中性点不接地系统发生单相接地时判断与分析

中性点不接地系统发生单相接地时判断与分析
中性点不接地系统发生单相接地时判断与分析

中性点不接地系统单相接地时判断与处理

摘要:在中性点不接地系统中单相接地故障是最常见的,约占配电网故障的80%以上。本文主要对中性点不接地系统在发生单相接地时,出现的一些故障现象、表计和信号装置的动作情况加以分析,从而来判断出接地故障是站内接地还是站外接地,是真接地还是假接地,以便于运行人员依据这些信息作出正确的判断,并按照有关事故处理规程的规定,采取相应的措施,迅速地将故障排除。

关键词:小电流接地系统零序电压零序电流绝缘监察真假接地

1.前言:

我国电力系统中性点的运行方式主要有:中性点不接地,中性点经消弧线圈接地和中性点直接接地三种,前两种接地系统称为“小电流接地系统”。在小电流接地系统中单相接地故障是最常见的,约占配电网故障的80%以上。同样石化电网35KV系统单相接地故障发生率也是比较高的,从对渣油总降的统计来看,仅2000年一年发生的次数就达十次之多,而且都集中在8-10月份(见下表)。

单相接地时,由于故障电流小,使得故障选线较困难。常规变电所是靠绝缘监视装置发出信号,告知运行人员。然后由运行人员通过接在电压互感器二次相电压中表的量值来判断故障点。由于绝缘监视装置只能判断某一电压等级系统有无接地,而不能指出故障点所在的线路,所以为了找出故障点,必须依次短时断开各条线路开关,确认是非故障线路后再恢复供电。这样,严重影响了供电的可靠性。我们石化电网是按顺序来试拉的,重要的负荷后拉,不重要的负荷先拉,因此有时故障消除的时间就比较长,在这个过程中,可能会引发弧光接地过电压或短路等后果,影响整个装置的安全生产。2001年3月14日11时40分,渣油总降煤渣356进线电缆头因电缆层的绝缘老化,B相电缆头绝缘层被击穿触发单相接地,电弧引起电缆层燃烧,所幸当班值班员发现及时,处理得当,没有引起

重大的后果,而此电缆头在1998年12月8日已发生过接地故障,这总是一种隐患,所以石化电网35KV系统单相接地的问题必须得加以重视。因此当电力线路发生单相接地故障时,变电运行人员及时做出正确判断,并采取相应的措施,及时排除故障,是一个值得研究和重视的问题。

2.单相接地时中性点不接地系统的特点

中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。电路图与相量图见图1所示。

由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。为了研究问题简化起见,假设如图1所示的三相电压及线路参数都是对称的,而且把地之间的分布电容都用集中电容C来表示,相间电容对所讨论的问题无影响而予以略去。

系统正常运行时,三相电压U A、U B、U C是对称的,三相的对地电容电流i c0也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。

当系统出现单相接地故障时(假设C相接地)。见图2,则C相对地电压为0,而A相对地电压U’A=U A+(-U C)=U AC,而B相相对地电压U’B=U B+(-U C)=U BC。由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的倍)。

C相接地时,系统接地电流(电容电流)I C应为A、B两相对地电容电流之和。由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:I C=-(I CA+ I CB)。由图2b的相量图可知,I C在相位上超前U C90 o,而在量值

上由于I C=I CA又因I CA=U’A/X C=U A/X C=I C0,因此I C=3I C0,即一相接地的电容电流为正常运行时每相电容电流的三倍。

由于线路对地电容C很难确定,因此I C0和I C也不能根据电容C来精确计算。一般采用下列经验公式来计算中性点不接地系统的单相接地电容电流:I C =Ue(I k+35I L)/350

Ue(为线路额定电压KV)

I k(为同一电压的具有电的联系的架空线路总长度)

I L(为同一电压的具有电的联系的电缆线路总长度)

在不完全接地(即经过一些接触电阻接地)时,故障相对地的电压将大于0而小于相电压,而未接地相对地电压小于线电压,接地电容电流也比较小。

必须指出,当中性点不接地的系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论是相位还是量值均未发生变化,这从图2b的相量图中可以很明显的看出,因此三相用电设备仍照常运行。但是这种线路允许在一相接地的情况下长期运行,因为如果另一相又发生接地故障时就形成两相接地短路,这是很危险的,会产生很大的短路电流,可能损坏线路设备。所以在中性点不接地的系统中,应该装置专门的接地保护或绝缘监察系统,在发生单相接地时,给予报警信号,以提醒值班人员注意及时处理。按我国规程规定:中性点不接地电力系统发生单相接地故障时,允许暂时运行2小时。运行维修人员应争取在两小时以内查出接地故障,予以排除。

