超分子结构化学

合集下载

超分子化学

超分子化学

一、超分子化学的概述1973年,D.J.Cram报道了一系列具有光学活性的冠醚,可以识别伯胺盐形成的配合物;分子识别的出现为这一新的化学领域注入了强大的生命力,之后它进一步延伸到分子间相互识别和作用,并广泛扩展到其它领域,从此诞生了超分子化学。

超分子化学的概念和术语是在1978年引入的,作为对前人工作的总结和发展。

1987年,Nobel化学奖授予了C.J.Pederson、D.J.Cram和J.-M.Lehn,标志着超分子化学的发展进入了一个新的时代,超分子化学的重要意义也因此被人们更多的理解。

[1]超分子化学是关于若干化学物种通过分子间相互作用,包括氢键、主客体作用、疏水疏水作用、静电作用、堆积等作用结合在一起构筑的、具有高度复杂性和一定组织性的整体化学超分子化学的定义可由下图所示图一:从分子化学到超分子化学:分子、超分子、分子和超分子器件由上图所示分子化学是基于原子间的共价键,而超分子化学则基于分子间的非共价键相互作用,即两个或两个以上的物质依靠分子间键缔合,所以超分子化学也可以被定义为分子之外的化学。

图二:分子与超分子由弱相互作用加和形成强相互作用,由各向同性通过定向组合(选择性)形成各向异性,这是分子化学和超分子化学的分界线。

超分子化学不是靠传统的共价键力,而是靠非共价键的分子间作用力,如范德华力,即由分子内的永久偶极、瞬间偶极和诱导偶极在分子间产生的静电力、诱导力和色散力的相互作用,此外还包括氢键力、离子键力、阳离子一二和叮一二堆集力以及疏水亲脂作用力等。

一般情况下,它是几种力的协同、加和,并且还具有一定的方向性和选择性,其总的结合力强度不亚于化学键。

正是这些分子间弱相互作用的协调作用(协同性、方向性和选择性决定着分子与位点的识别。

[2] 超分子化学并非高不可攀,有许多超分子结构都处于我们的日常生活中,如的结构类似于圆弓西方把轮烯比为东方的算盘,索烃是舞池中的一对舞伴,C60建筑物,环糊精和当今的激光唱片一样有同样的功能--储存和释放信息,DNA双螺旋则与早餐的麻花形状相似。

超分子化学

超分子化学

例3: 三苯基磷磺酸钠盐环糊精组装
三苯基磷磺酸单钠盐和
β- 环糊精相互作用,三 苯基磷磺酸钠盐被作为客体和环糊精发生了自组 装.
6、 超分子研究的基本问题
目前超分子化学研究涉及的核心问题是各种弱相互作 用的方向性和选择性如何决定分子间的识别及分子的 组装性质。其中包括更基本的科学问题,如弱相互作 用的本质是什么,它们之间的协同效应如何进行等等。 要解决这些问题则: (a)强理论研究,可以进一步认识弱相互作用的本质及 规律; (b)和通过组装与识别相互作用来构造高级结构、设计 功能器件及分子机器要加强研究。

自组装技术的重要作用主要体现在以下几方面:
(a)在合成材料或制备功能体系时,科技工作者可以在更广的 范围内选择原料; (b)自组装材料的多样性,通过自组装可以形成单分子层、膜、 囊泡、胶束、微管以及更为复杂的有机/无机、生物/非生物 的复合物等其多样性超过其他方法所制备的材料; (C)多种多样、性能独特的自组装材料将被广泛应用在光电子、 生物制药、化工等领域,并对其中某些领域产生未可预知的 促进作用; (d)自组装技术代表着一类新型的加工制造技术,对电子学等 有很大的促进作用。

3、超分子的结构化学
(1) 能量降低因素 超分子体系和其他化学体系一样,由分子形成稳 定超分子的因素,在不做有用功能时,可从热 力学自由焓的降低(△G<0)来理解: △G= △H-T△S △H为焓变,代表降低体系能量的因素; △S为体系熵增的因素

分子聚集在一起,依靠分子间的相互作用力,客体 间通过非共价键缔合作ห้องสมุดไป่ตู้形成。 主客体间的相互作用方式主要有以下几种,同时也 是降低超分子体系能量的主要因素:
分子识别主要为离子客体识别和分子客体 识别,依靠非共价键的分子作用力。

