﹣1,0),B (4,0),C (0,﹣2)三点.(1)请直接写出抛物线的解析式.(2)连接BC ,将直线BC 平移,使其经过点A ,且与抛物线交于点D ,求点D 的坐标.(3)在(2)中的线段AD 上有一动点E (不与点A 、点D 重合),过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,△AFD 的面积最大?求出此时点E 的坐标和△AFD 的最大面积.18.(2016年,内蒙古呼和浩特市)已知二次函数y=ax2﹣2ax+c(a<0)的最大值为4,且抛物线过点(72,﹣94),点P(t,0)是x轴上的动点,抛物线与y轴交点为C,顶点为D.(1)求该二次函数的解析式,及顶点D的坐标;(2)求|PC﹣PD|的最大值及对应的点P的坐标;(3)设Q(0,2t)是y轴上的动点,若线段PQ与函数y=a|x|2﹣2a|x|+c的图象只有一个公共点,求t的取值.。

相关文档
最新文档