3.如何通过绝缘监察装置监视系统运行情况

系统接地监察装置回路图见图3。绝缘监察装置是根据发生单相接地时,各相电压发生明显变化这一特点来实现的。绝缘监察装置由测量和发信两部分组

成。系统正常运行时,电压互感器开口三角绕组两端没有电压或只有很小的不对称电压,它不足以启动电压继电器;V1、V2、V3电压表所指示的相电压也正常。当系统一相金属性接地时(如A相),则V1电压表指示为零,V2、V3电压表指示为线电压;电压互感器开口三角绕组两端出现100V电压,它启动电压继电器发出接地报警信号。当A相经高电阻或电弧接地时,则V1电压表的指示低于相电压,V2、V3电压表的指示高于相电压,即平常所说的接地相电压降低、非接地相电压升高;电压互感器开口三角绕组两端出现一个不高的电压,当这电压达到电压继电器启动值时,保护才动作发出接地报警信号。

4.假接地的几种现象

导致误发接地信号的情况一般有以下4种:

(1)电压互感器一次熔断件熔断或接触不良。发生此种情况时,"XX母线接地"、"TV回路断线"光字牌亮,故障相的电压降低,非故障相的电压不会升高。

(2)直流两点接地。当1XJJ(2XJJ)继电器静触点至1XJ(2XJ)继电器之间或

1XJ(2XJ)继电器静触点至2GP(3GP)光字牌之间发生接地时,再发生直流系统正极接地的情况(见图4),则"XX母线接地"、"直流接地"光字牌亮,但此时电压表计所指示的三相电压皆正常。

(3)继电器触点粘连。当1XJJ、2XJJ、1XJ和2XJ继电器触点抖动粘连时(见图4),"XX母线接地"光字牌亮,此时电压表计所指示的三相电压皆正常。

(4)铁磁谐振。发生铁磁谐振时,系统电压将高达几倍甚至几十倍额定电压,当系统电压严重不平衡、开口三角绕组两端电压达到电压继电器启动值时,保护动作发出接地报警信号。此种情况下,至少有一相的电压顶表,电压互感器出现较高的"哼哼"声。

4.接地故障的处理

以上我们了解了中性点不接地系统在发生单相接地时出现的各种现象,以及假接地的几种现象。总降值班员如何依据表计的指示、信号情况作出正确的判断,将大大的缩短故障处理时间,也尽量避免了由于长时间不能排除故障可能造成的故障扩大化。从以上的分析中我们不难看出,中性点不接地系统发生单相接地时(金属性接地),一定会出现接地相电压为零,另外两相对地电压升高1.732倍接在电压互感器开口三角两端的3V0电压表出现100V的值,过电压继电器动作发信。值班员依据这些现象与假接地加以分析比较,就能作出正确的判断,然后再依据事故处理规程的规定,将故障线路迅速切除,从而保障供电系统的正常运行。

5.结束语

绝缘监察装置是一段母线共用的,只要在该母线上任一连接线路发生接地时,它都要动作,所以绝缘监察装置是无选择性的,要想知道哪一条线路发生接地故障,往往要通过值班员采用短时分合断路器的办法来寻找接地点。我们石化地区电网就是用试拉的办法来确认故障线路的,这一过程可能是长时间的,可能会造成由于另两相电压升高击穿绝缘薄弱点,造成两相短路这样的严重事故。现在随着时代的进步,电气技术的不断发展,随着小电流接地选线技术的不断成熟

和应用,同时也随着电网的不断改善,中性点不接地系统单相接地故障的发生率必将大大减少,供电安全也必将越来越有保障。

参考文献与资料:

1.翁昭华继电保护 200

2.1

2.杨文工厂供电岗位培训教材

3.阮柏友变电运行高级工笔记

感谢阮柏友、郑如春、肖永功、李明强等老师帮助

博凯炼化分公司西区电气

郑健

2005.9.26

电力系统分析课后作业题及练习题

第一章 电力系统的基本概念 1-1 什么叫电力系统、电力网及动力系统 1-2 电力线、发电机、变压器和用电设备的额定电压是如何确定的 1-3 我国电网的电压等级有哪些 1-4 标出图1-4电力系统中各元件的额定电压。 1-5 请回答如图1-5所示电力系统中的二个问题: ⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。 ⑵ 当变压器1T 在+%抽头处工作,2T 在主抽头处工作,3T 在%抽头处工作时,求这些变压器的实际变比。 1-6 图1-6中已标明各级电网的电压等级。试标出图中发电机和电动机的额定电压及变压器的额定变比。 1-7 电力系统结线如图1-7所示,电网各级电压示于图中。试求: 习题1-5图 习题1-6图 习题1-4图

⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。 ⑵设变压器1T 工作于+%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。 1-8 比较两种接地方式的优缺点,分析其适用范围。 1-9 什么叫三相系统中性点位移它在什么情况下发生中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍 1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么 第二章 电力系统各元件的参数及等值网络 2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。 2-2 三相双绕组变压器的型号为SSPL —63000/220,额定容量为63000kVA ,额定电压为242/,短路损耗404=k P kW ,短路电压45.14%=k U ,空载损耗93=o P kW ,空载电流 41.2%=o I 。求该变压器归算到高压侧的参数,并作出等值电路。 2-3 已知电力网如图2-3所示: 各元件参数如下: 变压器:1T :S =400MVA ,12%=k U , 242/ kV 2T :S =400MVA ,12%=k U , 220/121 kV 线路:2001=l km, /4.01Ω=x km (每回路) 习题1-7图 115kV T 1 T 2 l 1 l 2 习题2-3图

最新中性点不接地系统-发生单相接地故障问答大全

多用在中压10~35kV ;(1kV以下低压,1~10kV中低压) 中性点不接地系统正常运行时,各相对地电压是对称的,中性点对地电压为零,电网中无零序电压。由于任意两个导体之间隔以绝缘介质时,就形成电容,所以三相交流电力系统中相与相之间及相与地之间都存在着一定的电容。系统正常运行时,三相电压U A、U B、U C 是对称的,三相的对地电容电流i c0也是平衡的。所以三相的电容电流相量和等于0,没有电流在地中流动。每个相对地电压就等于相电压。 当系统出现单相接地故障时(假设C相接地) 。则C相对地电压为0,而A相对地电压U’A=U A+(-U C)=U AC,而B相相对地电压U′B=U B+(-U C)=U BC。由此可见,C相接地时,不接地的A、B两相对地电压由原来的相电压升高到线电压(即升高到原来对地电压的√3 倍,即1.732倍)。 C相接地时,系统接地电流(电容电流)IC应为A、B两相对地电容电流之和。由于一般习惯将从电源到负荷方向取为各相电流的正方向,所以:IC=-(ICA+ ICB)。IC在相 位上超前U C 90o(流过故障线路始端的零序电流是电容电流,所以零序电流超前零序电压 90°;由于在不接地系统中,单相接地是不会产生电流(对地分布电容的容性电流不算,所以小电流接地),即不会产生额外负载,所以不会影响各相电压包括相对中性点的电压关系);而在量值上由于IC=I CA又因I CA=U’A/X C= UA/XC= I C0,因此I C=3I C0,即一相接地的电容电流为正常运行时每相电容电流的三倍。 由于线路对地电容C很难确定,因此I C0和I C也不能根据电容C来精确计算。一般采用下列经验公式来计算中性点不接地系统的单相接地电容电流:I C=Ue(Ik+35IL)/350 Ue(为线路额定电压KV) Ik(为同一电压的具有电的联系的架空线路总长度) IL(为同一电压的具有电的联系的电缆线路总长度) 在不完全接地(即经过一些接触电阻接地,中性点经消弧线圈接地)时,故障相对地的电压将大于0而小于相电压,而未接地相对地电压小于线电压,接地电容电流也比较小。 必须指出,当中性点不接地的系统中发生单相接地时,三相用电设备的正常工作并未受到影响,因为线路的线电压无论是相位还是量值均未发生变化,因此三相用电设备仍照常运行。但是这种线路允许在一相接地的情况下长期运行,因为如果另一相又发生接地故障时就会发展成为相间短路,两相接地短路,这是很危险的,会产生很大的短路电流,可能损坏线路设备。所以在中性点不接地的系统中,应该装置专门的接地保护或绝缘监察系统,在发生单相接地时,给予报警信号,以提醒值班人员注意及时处理。按我国规程规定:中性点不接地电力系统发生单相接地故障时,允许暂时运行2小时。运行维修人员应争取在两小时以内查出接地故障,予以排除。 绝缘监察装置由测量和发信两部分组

电力系统分析练习题及其答案(何仰赞)上册

1-2,电力系统的部分接线如图1-2,各电压级的额定电压及功率输送方向表于图中。 试求:(1)发电机及各变压器高低绕组的额定电压; (2)各变压器的额定变比; (3)设变压器T -1工作于+5%抽头,T -2,T -4工作于主抽头,T -3工作于-2.5%抽头时,各变压器的实际变比。 解:(1)总的原则:发电机的额定电压比同电压级网络的额定电压高5%;变压器一次侧额定电压等于同电压级网络的额定电压高,二次侧额定电压比同电压级网络的额定电压高10%。其中,变压器受功率侧为一次侧,输功率侧为二次侧。 发电机:kV V GN 5.10= 变压器T —1:.242,5.1021kV V kV V N N == 变压器T —2:.5.38,121,220321kV V kV V kV V N N N === 变压器T —3:.11,3521kV V kV V N N == 变压器T —4:.121,22021kV V kV V N N == (2)各变压器的额定变比 变压器T —1:.0434.02425.102 11===N N N T V V k 变压器T —2:818.11212202 1)21(2===-N N N T V V k