高二化学人教版选择性必修晶体结构与性质第四节超分子课件

高二化学人教版选择性必修晶体结构与性质第四节超分子课件

思考:碱金属离子或大或小,猜想冠醚是如何识别它们的? 冠醚环的大小与金属离子匹配,才能识别
冠醚是皇冠状的分子,可有不同大小的空穴适配不同大小的碱金属离子
O
O
O
O
O
O
18-冠醚-6的结构
不同冠醚的空腔尺寸不同,与不同的阳离子相匹配,从而实 现选择性结合。
冠醚 12-冠-4 15-冠-5 18-冠-6
C70
这个例子反映出来的超分子的特性被称为“分子识别”。
(2)分子识别——冠醚识别碱金属离子(如K+)。
冠醚是皇冠状的分子,有不同大小的空穴,能与正离子,尤其是碱金属 离子络合,并随环的大小不同而与不同的金属离子络合,利用此性质可以 识别碱金属离子
冠醚,是分子中含有多个-氧-亚甲基-结构单元的大环多醚。常见的冠醚 有15-冠-5、18-冠-6,冠醚的空穴结构对离子有选择作用,在有机反应中可 作催化剂。 猜想这些名称的含义
2. 微粒间作用力—非共价键,主要是 静电作用、范德华力和氢键、疏水作用 以及一些分子与金属离子形成的弱配位 键等。
3.结构特点:超分子是组成复杂的,有组织的分子聚集体,并保
持一定的完整性使其具有明确的微观结构和宏观特性。 【解析】电池正极材料主要含有LiCoO2及少量Al、Fe等,加入稀H2SO4溶解后铁、铝
Rb 应进速一率 步增分大析,(a)平图衡所向示气的体Li分Fe子PO数4减的小晶的胞方中向,移八动面,体即结平构衡和正四向面移体动结,构+平的衡数体目系均中为氨的质量分数增大,c项符合题意。
21-冠-7
Cs+
冠醚识别碱金属离子的应用
冠醚能与阳离子尤其是碱金属阳离子作用,并且随环的大 小不同而与不同的金属离子作用,将阳离子以及对应的阴离子 都带入有机溶剂,因而成为有机反应中很好的催化剂。

高中化学竞赛【次级键与超分子结构化学】

高中化学竞赛【次级键与超分子结构化学】

iv. 1,6-二氮双杂环[4,4,4]十四烷
N: 280.6pm :N
H+
252.6pm
N H+ N
-e-
229.5pm
N +N
-e-
N+ 153.2pm+N
2个N原子范德华半径和为300pm
2.金属原子与非金属原子间的次级键
i. V2O5 V2O5是层状结构氧化物, 在此结构中V原子 与5个O原子配位, 还和邻层中的1个O原子以次级
例2. 在冰中每个水分子都按四面体方式 形成2个O—H…O及2个O…H—O氢键, 其 中, O—H为96pm, H…O为180pm, 计算氢 和氧原子周围的键价和. R0=87pm, N=2.2。
解. O—H的键价: S=(96/87)-2.2=0.8;
O…H的键价: S=(180/87)-2.2=0.2.
+120+140=369pmX. H Y
iv. 在氢键中,
α R 角通常在100~
140°之间.
V. 在通常情况下, 氢键中的氢是二配位的, 但 在有些氢键中, 也可以是三配位或四配位的. 如:
OC
NH OC
OC NHOC
OC
Vi. 大多数情况下, 只有一个H原子是直接指
向Y上的孤对电子, 但是也有例外. 如在氨晶体中,
I.D.Brown等提出的键价理论是了解键的强 弱的一种重要方法:根据化学键的键长是键的强 弱的一种量度的观点,认为由特定原子组成的化 学键,键长值小,键强度高、键价数值大;键长 值大,键强度低、键价数值小。他们根据实验测 定所积累的键长数据,归纳出键长和键价的关系。 键价理论的核心内容主要有两点.
键结合. 如下图:

