等温滴定量热法
ITC(等温量热滴定法)

GE Healthcare 公开技术质料
ITC实验注意事项
¾ Wiseman c-parameter:表征结合反应的亲和力与ITC实验设计的关系 c = n[M]K
• 样品池最大容积: VP-ITC:1.4mL ITC200 :200μL
• 微量注射器最大容积: ITC200 :40μL
• 单次最小注射量: ITC200 :0.1μL
• 响应时间: ITC200 :10s
GE Healthcare 公开技术质料
什么是等温滴定量热法?
等温滴定量热法(Isothermal Titration Calorimetry,简称 ITC) ¾ 定义:
GE Healthcare 公开技术质料
ITC应用举例
评估蛋白产品质量
两个批次的同种蛋白与某一种标准多肽的结合活性比较
KD = 97 nM n=1
第1批蛋白产品 两次ITC实验: 样品池蛋白浓度 10μM 标准多肽50μM GE Healthcare 公开技术质料
KD = 135 nM n = 0.23
h0氢键范德华力疏水作用gehealthcare公开技术质料itc应用举例药物研发早期阶段对假正面结果的排除药物研发早期阶段对假正面结果的排除筛选能与目标蛋白tp筛选能与目标蛋白tp特异性结合的化合物已知化合物x可与目标蛋白tp特异性结合性结合根据itc得k与其他实验方法所得结果相吻合与其他实验方法所得结果相吻合因此化合物x适于进一步研究化合物x与tp的itc结果gehealthcare公开技术质料itc应用举例药物研发早期阶段对假正面结果的排除药物研发早期阶段对假正面结果的排除与tp左
等温滴定量热法

等温滴定量热法在一次实验中直接进行关于生物分子亲和力和热力学特性的无标记测定等温滴定量热法(ITC)是用于量化研究各种生物分子相互作用的一种技术。
它可直接测量生物分子结合过程中释放或吸收的热量。
ITC是唯一一种能够在一次试验中同时确定所有结合参数的技术。
ITC可以测定结合配偶体在自然状态下的亲和力,无需通过荧光标记或固定化技术对结合配偶体进行修饰。
通过测量结合过程中的热传递,就能够准确地确定结合常数(K D)、反应化学量(n)、焓(∆H)和熵(ΔS)。
这就提供了有关分子相互作用的完整热力学信息。
ITC不仅可测定结合亲和力,还能阐明潜在分子相互作用的机制。
更深入了解结构-功能关系,让我们能够更加自信地在苗头化合物选择和先导化合物优化方面作出决策。
测量原理:等温滴定量热法用来测定各生物分子之间的反应。
该方法可测定结合亲和力、化学计量以及溶液中结合反应的熵和焓,无需使用标记。
发生结合时,热不是被吸收就是被释放,这是在配体被逐渐滴定到包含目标生物分子的样品池过程中通过灵敏量热计而测得。
工作原理热核心微量热计中有两个池,其中一个含有水,作为参比池,另一个含有样品。
微量热计必须使这两个池保持完全相同的温度。
热敏装置检测发生结合时两个池之间的温差,并反馈给加热器,由加热器来补偿该温差并使两个池恢复到相同的温度。
进行测量参比池和样品池被设定到所需的实验温度。
将配体装入一个非常精确的注射装置上的注射器中。
将注射装置插入包含目标蛋白质的样品池中。
将一系列小份配体试样注入到蛋白质溶液中。
如果有配体与蛋白质结合,则可检测到并测出几百万分之一摄氏度的热量变化。
进行第一次注射时,微量热计测量被释放的所有热量,直到结合反应达到平衡。
测得的热量与结合量成正比。
结果和数据分析在下面的示例中,反应是放热的,这就意味着样品池温度高于参比池并由此导致信号出现下行波峰。
随着两个池的温度恢复到同一水平,信号也回到其起点。
将第二小份配体试样注入到样品池中,同样,微量热计补偿所检测到小幅热量变化。
(完整版)等温滴定量热法在生命科学研究中应用

(完整版)等温滴定量热法在生命科学研究中应用等温滴定量热法在生命科学研究中应用等温滴定量热法(Isothermal Titration Calorimetry, ITC)是近年来发展起来的一种研究生物热力学与生物动力学的重要方法,它通过高灵敏度、高自动化的微量量热仪连续、准确地监测和记录一个变化过程的量热曲线,原位、在线和无损伤地同时提供热力学和动力学信息。