变压器T —3:.182.311 35213===N N N T V V k 变压器T —4:.818.11212202 14===N N N T V V k (3)各变压器的实际变比 变压器T —1:.0431.0%)51(2425.102 11=+?==V V k T 变压器T —2:818.1121220 21)21(2===-V V k T 变压器T —3:.102.311%) 5.21(352 13=-?==V V k T 变压器T —4:.818.11212202 14===V V k T 1-3,电力系统的部分接线如图 1-3,网络的额定电压已经标 明图中。试求: (1)发电机,电动机及变压器高, 中,低压绕组的额定电压; (2)设变压器T -1高压侧工作 于+2.5%抽头,中压侧工作于 +5%抽头;T -2工作于额定

中性点接地方式

1 中性点直接接地 中性点直接接地方式,即是将中性点直接接入大地。该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。这种大电流接地系统,不装设绝缘监察装置。 中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。 中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。 中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。 2 中性点不接地 中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。适用于农村10kV架空线路为主的辐射形或树状形的供电网络。该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。 中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。 中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。 此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过

电力系统分析试题与答案(经典题目)

三、简答题 31.电力变压器的主要作用是什么? 答:电力变压器的主要作用是升高或降低电压,另外还起到将不同电压等级电网相联系的作用. 32。简单闭式网分为哪些类网络? 答:简单的闭式网可分为两端供电网络(2分)和环形网络(2分)两类(1分)。 33.为什么说当电力系统无功功率不充足时仅靠改变变压器变比分按头来调压并不能改变系统的电压水平? 答:通过调分接头实质是改变了电力网的无功分布,只能改善局部电压水平,同时却使系统中另个的某些局部电压水平变差并不能改变系统无功不足的状况因此就全系统总体来说并不能改变系统的电压水平。 34。为什么变压器中性点经小电阻接地能够提高当系统发生接地故障进的暂态稳定性? 答:在输电线路送端的变压器经小电阻接地,当线路送端发生不对称接地时,零序电流通过该电阴将消耗部分有功功率起到了电气制动作用,因而是能提高系统的暂态稳定性。 四、简算题 35。某三相单回输电线路,采用LGJ-300型导线(计算外径25.2m m),已知三相导线正三角形布置,导线间距离D =6m ,求每公里线路的电抗值. 解:计算半径:m 106.12mm 6.122 2. 25r 3-?=== 几何均距:D m =D=6m /km 403.0 0157.010 6.126 lg 1445.0 0157.0r D g l 1445.0x 3 m 1Ω=+?=+=- 36.。110KV 单回架空线路,其参数如图所示,线路始端电压为116KV ,末端负荷为15+j 10M VA ,求该电力线路末端电压及始端输出的功率。 解:

37.某系统发电机组的单位调节功率为740MW/Hz,当负荷增大200MW时,发电机二次调频增发40MW,此时频差为0.2Hz,求负荷的单位调节功率. 解: 38.网K点发生两相短路接地,求K点短路电流值。

电力系统分析-试题第二套

第二套 一、判断题 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减, 非周期分量也不衰减。() 5、中性点直接接地系统中,发生儿率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短 路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、选择题 1、短路电流最大有效值出现在()。 A短路发生后约半个周期时B、短路发生瞬间;C、短路发生后约1/4周期时。 2、利用对称分量法分析计算电力系统不对称故障时,应选()相作为分析计算的基本相。 A、故障相; B、特殊相; C、A相。 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是 ()。 A、短路电流中除正序分量外,其它分量都将逐渐衰减到零; B、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减: C、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减 到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在()。

中性点不接地系统发生单相接地时向量分析

中性点不接地系统单相接地时的向量分析 为了熟悉不接地电网的零序保护,需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 正常运行情况下,各相对地有相同的电容 C(用集中参数表示), 在相电压的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。 发生单相(例如A相)金属性接地时,若忽略较小的电容电流