超分子结构

超分子结构
配位化合物中具有18电子组态的金属原子容易形成这种氢键。
18 电子组态:离子的最外电子层有 18 个电子,外层电子组态。 18+2 电子组态:离子的次外电子层有 18 个电子,最外电子层有 2 个电子
16
③ X— H· · · H— Y二氢键
比较下面等电子体系的熔点:
H3C— CH3 -181°C H3C— F -141°C H3N— BH3 +104°C
10
(1)静电作用 盐键: 正负离子 R-COO-····H3N+-R 离子-偶极子作用: 正负基团
偶极子-偶极子作用:
11
12
(2)氢键 常规氢键 X-H····Y X, Y = F, O, N, C, Cl; 非常规氢键 X-H···· X-H····M X-H····H-Y
13
非常规氢键
14
15
②、X— H…M氢键
M是一个富电子过渡金属原子,它具有充满的d轨道。特点: (1) 桥连的H原子以共价键和高电负性的X原子结合。 (2) 金属原子含有富电子,为后过渡元素,具有充满的d轨道。 (3) 和自由配体相比,它的1H NMR吸收峰移向低场,即化学 位移增大。
(4) 分子间的X— H…M相互作用的几何特征近似为直线。
9
3、分子间作用及其强度
在超分子化学中,不同类型的分子间相互作用是可 以区分的,根据他们不同的强弱程度、取向以及对距离和 角度的依赖程度,可以分为:金属离子的配位键、氢键、
π-π堆积作用、静电作用和疏水作用等。
分子间作用强度分布由π-π堆积作用及氢键的弱到中等, 到金属离子配位键的强或非常强,这些作用力成为驱动超 分子自组装的基本方法。
在生物过程中,基质和蛋白质受体的结合,酶反应中的锁钥关系,蛋白