微量热法具有许多独特之处。
它对被研究体系的溶剂性质、光谱性质和电学性质等没有任何限制条件,即具有非特异性的独特优势,样品用量小,方法灵敏度和精确度高(本仪器最小可检测热功率2 nW,最小可检测热效应0.125uJ,生物样品最小用量0.4ug,温度范围2 0C - 80 0C,滴定池体积1.43 ml)。
实验时间较短(典型的ITC实验只需30-60分钟,并加上几分钟的响应时间),操作简单(整个实验由计算机控制,使用者只需输入实验的参数,如温度、注射次数、注射量等,计算机就可以完成整个实验,再由Origin软件分析ITC得到的数据)。
测量时不需要制成透明清澈的溶液, 而且量热实验完毕的样品未遭破坏,还可以进行后续生化分析。
尽管微量热法缺乏特异性但由于生物体系本身具有特异性,因此这种非特异性方法有时可以得到用特异方法得不到的结果,这有助于发现新现象和新规律,特别适应于研究生物体系中的各种特异过程。
ITC的用途获得生物分子相互作用的完整热力学参数,包括结合常数、结合位点数、摩尔结合焓、摩尔结合熵、摩尔恒压热容,和动力学参数(如酶活力、酶促反应米氏常数和酶转换数)。
ITC的应用范围蛋白质-蛋白质相互作用(包括抗原-抗体相互作用和分子伴侣-底物相互作用);蛋白质折叠/去折叠;蛋白质-小分子相互作用以及酶-抑制剂相互作用;酶促反应动力学;药物-DNA/RN A相互作用;RNA折叠;蛋白质-核酸相互作用;核酸-小分子相互作用;核酸-核酸相互作用;生物分子-细胞相互作用;……加样体积:(实际体积)cell:1.43 ml,syringe:300 μl准备样品体积(最少量)cell:2 ml,syringe:500 μl样品浓度cell:几十μM到几mMsyringe:几百μM到几十mM测量Kb范围102-1012 M-1滴定实验前恒温30-60 min等温滴定量热实验所需时间,一般1.5-4 hr微量热技术(Microcalorimetry)(2008-05-27 19:58:14)标签:杂谈微量热法(包括等温滴定量热和差示扫描量热)是近年来发展起来的研究生物热力学与生物动力学的重要结构生物学方法,它通过高灵敏度、高自动化的微量量热仪连续和准确地监测和记录一变化过程的量热曲线,原位(in situ)、在线(on-line)和无损伤地同时提供热力学和动力学信息。
等温量热滴定法

等温量热滴定法
等温量热滴定法是一种常用的实验技术,用于测定化学反应的热效应。
它通过测量反应体系在反应过程中释放或吸收的热量,来确定反应的焓变。
这种技术在化学热力学研究中具有重要的应用价值。
等温量热滴定法的基本原理是利用热电偶和电桥来测量反应体系的温度变化。
实验中,需要将待测物质的溶液与一定浓度的滴定溶液以滴定的方式缓慢混合。
在混合的过程中,溶液的温度会发生变化,这是因为反应过程中会释放或吸收热量。
通过测量反应溶液的温度变化,就可以计算出反应的焓变。
等温量热滴定法的优点在于操作简便、精度高、重复性好。
它适用于各种类型的化学反应,包括酸碱滴定、氧化还原反应、络合反应等。
此外,等温量热滴定法还可以用于测定溶解热、稀释热、配位化学反应的热效应等。
等温量热滴定法在化学研究和生产实践中有着广泛的应用。
它可以用于测定物质的热力学性质,如燃烧热、形成热、晶体稳定性等。
同时,它还可以用于评价反应的放热或吸热程度,帮助研究人员了解反应的速率和平衡状态。
在工业生产中,等温量热滴定法可以用于监测反应过程中的热量变化,以控制反应的条件和提高产品的质量。
总之,等温量热滴定法是一种重要的实验技术,它通过测量反应体系的温度变化来确定反应的焓变。
它具有操作简便、精度高、重复性好等优点,并广泛应用于化学研究和工业生产中。
通过等温量热滴定法,我们可以更好地了解化学反应的热力学性质,为科学研究和工程实践提供有力的支持。
ITC等温滴定量热法的操作说明

实验总结
实验结果的讨论及其意 义
分析实验结果,讨论相互作 用的特性、结合亲和力等, 并探讨结果对相关研究领域 的意义。