产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时 中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线 间电压(升高 3 倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -= 3A E 0 150j e -,C U ' =CA U =C E -A E = 3A E 0 150j e ,由于相电压和电容电流的 对称性已破坏,因而出现了零序电压和零序电流,因为A U ' =0,所以 零序电压0 3U =B U ' +C U ' =-3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下,在两非故障相及其对地电容中出现超前电压90°的电流, B I = C B jX U -' =B U ' 0 jWC , C I = C C jX U -' =C U ' jWC ,其有效值为B I +C I = 3X U WC ,X U 为相电压的有效 值,从故障点流回的电流即零序电流为:0 3I =-(B I +C I )=-(B U ' +C U ' )0jWC 。式中负号表示零序电流与通常规定的电流方向相反,因 为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为0 3I =3X U 0 WC ,

电力系统分析练习题

电力系统分析练习题 一、单项选择题 1.对电力系统的基本要求就是(A) A.保证供电可靠性、保证良好的电能质量、保证系统运行的经济性 B.保证供电可靠性、保证良好的电能质量、保证继电保护动作的选择性 C.保证供电可靠性与良好的电能质量 D.保证供电可靠性与系统运行的经济性 2.下图所示的电力系统中,变压器T1的额定变比应为(B) A.242/121/11kV B.220/121/11kV C.220/110/10kV D.242/121/10kV 3.连接220kV 电力系统与110kV 电力系统的降压变压器,其额定变比应为(D) A.220/110kV B.220/115、5kV C.242/121kV D.220/121kV 4.我国110kV 以上电力系统中性点通常采用的运行方式就是(B) A 、不接地 B 、直接接地 C 、经消弧线圈接地 D 、经电容器接地 5.电力系统中性点经消弧线圈接地时,应采用的补偿方式为(A) A.过补偿 B.欠补偿 C.全补偿 D.全补偿或欠补偿 6.采用同一型号导线的三相架空输电线路,相间距离增大时,其电容(B) A.增大 B.减小 C.不变 D.无法确定 7.架空输电线路采用分裂导线的目的就是(A) A 、减小线路电抗 B 、减小线路电阻 C 、减小线路电容 D 、增大线路电抗 8.三相架空输电线路导线全换位的目的就是(A) A.减小三相参数的不平衡 B.减小线路电抗 C.减小线路电容 D.提高输电线路的输送容量 9.变压器参数B T 由试验数据 确定。(2章)(B) A.%K U B.%0I C.0P ? D.K P ? 10.变压器的电抗参数 T X ,由实验数据 确定。(A) A 、%K U B 、%0I C 、0P ? D 、K P ? 11.变压器的电纳参数T G ,由实验数据 确定。(C) A.%K U B.%0I C.0P ? D.K P ? 12.变压器的电阻参数T R ,由实验数据 确定。(D) A.%K U B.%0I C.0P ? D.K P ? 13.如果三相功率基准值为b S 、线电压基准值为b U ,则阻抗基准值为(D) A.b b U S / B. b b U S 3/ C.2/b b U S D.b b S U /2 14.输电线路运行时,其始端电压电压与末端电压的大小关系就是(C) A.始端电压一定高于末端电压 B. 始端电压始终等于末端电压 C.在不计电压降落横分量影响情况下,PR+QX>0时,始端电压高于末端电压 D.在不计电压降落横分量影响情况下,PR+QX>0时,始端电压低于末端电压 15.输电线路的电压降落就是指(A) A 、线路始端电压与末端电压的相量差 B 、线路始端电压与末端电压的数值差 C 、线路始端电压与额定电压的数值差 D 、线路末端电压与额定电压的数值差

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊 北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

电力系统分析习题答案

八、某简单系统如图若在K 点发生三相短路,求使得系统保持暂态稳定的极限切除角。 九、某电厂有两台机容量均为50MW ,耗量特性分别22 1 11222F 0.01P 1.2P 10F 0.02P P 12=++,=++,最小技术负荷为其容量的25%,求电厂按图示负荷曲线运行时如何运行最经济

十、有一台降压变压器如图所示,其归算至高压侧的参数为+Ω,已知变压器母线在任何方式下均维持电压为,其低压侧母线要求顺调压,若采用静电电容器作为补偿设备,试选择变压器分接头和无功补偿设备容量。 解

一、10kV 线路的等值电路如图所示,已知末端电压为。求始端电压。 解: 2113 0.48kV 10.4 PR QX U U +?+??= == 1210.40.4810.40.4810.88kV U U U =+?=+=+= 二、试求如图所示的等效电路的节点导纳矩阵,图中给出了各支路阻抗和对地导纳的标幺值。若3、4节点间的支路用图2所示的支路代替,再求该网络的节点导纳矩阵。 解 1+j3 2+j1MVA 1 U

三、某电力系统如图所示,f 处发生不对称接地故障,试画出正序、负序和零序等值电路(各元件的序参数用相应的符号表示,如用X L1表示线路正序电抗)。 解 3 + + 2 4 + 1 L N x f G-1 G-2 B-1 B-2 G G

