同步数字体系的基本概念
第七章同步数字体系(SDH)

AUPTR还可用于频率调整.以便实现网络各支路同步工作。
这10个比特就是指针值。指针值是用二进制来表示的。亦即用 l0个比特的0、1码构成的二进制数值,来表示十进制的0~782 个编号。再深一步说,就是用上面所述的10比持来表示VC-4第 一个字节在o~782中的位置。
四、指针的频率调整作用
1、当VC帧速率<AUG帧速率时: 图7—14中的5个I比持反转,通知接收端表示要作正码速调整(加
(C-4)十(VC-4POH)=VC-4 (VC-4) 十(AU-4PTR)=AU-4 (AU-4)=(AUG) 最后形成 STM-1
(1)下图画出了两帧,(一帧的时间是125μs,故两帧是250μs (2)对照帧结构图7-2可知,图中左侧第四行的位置就是指针区。 (3)图右侧是两帧STM—1的净负荷区,为了表明净负荷区中某点的 位置,根据行、列来画线打出格子。从第四行向右、向下进行位置 编号。每三格编一个号。例如的000,111,222,--。
二、PDH的固有缺点
1、存在互为独立的三大数字系列,使国际间的互通存在 困难。
2、无统一的光接口,使各厂家的产品互不兼容。 3、 4、网管通信带宽严重不足,给建立集中式电信管理网带
5
三、SDH网的基本特点
优点: 1)SDH网络是由一系列SDH网元(NE)组成的,它是一个可在
光纤 或微波、卫星上进行同步信息传输、复用和交叉连接的网络。 2)具有全世界SDH)传输网中的信号是以同步传输模块(STM)
移动通信网络与业务一些基本概念

1995年问世的第一代模拟制式〔1G〕只能进行语音通话。
1996到 1997 年出现的第二代 GSM、CDMA等数字制式〔 2G〕便增加了接收数据的功能,如接收电子邮件或网页。
二代GSM、 CDMA等数字(2G),第三代〔3G〕一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统,未来的3G 必将与社区网web的结合是一种趋势。
站进行结合,WAP与3G 与2G 的主要区别是在传输声音和数据的速度上的提升,它能够在全球范围内更好地实现无线漫游,并处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、会议、电子商务等多种信息效劳,同时也要考虑与已有第二代系统的良好兼容性。
为了提供这种效劳,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps( 兆比特 / 每秒 ) 、384kbps( 千比特 / 每秒 ) 以及 144kbps 的传输速度〔此数值根据网络环境会发生变化) 。
二、标准1、 GSM是 Global System For Mobile Communications的缩写。
由欧洲电信标准组织ETSI 制订的一个数字移动通信标准。
GSM是全球移动通信系统(Global System for Mobile communications)的简称。
它的空中接口采用时分多址技术。
自90 年代中期投入商用以来,被全球超过100 个国家采用。
GSM标准的设备占据当前全球蜂窝移动通信设备市场80%以上。
GSM 是当前应用最为广泛的移动标准。
全球超过200 个国家和地区超过10 亿人正在使用GSM。
所有用户可以在签署了" 漫游协定" 移动运营商之间自由漫游。
GSM 较之它以前的标准最大的不同是它的信令和语音信道都是数字式的,因此 GSM被看作是第二代 (2G) 移动系统。
这说明数字通讯从很早就已经构建到系统中。
GSM是一个当前由3GPP开发的开放标准。
SDH基本原理

用率,实现灵活、可靠和高效的网络运行与维护
PDH 固有弱点:
•信号速率和帧结构没有统一的世界性标准 •没有标准的光接口规范,各厂家的专用光接口无
法在光路上直接互通。
•基群速率以上大都采用异步复接,容易造成滑码
损伤,设备复杂,缺乏灵活性。
•网络运行、管理和维护(OAM)主要靠人工的数
字信号交叉连接和停业务测试,在资源调度、网
网络同步的,因此不同VC是互相同步的,但在VC内部却允许装
载来自不同容器的异步净负荷。 虚容器可以分为低阶虚容器和高阶虚容器两类。 低阶虚容器:VC-11、VC-12、VC-2以及TU-3前的VC-3
高阶虚容器:VC-4和AU-3前的VC-3
•支路单元(TU):是一种提供低阶通道层和高阶通道层之间适配 功能的信息结构,TU-n由一个相应的低阶VC-n和一个相应的支路 单元指针组成,即: TU-n=VC-n+TU-n PTR