超分子化学和自组装

超分子化学和自组装

超分子化学和自组装超分子化学是一门研究分子之间相互作用及其在构建高级结构和功能的化学领域。

自组装是其中的一个重要概念,指分子通过自身相互作用而形成特定结构的过程。

本文将探讨超分子化学和自组装的基本概念、应用以及未来发展前景。

一、超分子化学的基本概念超分子化学是对分子间非共价相互作用的研究,这些非共价相互作用包括氢键、范德华力、静电相互作用等。

通过这些相互作用,分子可以形成各种复杂的结构,如包结构、螺旋结构、层状结构等。

超分子化学将这些有机分子组装成功能更强大、结构更稳定的超分子结构。

二、自组装的基本原理自组装是超分子化学中的一种重要现象,指分子在特定条件下通过非共价相互作用自发地形成特殊结构的过程。

自组装可以发生在溶液中、固体表面上甚至是气相中。

它可以分为两种类型:均相自组装和异相自组装。

均相自组装发生在单一溶剂中,而异相自组装则涉及两个或多个不相溶的相。

三、超分子化学的应用超分子化学在材料科学、生物学、医药领域等都有广泛的应用。

1. 材料科学超分子材料具有结构多样性、功能多样性和可调控性,因此在材料科学领域有着广泛的应用。

通过控制超分子自组装过程,可以构筑具有特定性质的材料,如液晶、聚合物、金属有机框架(MOF)等。

这些材料具有优异的光学、电学、磁学等特性,可用于制备柔性显示器、传感器、高效催化剂等。

2. 生物学超分子化学在生物学领域的应用主要集中在生物传感和药物传递方面。

通过基于超分子自组装的生物传感技术,可以实现对生物分子的高灵敏度检测,如蛋白质、DNA等。

另外,超分子自组装还可以用于药物的控释和靶向传递,提高药物治疗效果并减少副作用。

四、超分子化学的未来发展前景当前,超分子化学在各个领域都受到了广泛的关注,但许多挑战和机遇仍然存在。

1. 新型功能材料的设计和合成未来的超分子化学将继续致力于设计和合成更加智能和高效的功能材料。

通过精确控制分子之间的相互作用,可以实现更精确的材料性能调控,并推动材料科学的发展。

超分子化学的基础与应用

超分子化学的基础与应用

超分子化学的基础与应用超分子化学是化学领域中的一个重要分支,是指通过利用分子之间的非共价相互作用,构建具有特定功能和结构的超分子结构。

超分子化学的研究范围非常广泛,包括分子识别与分离、分子催化、分子自组装、分子动态行为等方面。

本文将就超分子化学的基础理论和应用研究进行介绍与探讨。

一、超分子化学的基础理论超分子化学的基础理论主要涉及分子识别、分子自组装、分子动态行为等方面。

(一)分子识别分子识别是超分子化学的一个重要基础,它指的是通过分子间的非共价相互作用实现在混合物中具有特异性的分子的选择性识别和偏聚。

因此,分子识别与分子识别的选择性、特异性、灵敏度成正比。

主要的分子识别非共价相互作用包括疏水相互作用、范德华吸引力、氢键、离子偶极相互作用等等。

(二)分子自组装分子自组装是超分子化学的另一个重要理论基础,其主要是利用分子之间的非共价相互作用,实现将分子有序排列起来,形成具有一定结构和性质的超分子体系。

常用的分子自组装组合方式包括疏水效应、氢键和范德华力等。

(三)分子动态行为分子动态行为是超分子化学的一个重要基础,它主要涉及分子在空间中的位置和空间构象的变化。

分子动态行为与溶液环境、反应条件等因素有一定的相关性。

分子动态行为对应用领域的高效催化和分子识别等研究有很大的作用。

二、超分子化学的应用研究超分子化学的应用涉及多个领域,包括材料、生物、能源等。

(一)材料超分子化学在材料领域中应用广泛,许多高分子材料、功能性材料和纳米材料都利用了这一理论。

例如,通过分子识别来构建合成材料的生物亲和性、选择性识别能力和分离纯化等能力;利用分子自组装来构建新型氢键自配合聚合物,为高性能聚合物材料研究提供了新的思路等。

(二)生物超分子化学在生物领域中也有广泛的应用,例如药物分子识别和细胞图案成像。

生物领域中典型应用,就是通过分子识别来构建分子探针,实现对生物分子如DNA、 RNA、蛋白质、酶等的高灵敏性、特异性探测和定量分析。

超分子化学概念

超分子化学概念

超分子化学概念
超分子化学是一门研究分子之间的相互作用以及这些相互作用所形成的稳定结构和功能的学科。

在超分子化学中,重点研究分子间的非共价相互作用,如氢键、范德华力、离子作用等,并利用这些相互作用来设计、合成和调控具有特定功能的超分子体系。

超分子化学的重要概念包括分子识别、自组装和分子承载。

分子识别是指分子之间通过非共价相互作用,如氢键和范德华力,实现对特定配体结构的识别和选择性结合。

自组装是指在适当的条件下,分子通过非共价相互作用自发地组装成稳定的超分子结构,如聚集体和晶体。

分子承载是指一种分子能够通过与其他分子的相互作用形成一种容器结构,使其他分子能够进入其中并被固定或释放出来。

超分子化学的研究内容涉及多个领域,如有机化学、物理化学、生物化学等,其应用范围也非常广泛。

超分子化学的研究成果已经在材料科学、药物设计、化学传感器、催化剂设计等领域产生了重要的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