四、已知系统如图所示。k点发生不对称接地短路,试画出图示系统的正序、负序、零序网络。 解 115kV k T2 N jx T1 l G1G2

五、系统如图所示。d 点发生三相短路,变压器T 2空载。求:(1)求用标幺值表示的等值网络;(2)短路处起始次暂态电流和短路容量;(3)计算短路冲击电流;(4)若电源容量为无限大,试计算短路冲击电流。 解: (1)用标幺值表示的等值网络(取100MVA B S =,用平均额定电压进行计算),把以自身容量为基准的 标么值化为以全网络统一容量基准的标么值 (3) d d E ''d jX ''1 T jX l jX 2 T jX 100 0.220.73330d X ''=?= 1100 0.1050.33331.5T X =?= 2100 0.1050.33331.5T X =?= 2 100 2000.40.605115 l X =??= 回路总电抗为 120.7330.3330.3330.605 2.004d T l T X X X X X ∑''=+++=+++= 30MVA X d ’’= ''d U d %= 200km d (3) U d %= T 1 T 2

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不 接地的利弊 This model paper was revised by the Standardization Office on December 10, 2020

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。

电路分析判断题

1. 集总参数元件的电磁过程都分别集中在各元件内部进行。 ( 对 ) 2. 网孔都是回路,而回路则不一定是网孔。 ( 对 ) 3. 非线性元件其电压、电流关系一定是非线性的。 ( 对 ) 4. 实用中的任何一个两孔插座对外都可视为一个有源二端网络。 ( 错 ) 5. 用二阶微分方程描述的电路成为二阶电路。 ( 对 ) 6. 从电压、电流瞬时值关系式来看,电感元件属于动态元件。 ( 对 ) 7. V t u )3020sin(5 +=与A t i )1030sin(7 +=的相位差为30°。 ( 错 ) 8. 几个复阻抗相加时,它们的和增大;几个复阻抗相减时,其差减小。 ( 错 ) 9. 一阶电路的全响应,等于其稳态分量和暂态分量之和。 ( 错 ) 10. RLC串联谐振时阻抗最大。 11. 实际电感线圈在任何情况下的电路模型都可以用电感元件来抽象表征。 ( 错 ) 12. 应用基尔霍夫定律列写方程式时,可以不参照参考方向。 ( 错 ) 13. 叠加定理只适合于直流电路的分析。 ( 错 ) 14. 几个电容元件相串联,其电容量一定增大。 ( 错 ) 15. 串联电路的总电压超前电流时,电路一定呈感性。 ( 对 ) 16. V t u )5010sin(10 +=与A t i )1030sin(6 +=的相位差为40°。 ( 错 ) 17. 换路定律指出:电感两端的电压是不能发生跃变的,只能连续变化。 ( 错 ) 18. 串联谐振在L 和C 两端将出现过电压现象,因此也把串谐称为电压谐振。( 对 ) 19. 三相总视在功率等于总有功功率和总无功功率之和。 ( 错 ) 20. 在进行电路分析时,电压的参考方向可以任意设定,但电流的参考方向必须按规定设定。 21. 在节点处各支路电流的参考方向不能均设为流向节点,否则将只有流入节点的电流,而 无流出节点的电流。 ( 错 ) 22. 换路定律指出:电容两端的电压是不能发生跃变的,只能连续变化。 ( 对 ) 23. 两个电路等效,即它们无论其内部还是外部都相同。 ( 错 ) 24. 非线性电阻元件其电压、电路关系一定是非线性的。 ( 对 ) 25. 正弦量的三要素是指它的最大值、角频率和相位。 ( 对 ) 26. V t u )6040sin(7 +=与A t i )1030sin(7 +=的相位差为50°。 ( 错 ) 27. 电阻电感相并联,I R =3A ,I L =4A ,则总电流等于5A 。 ( 错 ) 28. 只要在感性设备两端并联一电容器,即可提高电路的功率因数。 ( 错 ) 29. 并联谐振在L 和C 支路上出现过流现象,因此常把并谐称为电流谐振。 ( 对 ) 30. 三相电路的总有功功率?cos 3l l I U P = 。 ( 对 )

配电网中性点不同接地方式的优缺点

编号:SM-ZD-71752 配电网中性点不同接地方 式的优缺点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

配电网中性点不同接地方式的优缺 点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 配电网中性点与参考地的电气连接方式,按运行需要可将中性点不接地、经消弧线圈接地、经(高、中、低值)电阻器接地、经低值电抗器接地及直接接地等。这些中性点接地方式各具独有的优缺点。 1 配电网中性点不接地的优缺点 配电网中性点不接地是指中性点没有人为与大地连接。事实上,这样的配电网是通过电网对地电容接地。 中性点不接地系统主要优点: 电网发生单相接地故障时稳态工频电流小。这样