需要改进的方面
总结实验中的不足和问题, 提出改善和优化实验方法的 建议。
ITC 等温滴定量热法的 重要性
介绍ITC等温滴定量热法在生 物研究中的应用和优势,强 调其对解决科学问题的重要 性。
确保样品和配体的纯度和浓度,准备适 当的缓冲液进行滴定实验。
结果分析
信息的含义
通过分析数据,可以获得化学反 应的热效应、平衡常数、热力学 参数等信息。
数据的解释
异常情况处理
根据实验条件和数据分析结果, 解释实验中观察到的现象和趋势, 揭示背后的机理。
记录并分析实验中可能出现的异 常情况,如峰形变异、噪音等, 以确定实验结果的可靠性。
实验步骤
1
实验参数调整
2
根据实验需求,调整参数如温度、浓度、 滴定量等,以优化实验结果。
3
实验过程数据处理
4
将实验中得到的热效应数据转化为相关 参数,并进行数据分析和解释。
操作流程
按照以下步骤进行实验: 1. 样品和配体的准备 2. 初始化仪器 3. 进行等温滴定实验 4. 结束实验并保存数据
样品处理和置换缓冲液
ITC等温滴定量热法的操作说明
I. 简介 A. ITC (等温滴定量热法) 是一种测量在生物分子之间发生的相互作用的热效应的技术。 B. ITC 在生物科学研究中广泛应用,例如研究蛋白质结合、药物相互作用等。 . ITC 的优势包括无需标记物质、直接可测量热效应以及定量分析结果。 II. 实验前准备 A. 准备所需的仪器和试剂,包括等温滴定量热仪、样品和配体等。 B. 检查和准备实验所需设备,如清洗实验容器、校准测温系统等。 C. 遵守实验室的安全操作规程,戴上个人防护装备。
等温滴定量热法

Page ▪ 9
9
Page ▪ 10
典型的ITC数据
配体溶液20次注射到ITC池的 蛋白溶液中。每个注射峰(上 图)下方的区域与注射所释放 的总热量相等。当这种综合的 热量相对添加到池中的配体摩 尔比作图时,就获得了相互作 用的完整结合等温线(下图)。 用单位点模型来验证数据。化 学计量、结合常数及焓的数值 都显示在框内。
Page ▪ 16
16
INS
注射到池中,两种物质相互作用,释放或吸收的热量与结合量成正比。当池中的
高分子被配体饱和时,热量信号减弱,直到只观察到稀释的背景热量。
Page ▪ 6
6
ITC系统是通过细胞反馈网络 CFB来分别测量或者补偿样品和对照由于反应所产
生或者吸收的热量。两个硬币状的东西放置在绝热的圆筒中,通过那个细细的
管子与外界联通。有两个热量检测装置。一个用来检测两个样品之间的热量差,
10
Page ▪ 11
11
ITC法测量结合/解离常数
ITC可以直接测量焓变△H,结合常数Ka,而不对反应体系产生影响,也不引
Page ▪ 12 入修饰基团,因此测得的结果更加可信
12
Page ▪ 13
13
Page ▪ 14
14
作用机理研究与分析开发
(△G)与总的结合亲和力直接 相关,但不能了解结合机理。
Page ▪ 15
ITC提供了(△G)以及(△H) 和(△S),产生了结合机理的真 实图像。
15
ITC:用生物相关模型系统架起桥梁
等温滴定量热法
等温滴定量热法在生命科学研究中应用等温滴定量热法(Isothermal Titration Calorimetry, ITC)是近年来发展起来的一种研究生物热力学与生物动力学的重要方法,它通过高灵敏度、高自动化的微量量热仪连续、准确地监测和记录一个变化过程的量热曲线,原位、在线和无损伤地同时等温滴定量热法在生命科学研究中应用等温滴定量热法(Isothermal Titration Calorimetry, ITC)是近年来发展起来的一种研究生物热力学与生物动力学的重要方法,它通过高灵敏度、高自动化的微量量热仪连续、准确地监测和记录一个变化过程的量热曲线,原位、在线和无损伤地同时提供热力学和动力学信息。
微量热法具有许多独特之处。
它对被研究体系的溶剂性质、光谱性质和电学性质等没有任何限制条件,即具有非特异性的独特优势,样品用量小,方法灵敏度和精确度高(本仪器最小可检测热功率2 nW,最小可检测热效应0.125uJ,生物样品最小用量0.4ug,温度范围2 0C - 80 0C,滴定池体积1.43 ml)。