SDH同步数字体系
同步数字体系 SDH ,Synchronous Digital Hierarchy 将复接、线路传输及交换功能融为一体的,
并由统一网管系统操作的综合信息传送网络,可
实现诸如网络的有效管理、开业务时的性能监视、
动态网络维护、不同供应厂商设备之间互通(横
向兼容)等多项功能;它大大提高了网络资源利
其中,TU-n PTR指示VC-n净负荷帧起点相对于高阶VC帧起点间
的偏移量。
•支路单元组(TUG):由一个或多个在高阶VC净负荷中占据
固定的、确定位置的支路单元组成。
•管理单元(AU):提供高阶通道层和复用段层之间适配功能 的信息结构,可表示为AU-n(n=3,4),它是由一个相应的高
阶VC-n和一个相应的管理单元指针(AU-nPTR)组成,即:
同步数字体系的基本概念(ppt 144页)

人民邮电出 版社
图5.20 PDH的网络结构(一种应用)
人民邮电出
版第社 四节 SDH的基本概念
一、 PDH的弱点
现在的准同步数字体系(PDH)传 输体制已不能适应现代通信网的发展要 求,其弱点主要表现在如下几个方面。
(1) 只有地区性数字信号速率和帧 结构标准而不存在世界性标准。
人民邮电出 版社 (2)没有世界性的标准光接口 规范,导致各个厂家自行开发的 专用光接口大量出现。
(3) 准同步系统的复用结构, 除了几个低等级信号(如 2048kbit/s,1544kbit/s)采用 同步复用外,其它多数等级信号 采用异步复用,即靠塞入一些额 外的比特使各支路信号与复用设 备同步并复用成高速信号。
人民邮电出 版社 (4 ) 复接方式大多采用按位复接,虽 然节省了复接所需的缓冲存储器容量,但 不利于以字节为单位的现代信息交换。
人民邮电出 版社
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
人民邮电出 版社
图5.5 数字复接系统方框图
人民邮电出
版第社二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
人民邮电出 版社
图5.13 扣除插入脉冲后的信号序列
图5.14 锁相环方框图
人民邮电出 版社 (1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。
数字通信原理讲解ch1隋(4)

● 采用同步复用方式和复用映射结构,只需利用软件控制即可使高速信号一次 分接出支路信号。既不影响别的支路信号,又避免对整个高速信号都分解;
● OAM能力大大加强,使信道分配、路由选择最佳; ● 硬件得到简化,有标准光接口,允许同步厂家设备在光路上互通,兼容性强; ● 与PDH 网络兼容,可兼容PDH的各种速率,并可容纳各种新业务信号; ● 信号结构利于进行网络传输和交换,以字节为单位复用与信息单元相一致,
信号互连和管理简单灵活。
3、SDH 的不足
● 频带利用率不如 PDH 系统; ● 采用指针调整技术会使时钟产生较大抖动,造成传输损伤; ● 大规模使用软件控制,业务量会集中在少数几个高速链路和交叉节点上,若
关键部位出现问题可能导致网络重大故障,甚至造成全网瘫痪; ● SDH与PDH互连时由于指针调整产生相位跃变,以致信号产生的低频抖动和
漂移现象比纯粹的PDH或SDH信号更严重;
4.2 SDH 的速率与帧结构
一、网络节点接口
网络节点接口NNI 是网络节点之间的接口,也是传输设备与其他网络单元之 间的接口。理想的NNI能结合不同的传输设备和网络节点(不受限于传输媒 介和网络节点),可构成统一的传输、复用、交叉连接和交换接口。
TR : 支路 SM :同步复用设备
交叉连接和停业务检测; ● 复用结构缺乏灵活性,数字通道设备利用率很低。
二、SDH 的概念及特点
1、SDH 的概念
SDH网是由一些SDH的网络单元(NE)组成,在光纤上进行同步信 息传输、复用、分插和交换连接的网络。(但SDH网中不含交换设 备,它只是交换局之间的传输手段)
● SDH网有世界统一的网络节点接口,简化了信号互通以及信号的传输、复 用、交叉连接等过程;
SDH定义

SDH(Synchronous Digital Hierarchy)同步数字系列一、SDH的概念SDH(Synchronous Digital Hierarchy,同步数字体系)是一种将复接、线路传输及交换功能融为一体、并由统一网管系统操作的综合信息传送网络,是美国贝尔通信技术研究所提出来的同步光网络(SONET)。