·如雷击绝缘闪络瞬时故障可自动清除,无需跳闸。 ·如金属性接地故障,可单相接地运行,改善了电网不间断供电,提高了供电可靠性。 ·接地电流小,降低了地电位升高。减小了跨步电压和接触电压。减小了对信息系统的干扰。减小了对低压网的反击等。 经济方面:节省了接地设备,接地系统投资少。 中性点不接地系统的缺点: a与中性点电阻器接地系统相比,产生的过电压高(弧光过电压和铁磁谐振过电压等),对弱绝缘击穿概率大。 b在间歇性电弧接地故障时产生的高频振荡电流大,达

低压电网中性点接地与不接地的利弊

低压电网中性点接地与不接地的利弊北京农业机械化学院电气化系罗光荣 为了低压用电的安全,尤其是农业电网用电的安全,我国普遍推广使用触电保安器。保安器分为电压型和电流型两大类,它们对电网我中点的接地有不同的要求,电压型保安器要求电网中点不直接接地(实际是经过保安器的内部阻抗接地),而安装电流型保安器,则要求中点直接接地,因此认真深入地研究低压电网中点接地方式的利弊,对于安全用电工作是一项十分迫切的任务。并且它还关系到保安器研制工作的动向,为此我们对接地作一些分析。 一、国内外概况: 根据国外资料,电力网发展的初期,低压电网对地都是绝缘的,中点不接地,但是后来随着高压电网的发展,使了降压变压器,由于高低压线圈可能相互短路,低压线圈对地产生高压,对电气设备及人身安全造成危害,因此出现了中点接地系统。如今,低压电网中点接地已成为世界发展的趋势。绝大多数国家都是采用中性点接地系统,这个总的发展方向是肯定的。由于中点对地绝缘,在某些场合有一定的优点,但在一些特殊的场合,还采用中点不接地,例如日本的医院及游泳池,使用隔离变压器,中点就不接地。有些有易燃气体的化工厂、煤矿等也采用中点对地绝缘。日本也还有一些大工厂采用不接地方式,捷克在矿井采用500伏中点不接地系统。 我国解放前,低压电网,有接地的,也有不接地的,解放之后逐步趋于统一,就是380/220伏中点接地的低压电网。 但1962年以后有些省和地区,采用中点不接地系统,例如江苏省推广使用电犁,为了人身安全,安装简易型保安器,采用了不接地系统。当时广东、河南有些地区也采用不接地系统。目前我国广大农村,中点接地和不接地两种方式同时并用,为此我们有必要对其优缺点作一些探讨。 二、中点接地与非接地系统的优点缺点比较: 1、不接地系统: 优点:能限制接地电流 当电网的容量较少时,对地的分布电容也小,如果绝缘电阻很高,则人触及带电体时,通过人体的电流仅为不大的电容电流(如图1),因此是安全的。 此外从漏电引起的火灾来说,不接地系统也比较理想,因漏电接地电源很小,不易产生大的火花而引起火灾。 缺点:

中性点接地和中性点不接地的区别

中性点接地和中性点不接地的区别 电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。小电阻接地系统在国外应用较为广泛,我国开始部分应用。 1、中性点不接地(绝缘)的三相系统 各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。这时中性点接地与否对各相对地电压没有任何影响。可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。 在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。所以在这种系统中,一般应装设绝缘监视或接地保护装置。当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。一相接地系统允许继续运行的时间,最长不得超过2h。三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。 2、中性点经消弧线圈接地的三相系统 上面所讲的中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。为了克服这个缺陷,便出现了经消弧线圈接地的方式。目前在35kV电网系统中,就广泛采用了这种中性点经消弧线圈接地的方式。 消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点。当发生单相接地故障时,可形成一个与接地电容电流大小接近相等而方向相反的电感电流,这个滞后电压90°的电感电流与超前电压90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至等于零,从而消除了接地处的电弧以及由它可能产生的危害。消弧线圈的名称也是这么得来的。当电容电流等于电感电流的时候称为全补偿;当电容电流大于电感电流的时候称为欠补偿;当电容电流小于电感的电流的时候称为过补偿。一般都采用过补偿,这样消弧线圈有一定的裕度,不至于发生谐振而产生过电压。 3、中性点直接接地 中性点直接接地的系统属于较大电流接地系统,一般通过接地点的电流较大,可能会烧坏电气设备。发生故障后,继电保护会立即动作,使开关跳闸,消除故障。目前我国110kV 以上系统大都采用中性点直接接地。 对于不通等级的电力系统中性点接地方式也不一样,一般按下述原则选择:220kV以上电力网,采用中性点直接接地方式;110kV接地网,大都采用中性点直接接地方式,少部分采用消弧线圈接地方式;20~60kV的电力网,从供电可靠性出发,采用经消弧线圈接地或不接地的方式。但当单相接地电流大于10A时,可采用经消弧线圈接地的方式;3~10kV电力网,供电可靠性与故障后果是其最主要的考虑因素,多采用中性点不接地方式。但当电网