实验时间较短(典型的ITC 实验只需30-60分钟,并加上几分钟的响应时间),操作简单(整个实验由计算机控制,使用者只需输入实验的参数,如温度、注射次数、注射量等,计算机就可以完成整个实验,再由Origin软件分析ITC得到的数据)。
测量时不需要制成透明清澈的溶液, 而且量热实验完毕的样品未遭破坏,还可以进行后续生化分析。
尽管微量热法缺乏特异性但由于生物体系本身具有特异性,因此这种非特异性方法有时可以得到用特异方法得不到的结果,这有助于发现新现象和新规律,特别适应于研究生物体系中的各种特异过程。
ITC的用途获得生物分子相互作用的完整热力学参数,包括结合常数、结合位点数、摩尔结合焓、摩尔结合熵、摩尔恒压热容,和动力学参数(如酶活力、酶促反应米氏常数和酶转换数)。
ITC的应用范围蛋白质-蛋白质相互作用(包括抗原-抗体相互作用和分子伴侣-底物相互作用);蛋白质折叠/去折叠;蛋白质-小分子相互作用以及酶-抑制剂相互作用;酶促反应动力学;药物-DNA/RNA相互作用;RNA 折叠;蛋白质-核酸相互作用;核酸-小分子相互作用;核酸-核酸相互作用;生物分子-细胞相互作用;……加样体积:(实际体积)cell:1.43 ml,syringe:300 μl准备样品体积(最少量)cell:2 ml,syringe:500 μl样品浓度cell:几十μM到几mM syringe:几百μM到几十mM测量Kb范围102-1012 M-1滴定实验前恒温30-60 min等温滴定量热实验所需时间,一般1.5-4 hr。
等温滴定量热法
8
滴定一般在尽可能接近绝热的条件下进行,被滴定物可以是液体或悬 浮的固体;滴定剂可以是液体或气体。温度变化是由滴定剂与被滴定 物间的化学作用或物理作用(例如一种有机分子吸附于固体表面)引 起的。 实验数据以热谱图形式表示,它提供了有关反应中物质的量(滴定终 点)和反应物质的特性(焓变)的数据。对图进行分析,可以得知反 应容器中发生的反应的类型和数目,以及溶液中存在的各物种的浓度 等信息。这部分内容称为热滴定,同时还可以确定反应的化学计量关 系,计算反应的热力学量,如平衡常数K(Δ G°)、标准状态下的焓变Δ H° 和熵变Δ S°,这部分内容称为滴定量热法。 测温滴定法以热效应为基础,与溶液的许多性质(如粘度、光学透明度、 介电常数、溶剂强度、以及离子强度等)无关,因此可以用于气相、液相、 非水溶液、有色溶液、胶体溶液和粘稠浆状等体系。
– 实验时间较短(典型的ITC实验只需30-60分钟,并加上几分钟的响应时间), – 操作简单(整个实验由计算机控制,使用者只需输入实验的参数,如温度、 注射次数、注射量等,计算机就可以完成整个实验,再由Origin软件分析 ITC得到的数据)。 – 测量时不需要制成透明清澈的溶液, 而且量热实验完毕的样品未遭破坏,还 可以进行后续生化分析。 – 尽管微量热法缺乏特异性但由于生物体系本身具有特异性,因此这种非特异 性方法有时可以得到用特异方法得不到的结果,这有助于发现新现象和新规 律,特别适应于研究生物体系中的各种特异过程。
等温滴定量热法
(Isothermal Titration Calorimetry, ITC)
翟丽婷 2011-10-13
Isothermal Titration Calorimetry, ITC
等温滴定量热技术(ITC)是一种监测由结合成分的添加而起始的任何
ITC等温滴定量热法的操作说明
ITC等温滴定量热法的操作说明ITC等温滴定量热法的操作说明1:概述ITC(Isothermal Titration Calorimetry)等温滴定量热法是一种常用于测量化学反应热效应和热力学参数的实验技术。
本文档将详细介绍ITC等温滴定量热法的操作步骤,以及常见问题的解决方案。
2:实验前准备2.1 仪器准备- 确保ITC仪器处于良好的工作状态,并进行必要的校准和检修。
- 检查仪器和相关设备的供电和冷却系统,确保正常运行。
- 准备实验所需的试剂和溶液,确保其纯度和浓度符合要求。