国际电话电报咨询委员会(CCITT)(现ITU-T)于1988年接受了SONET 概念并重新命名为SDH,使其成为不仅适用于光纤也适用于微波和卫星传输的通用技术体制。
它可实现网络有效管理、实时业务监控、动态网络维护、不同厂商设备间的互通等多项功能,能大大提高网络资源利用率、降低管理及维护费用、实现灵活可靠和高效的网络运行与维护,因此是当今世界信息领域在传输技术方面的发展和应用的热点,受到人们的广泛重视。
二、SDH的产生背景SDH技术的诞生有其必然性,随着通信的发展,要求传送的信息不仅是话音,还有文字、数据、图像和视频等。
加之数字通信和计算机技术的发展,在70至80年代,陆续出现了T1(DS1)/E1载波系统(1.544/2.048Mbps)、X.25帧中继、ISDN(综合业务数字网) 和FDDI(光纤分布式数据接口)等多种网络技术。
随着信息社会的到来,人们希望现代信息传输网络能快速、经济、有效地提供各种电路和业务,而上述网络技术由于其业务的单调性,扩展的复杂性,带宽的局限性,仅在原有框架内修改或完善已无济于事。
SDH就是在这种背景下发展起来的。
在各种宽带光纤接入网技术中,采用了SDH技术的接入网系统是应用最普遍的。
SDH的诞生解决了由于入户媒质的带宽限制而跟不上骨干网和用户业务需求的发展,而产生了用户与核心网之间的接入"瓶颈"的问题,同时提高了传输网上大量带宽的利用率。
SDH技术自从90年代引入以来,至今已经是一种成熟、标准的技术,在骨干网中被广泛采用,且价格越来越低,在接入网中应用可以将SDH技术在核心网中的巨大带宽优势和技术优势带入接入网领域,充分利用SDH同步复用、标准化的光接口、强大的网管能力、灵活网络拓扑能力和高可靠性带来好处,在接入网的建设发展中长期受益。
传输维护手册

一.入门知识(常识、概念、术语、常见操作等)1.光纤通信优点:频带宽、通信容量大、损耗低、不受电磁干扰等;2.SDH含义:同步数字体系是一套可进行同步数字传输、复用和交叉连接的标准化数字信号的等级结构;其实质功能,即提供远距离的2M通道;(国内以2M为传送单位;通常传输系统所说的1条电路即1个2M 通路).3.由于复用段环保护倒换需启用APS协议,因此换时间较长一个复用段保护上的节点数最多为16个。
4.自愈网所谓自愈网就是无需人为干预,网络就能在极短的时间内(通常小于50ms)从失效故障中自动恢复所携带的业务,使用户感觉不到网络已出了故障;条件:信息具有2条以上的物理路径;SDH网中环形网保护就是实现自愈网的方法之一;5.光功率——光信号的强度(通常以dBm为单位);过载光功率——保证传输质量条件下设备允许接收的最强的功率;接收灵敏度——保证传输质量条件下设备允许接收的最弱的功率; 6.环回——在信号路径中某处将发送信号(光信号或电信号)直接馈送到源信号侧的接收端的操作;1移动通信网络是由长途光缆、本地光缆几及传输设备等组成,2传送速率(信息接口的数据流码速率);3.SDH环形拓扑结构中有通道保护环和复用段保护环两种保护模式。
4..传输设备(及系统)通常称做:SDH设备、光端机等;根据光线路传输速率(容量)的不同又称做:155、622、2.5G设备;155、622、2.5G含义:反映光线路上所传送的数字信号的速率(容量)传送容量(单位:Mb/s)155(155.520 Mb/s):可传送63个2M;622(622.080 Mb/s):可传送4×63个2M;2.5G(2488.320 Mb/s):可传送16×63个2M;5.传输网络(拓扑图)及其跟相关设备的连接关系(相关设备及信号流路径等:开关电源、保护地、BSC、BTS等);6.各连接环节的称谓描述和认识(结合图片、实物):DDF—数字配线架;ODF—光配线架;终端设备—最终业务设备;线路—指光线路(外部光缆部分);尾纤—设备光接口至ODF间相连的室内软光纤(常见为黄色、成对);2M线—传输设备至DDF、终端至DDF间相连的同轴电缆(成对);2M头—光连接器(法兰)—光衰耗器—熔纤盘—7.传输组网结构SDH网络的基本组网结构有:链形、星形、树形、环形和网孔形等五种类型;10.光功率、过载光功率、接收灵敏度的概念11.上连站、下挂(带)站、对端站、中心局(站)、末端站等12.环回(光信号、电信号)13.拔插、复位、重启、更换;二.SDH原理1.将2M信号装入SDH帧结构净负荷中,需要经过:映射、定位、复用三个步骤;2. VC-12净负荷复用为STM-1的过程:VC-12 TU-12*3 TUG2*7 TUG3*3 AU-4 STM-13.SDH的帧结构(分哪几部分,几行几列等)及复用方式。