变压器中性点接地与不接地系统

变压器中性点接地与不接地系统 1.1变压器中性点接地系统的优缺点: (1)优点: 对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。 (2)缺点: 对电源中性点接地系统,由于单相短路电流Is很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等; 1.2变压器中性点不接地系统的优、缺点: (1)优点: 对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。 (2)缺点: 对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。 2各种电压等级供电线路的接地方式 (1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。 (2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。 (3)1kv以下的供电系统(伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。 3电气设备的保护接地 3.1保护接地 将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。保护接地,适应于变压器中性点不接地的供电系统中。但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。 电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。 3.2保护接地时应注意问题 由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。 这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。 4电气设备保护接零 4.1保护接零

中性点不接地系统的单相接地向量分析

中性点不接地系统的 单相接地向量分析 需要首先熟悉这类电网发生单相接地故障时电压、电流零序分量的特点。下面着重介绍单相接地时稳态电容电流的特点。下面图a示出最简单的中性点不接地网,图中表示负荷是断开的,因为单相接地时三相的相线电压和负荷电流仍然对称,所以不考虑负荷电流,不会影响分析的结果。 C(用集中参数表示),在相电压正常运行情况下,各相对地有相同的电容0 的作用下,每相都有一超前电压90°的电容电流流入地中,并三相电容电流之和为零,中性点对地无电压,因为电容电流很小,其在线路上产生的电压降可以忽略不计,故可以认为各相电压均与各相电势相等,电压、电流向量图如图b所示。

发生单相(例如A 相)金属性接地时,若忽略较小的电容电流产生的电压降,则电网中各处故障相的对地电压都变为零。于是A 相对地电容被短接,只有B 相和C 相对地电容中还存在电流,此时中性点对地电压上升为相电压(-a E ),非故障相的对地电压变为线间电压(升高3倍),其向量关系图如下图c 。 这时三相对地电压可分别写为:A U ' =0,B U ' =BA U =A B E E -=3A E 0150j e -, C U ' =CA U =C E -A E =3A E 0150j e ,由于相电压和电容电流的对称性已破坏,因而 出现了零序电压和零序电流,因为A U ' =0,所以零序电压03U =B U ' +C U ' =- 3A E ,即等于故障相正常电势的三倍,则相位与之相反。在B U ' 和C U ' 的作用下, 在两非故障相及其对地电容中出现超前电压90°的电流,B I = C B jX U -' =B U ' 0jW C ,C I =C C jX U -' =C U ' 0jW C ,其有效值为B I + C I =3X U 0WC ,X U 为相电压的有效值,从故障点流回的电流即零序电流为:03I =-(B I +C I )=-(B U ' +C U ' )0jW C 。式中负号表示零序电流与通常规定的 电流方向相反,因为B U ' +C U ' =-3A E ,所以故障点的零序电流有效值为03I = 3X U 0WC ,其大小是正常运行时每相对地电容电流的三倍,其相位落后于零序电压90°。

网考试题-C《电力系统分析》-判断题 - 2019

[类别]考试 [题干] 电力网是由变电所和相同电压等级的输配电线路组成的网络。() [选项] [答案] F [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数] [题型]判断题 [章节] [类别]考试 [题干] 电力网由各类发电场,电力网和用户组成的一个系统。() [选项] [答案] T [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数]

[类别]考试 [题干] 根据电力负荷对供电可靠性的要求,符合可以分为两类:一类和二类。() [选项] [答案] F [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数] [题型]判断题 [章节] [类别]考试 [题干] 电力系统供电的可靠性,就是保证一级负荷可以停电,二级负荷尽量不停电,三级负荷在任何情况下都不停电。() [选项] [答案] F [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数]

[类别]考试 [题干] 电力系统为保证良好的电能质量,一般要求电压偏移不超过用电设备额定电压的±20%。() [选项] [答案] F [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数] [题型]判断题 [章节] [类别]考试 [题干] 电力系统的二级负荷要求双回路供电。() [选项] [答案] T [解析] [难度]易 [分数]2 [子题] [子题型] [题干] [选项] [答案] [解析] [分数]

相关文档
最新文档