2.2 样品准备- 准备待测样品,确保样品的纯度和浓度符合实验要求。
- 储存样品时,注意避免暴露在空气中,以免影响实验结果。
- 如有需要,进行样品的预处理或稀释,以适应实验要求。
3:实验操作3.1 基本操作步骤- 打开ITC仪器,并进行必要的初始化设置。
- 准备试样,通常包括两种液体:溶剂和待测样品。
- 启动实验程序,并按照程序指导添加试样。
- 进行实验过程中,根据实验需要,调整实验参数,如温度、压力、浓度等。
- 当实验结束后,关闭仪器,保存实验数据。
3.2 添加试样的注意事项- 添加试样时,应尽量避免形成气泡,以免影响测量结果。
- 在添加试样前,应将样品和溶剂在相同工作温度下达到热平衡。
- 添加样品时,应使用精确的加样装置,控制加样速度和时间。
4:数据分析4.1 数据处理与解读- 对实验数据进行处理和分析,包括热流曲线的积分和差分操作等。
- 利用数据做曲线拟合,计算反应热和其他热力学参数。
- 根据数据分析结果,解释实验现象和反应机制。
4.2 出现问题的解决方案- 如实验数据异常或与理论不符,可检查实验操作是否正确,并逐步排除可能的问题。
- 如仪器出现故障或异常,应及时联系厂家进行维修或咨询专业人员的意见。
5:附件本文档附带以下附件:- ITX仪器操作手册6:法律名词及注释本文档中涉及的法律名词及其注释如下:- 1:涉及附件: 本文档所附带的相关文件或资料。
等温滴定量热法
等温滴定量热法(I T C)的简易操作流程:①样品的准备,包括滴定物与被滴定物(如DNA滴定蛋白质)。
a.实验前的蛋白质样品需用缓冲溶液透析(注意透析袋的正确使用),透析时间一般为24小时,buffer体积为1L,且中途注意更换buffer,其目的是为了减少由于溶液组成不同而产生的滴定误差;b.样品的浓度要求,一般要求的浓度为微摩尔级,且滴定物(DNA)的浓度是被滴定物(蛋白质)的十倍左右为宜,且实验前需要再次确认所配样品的浓度是否符合要求;c.在进行滴定实验前,用于空白对照的缓冲液,蛋白样品以及DNA均需抽真空除气泡(15Mins左右为宜)。
②仪器的清洗。
a.在进行真空除气泡前,除气泡用容器均需用超纯水清洗三次左右,且清洗完毕后擦干内壁,防止由于残留缓冲液的稀释而导致样品浓度的改变;b.样品池(sample cell)的清洗,用超纯水清洗15次左右(每次2ml左右),清洗完毕后,一定要将残留的超纯水吸干净;c.注射器(syringe)的清洗,用超纯水清洗3次以上(专用注射器清洗,此时无需点击open,close和purge选项),清洗完毕后将注射器的头部擦干,之后清洗装DNA 的小试管,步骤同注射器的清洗。
③设置空白对照试验(DNA滴定缓冲液),将缓冲液置于小试管中(为了防止空气的进入,一般添加样品的量大于其实际所需的量),打开控制界面,点击open之后,用手动注射器缓慢拉动活塞,此时注射器管中的液面上升,然后点击close, 注射器会自动将小试管中的缓冲液吸入注射器中,当缓冲液完全吸入注射器之后点击pump键,除去气泡;在清洗样品池的同时就设置所需的实验温度(套管温度,一般较反应温度稍低),并输入样品的实际浓度以及实验数据文件名和储存路径等一系列参数(如注射时间,注射次数,注射间隔时间)。
④设置滴定实验,步骤同空白试验,只需将样品池中用于空白对照的缓冲液换成蛋白样品同时修改文件名(先准备样品池中的样品,后准备注射器中的样品)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page ▪ 3
灵敏度的提高
a
3Leabharlann istorySince the beginning of 1990s, the number of published papers related to ‘‘isothermal titration calorimetry ’’ has symptomatically increased due to rapid diffusion of new commercial calorimeters in the scientific community.