同步数字体系SDH

同步数字体系SDH内容•(一)了解SDH的相关知识;•(二)学习安装SDH网管;•(三)熟悉SDH网管的基本操作;•(四)学习SDH基本配置方法。
SDH简介在数字传输系统中,有两种数字传输系列:•一种叫“准同步数字系列”(Plesiochronous Digital Hierarchy),简称PDH。
•另一种叫“同步数字系列”(Synchronous Digital Hierarchy),简称SDH。
PDH•在数字通信系统中,传送的信号都是数字化的脉冲序列。
这些数字信号流在数字交换设备之间传输时,其速率必须完全保持一致,才能保证信息传送的准确无误,这就叫做“同步”。
采用准同步数字系列(PDH)的系统,是在数字通信网的每个节点上都分别设置高精度的时钟,这些时钟的信号都具有统一的标准速率。
尽管每个时钟的精度都很高,但总还是有一些微小的差别。
为了保证通信的质量,要求这些时钟的差别不能超过规定的范围。
因此,这种同步方式严格来说不是真正的同步,所以叫做“准同步”。
•在以往的电信网中,多使用PDH设备。
这种系列对传统的点到点通信有较好的适应性。
而随着数字通信的迅速发展,点到点的直接传输越来越少,而大部分数字传输都要经过转接,因而PDH系列便不能适合现代电信业务开发的需要,以及现代化电信网管理的需要。
SDH就是适应这种新的需要而出现的传输体系。
•最早提出SDH概念的是美国贝尔通信研究所,称为光同步网络(SONET)。
它是高速、大容量光纤传输技术和高度灵活、又便于管理控制的智能网技术的有机结合。
最初的目的是在光路上实现标准化,便于不同厂家的产品能在光路上互通,从而提高网络的灵活性。
ITU-T建议的数字比特速率系列与数字复接等级PDH复接帧结构PDH复接帧结构•三次群复接帧结构•四次群复接帧结构•五次群复接帧结构PDH数字传输系统的局限性•复接方式异步复接体制,在码速调整后,逐比特同步交错复接•群路上/下方式现行异步复接光纤通信系统中,没有专用的上/下话路设备,如果在中继站实现上/下话路,必须采用两套低次群到高次群复接设备•极少的信号传输辅助比特SDH定义•SDH全称同步数字体系(Synchronous Digital Hierarchy)•SDH规范了数字信号的帧结构、复用方式、传输速率等级、接口码型等特性,提供了一个国际支持框架,在此基础上发展并建成了一种灵活、可靠、便于管理的世界电信传输网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人民邮电出 版社 (3) 扣除码速调整插入脉 冲所产生的抖动,即指扣除第 161位V脉冲所产生的抖动。
由于锁相环具有对相位噪声 的低通特性,经过锁相环后的剩 余抖动仅为低频抖动成分。
人民邮电出 版社
第三节PCM零次群和PCM高次群
一、 PCM零次群
PCM 通 信 最 基 本 的 传 送 单位是64kbit/s,即一路话音 的编码,因此它是零次的。
码速变换及恢复过程如图5.6所示。
人民邮电出 版社
图5.6 码速变换及恢复过程
人民邮电出
版社2.
二次群同步复接器和分接器的方框图 如图5.7所示。
在复接端,支路时钟和复接时钟来自 同一个总时钟源,各支路码速率为 2048kbit/s,且是严格相等的,经过缓冲 存储器进行码速变换,以便复接时本支路 码字与其他支路码字错开以及为插入附加 码留下空位,复接合成电路把变换后的各 支路码流合并在一起,并在所留空位插入 包括帧同步码在内的附加码。
异步复接二次群的帧周期为 100.38μs, 帧长为848bit。其中有4×205 =820bit(最少)为信息码(这里的信息 码指的是四个一次群码速变换之前的码 元,即不包括插入的码元),有28bit的 插入码(最多)。
人民邮电出 版社
图5.11 异步复接二次群帧结构
人民邮电出 版社
3. 异步复接系统的构成
码速调整技术可分为正码速调整、 正/负码速调整和正/零/负码速调整三种。
人民邮电出 版社
图5.9 正码速调整电路和码速恢复电路
人民邮电出 版社
图5.10 脉冲插入方式码速调整示意图
人民邮电出 版社
2. 异步复接二次群帧结构
ITU-T G.742推荐的正码速调整异 步复接二次群帧结构如图5.11(b)所示。
2.