Page ▪ 4
a
4
history
During the decade of 1990, isothermal titration calorimetry has evolved from a specialist method to a widely used technique .
During the 2000’s, isothermal titration calorimetry was widely employed in the design and discovery of drugs and in addition to this, in this last decade an isothermal titration calorimeter with open cell was employed for the study of liquid mixtures .
Page ▪ 5
a
5
ITC
Page ▪ 6
a
6
在恒温下,注射器中的“配体”溶液滴定到包含“高分子”溶液的池中。当配体
注射到池中,两种物质相互作用,释放或吸收的热量与结合量成正比。当池中的
高分子被配体饱和时,热量信号减弱,直到只观察到稀释的背景热量。
Page ▪ 7
a
7
图形
Page ▪ 8
上图:
横坐标:时间
纵坐标:热功率
峰底与峰尖之间的峰面积为 每次注射时释放或吸收的总 热量。 下图:
横坐标:滴定物与样品溶液 的摩尔比
纵坐标:滴定产生的总热量
反应过程的结合等温曲线
a
8
ITC可以直接测量焓变△H, 结合常数Ka,而不对反应体 系产生影响,也不引入修饰 基团,因此测得的结果更加 可信
典型的ITC数据
结合位点数不同,平衡常数的物料平衡的表达公式是不同的
Page ▪ 11
a
11
Page ▪ 12
a
12
characteristics
▪ 它通过高灵敏度、高自动化的微量量热仪连续、准确地监 测和记录一个变化过程的量热曲线,原位、在线和无损伤 地同时提供热力学和动力学信息,它已经成为鉴定生物分 子间相互作用的首选方法。
▪ 可获得生物分子相互作用的完整热力学参数,包括结合常 数(Ka)、结合位点数(n)、摩尔结合焓(△H)、摩尔 结合熵(△S)、摩尔恒压热容(△Cp),和动力学参数 (如酶促反应的Km和kcat),用来表征生物分子间的相互作 用。
Page ▪ 13
a
13
独特特点:
– 样品用量小,方法灵敏度和精确度高(仪器最小可检测热功率2 nW,最小可 检测热效应0.125uJ,生物样品最小用量0.4ug,温度范围2 ℃ - 80 ℃,滴 定池体积(1.43 ml)。
等温滴定微量热法
(Isothermal Titration Calorimetry, ITC)
林杰
ITC
Isothermal titration calorimetry (ITC) is used to measure the heat adsorbed or released during changes in the composition of a system undergoing a titration process. 等温滴定量热技术(ITC)是一种监测由结合成分的添加而起始的任 何化学反应的热力学技术,即用一种反应物滴定另一种反应物,随着 加入滴定剂的数量的变化,测量反应体系温度的变化
配体溶液20次注射到ITC池的 蛋白溶液中。每个注射峰(上 图)下方的区域与注射所释放 的总热量相等。当这种综合的 热量相对添加到池中的配体摩 尔比作图时,就获得了相互作 用的完整结合等温线(下图)。 用单位点模型来验证数据。化 学计量、结合常数及焓的数值 都显示在框内。
Page ▪ 9
a
9
流程
1、微克级
3、配体浓度大于大分子浓度
1、确定合适的反应物浓度 2、准备样品 3、滴定收集数据
1、考虑反应物性质 1、2、设尽置量对避照免组稀释热 2、3、平抽行气试处验理 3、Origin软件
4、校正后的数据非线性回归得到热力学参数
5、分析模型
Page ▪ 10
a
10
模型分析
正确理解反应过程首先要理解模型给出的各种参数的正确意义。 根据模型给出的各种热力学参数确定反应的相关性质。
Page ▪ 2
a
2
history
➢built in the secondhalf of the 1960s to study chemical reactions.
➢During the1970s, the sensitivity of instruments was in the range of mJ, and other first applications were developed such as the study of (metal + ligand) complexes [8] and the adsorption of aromatic compounds by molecular sieves .