数字复接是将几个低次群在时间的空 隙上迭加合成高次群。
人民邮电出 版社
图5.2 数字复接的原理示意图
人民邮电出
版社三、 数字复接的实现
数字复接的实现主要有两种方法: 按位复接和按字复接。
1.
按位复接是每次复接各低次群(也 称为支路)的一位码形成高次群。
2.
按字复接是每次复接各低次群(支
路)
。
实现正码速调整异步复接和 分接系统的方框图如图5.12所示。
图5.12二次群异步复接和分接系统的方框图
人民邮电出 版社
人民邮电出 版社
4. 复接抖动的产生与抑制
在采用正码速调整的异步复接系 统中,即使信道的信号没有抖动,复 接器本身也产生一种抖动,即“插入 抖动”的相位抖动。
人民邮电出 版社
图5.13 扣除插入脉冲后的信号序列
图5.7二次群同步复接、分接方框图
人民邮电出 版社
人民版邮社电出3.
图5.8 二次群同步复接的帧结构
人民邮电出
版社二、 异步复接
1.
码速调整是利用插入一些码元将各 一次群的速率由2048kbit/s左右统一调 整成2112kbit/s。接收端进行码速恢复, 通过去掉插入的码元,将各一次群的速 率由2112kbit/s还原成2048kbit/s左右。
图5.14 锁相环方框图
人民邮电出 版社 (1) 由于扣除帧同步码而产 生的抖动,有三位码被扣除,每 帧抖动一次,由于帧周期约为 100μs,故其抖动频率为10kHz。
(2) 由于扣除插入标志码而 产生的抖动。每帧有3个插入标志 码,再考虑到扣除帧码的影响, 相当于每帧有四次扣除抖动,故 其抖动频率为40kHz。
图5.3 按位复接与按字复接示意图
人民邮电出 版社
人民邮电出
版社四、 数字复接的同步
数字复接要解决两个问题:同步 和复接。
数字复接的同步指的是被复接的 几个低次群的数码率相同。
为此,在各低次群复接之前,必 须使各低次群数码率互相同步,同时 使其数码率符合高次群帧结构的要求。 数字复接的同步是系统与系统间的同 步,因而也称之为系统同步。
人民邮电出 版社
图5.4数码率不同的低次群复接
人民邮电出
版社五、 数字复接的方法及系统构成
1.
数字复接的方法实际也就是数字复接 同步的方法,有同步复接和异步复接两种。
同步复接是用一个高稳定的主时钟来 控制被复接的几个低次群,使这几个低次 群的数码率(简称码速)统一在主时钟的 频率上(这样就使几个低次群系统达到同 步的目的),可直接复接(复接前不必进 行码速调整,但要进行码速变换,详见第 二节)。
人民邮电出 版社
2. 数字复接系统的构成
数字复接器的功能是把4个支 路(低次群)合成一个高次群。
数字分接器的功能是把高次群 分解成原来的低次群,它是由定时、 同步、分接和恢复等单元组成。
人民邮电出 版社
图5.5 数字复接系统方框图
人民邮电出 版社
第二节 同步复接与异步复接
一、 同步复接
1. 码速变换与恢复
人民邮电出
版社二、 PCM子群
速率介于64kbit/s和2048kbit/s 之间的信号称为子群。子群速率主要 考虑到下列因素。
(1) 与某些传输介质相匹配。
(2) 与某些业务种类相匹配。
(3) 复接速率与其它等级相配 合并有一定的规则性。
PCM子群还可用于用户环路和小 容量的特殊通信需要。
(PDH)
国际上主要有两大系列的准同 步 数 字 体 系 , 都 经 ITU-T 推 荐 , 即 PCM24路系列和PCM30/32路系列。
人民邮电出 版社 这样的复接系列具有如下优点:
(1)易于构成通信网,便于分支与 插入,并具有较高的传输效率。复用倍 数适中,多在3~5倍之间。
(2)可视电话、电视信号以及频分制 群信号能与某个高次群相适应。
(3)与传输媒介,如对称电缆、同 轴电缆、微波、波导制
人民邮电出 版社
人民邮电出
版社 二、 PCM复用和数字复接
扩大数字通信容量,形成二次群以上 的高次群的方法通常有两种:PCM复用和 数字复接。
1. PCM
所谓PCM复用就是直接将多路信号编 码复用。
人民邮电出 版社
准同步数字体系(PDH)和同步 数字体系(SDH)
第一节 数字复接的基本概念 第二节 同步复接与异步复接 第三节 PCM零次群和PCM高次群 第四节 SDH的基本概念 第五节 SDH的速率与帧结构 第六节 同步复用与映射方法
人民邮电出 版社
第一节 数字复接的基本概念
一、 准同步数字体系