适合的离子
(直径 / pm)
Li+(152) Na+(204) K+(276), Rb+(304) Cs+(334)
3.1冠醚和穴状配体的识别和组装
(2)四面体识别 三环氮杂冠醚中N原子的四面体分布,对同
样大小的K+和NH4+,倾向于和NH4+结合。
3.2氢键识别和自组装
(1)DNA D!NA中的碱基对就是依靠形成最多的氢键、几何上的
(3)Fe-N配位键组装成的超分子
3.3配位键的自组装
(4) Mo-C和Mo-N键组装成的超分子
3.4疏水作用的识别和组装
环糊精内壁为疏水性。 当环糊精接上一个疏水基团(如Ph-C4H9)这个
基团通过识别内壁的疏水性,并自组装成长链。
4超分子化学的应用
超分子体系在自然界中广泛存在, 而且发 挥着复杂多样的作用。人工合成的超分子可 以模拟自然界中的超分子体系实现多种功能, 如材料转化、能量转化、信号传感、分子传 输、信息传导与转换、模拟酶的分子转换作 用以及分子水平的微制造手段等。下面从分 子器件、生物模拟和在分析化学上的应用3个 方面介绍超分子体系的功能和应用。
有序水
无序水
2.3锁和钥匙原理
锁和钥匙原理是指受体和底物之间在能量效应和 熵效应上互相配合、互相促进,形成稳定的超分 子体系的原理。 锁和钥匙原理是超分子体系识别记忆功能和专一 选择功能的结构基础。 分子间非共价键相互作用的能量效应很小,它们 单个作用的相对强度都很弱,但在受体和底物相 互匹配时,一方面形成分子间相互作用,从而达 到可观的能量降低响应;另一方面通过大环效应 和疏水空腔效应等,促进体系熵值的增加。
1.超分子化学的形成与发展
超分子化学是研究两种以上的化学物种通过分 子间力相互作用缔结成为具有特定结构和功能 的超分子体系的科学。 简言之:超分子化学是研究多个分子通过非共 价键作用而形成的功能体系的科学。
1.超分子化学的形成与发展
进入20世纪70年代,由于大环化学、胶体化学、 单分子膜和液晶等方面的研究,人们重新对分 子间相互作用产生了兴趣。当然关心的不再是 分子间相互作用的存在以及它们对材料性能的 影响,而是利用存在于不同分子中的“信息”, 即分子间相互作用,实现分子间的识别和自组 装,形成具有一定功能的超分子。这些工作可 表示为:
3.分子识别和自组装
3.1冠醚和穴状配体的识别和组装 3.2氢键识别和自组装 3.3配位键的识别和自组装 3.4疏水作用的识别和组装
3.1冠醚和穴状配体的识别和组装
(1)球形离子大小识别
冠醚
[12]C4 [15]C5 [18]C6
空腔直径 / pm
120~150 170~220 260~320
[21]C7 340~430
匹配。在生命体系中是最重要的一种氢键识别。
DNA的氢键识别和自组装是20世纪自然科学最伟大的发现之一。
3.2氢键识别和自组装
(2)超分子合成子 !
合成子:用已知的或想象的合成操作所能形成或 组装出来的分子中的结构单位。
超分子合成子:用已知的或想像的、包含分子间相 互作用的合成操作所能形成的超分 子中的结构单位。
2.1能量降低因素
分子聚集在一起,依靠分子间的相互作用力,客体 间通过非共价键缔合作用形成。 分子间的相互作用方式主要有以下几种,同时也是 降低超分子体系能量的主要因素: (a)静电作用:静电作用包括离子—离子作用,
离子—偶极子作用等 (b)氢 键: 包括X—H—Y(X 、Y=F 、O 、N )
通常把氢键称为“超分子中的万能作用”

3.3配位键的自组装
过渡金属的配位几何学和配位体相互作用位置的方 向性特征,提供了合理地组装成各类超分子的蓝图。 (1)大环超分子(Mo-O配位键)
[Mo176O496(OH)32(H2O)80]·(60050)H2O
3.3配位键的自组装
(2)Zn-N配位键形成的分子盒
3.3配位键的自组装
利用氢键的识别,设计超分子合成子是超分子化学 的重要内容。 下面列出一些有代表性的超分子合成子。
3.2氢键识别和自组装

3.2氢键识别和自组装
(3)实例

中性分子识别
3.2氢键识别和自组装
氢键识别自组装成分子网球

3.2氢键识别和自组装
氢键识别组装成分子饼

3.2氢键识别和自组装
氢键识别和 ··· 堆叠 联合作用
展望
由于超分子学科具有广阔的应用前景和重要的理论意 义, 超分子化学的研究近十多年来在国际上非常活跃。 超分子化学已发展成了超分子科学, 它涉及的领域极其 广泛, 不仅包括了传统的化学如无机化学、有机化学、 物理化学、分析化学等, 还涉及材料科学、信息科学和 生命科学等。超分子化学的兴起与发展促进了许多相 关学科的发展, 也为它们提供了新的机遇。可以确信, 超分子科学已成为21 世纪新思想、新概念和高新技术 的重要源头。
4超分子化学的应用
4.1分子器件 4.2生物模拟 4.3在分析化学上的应用
4.1分子器件
分子器件是由超分子构筑的结构精确至分子水 平的功能性材料, 包括分子电子器件、分子质子 器件、分子计算机和分子机器等。 如将环糊精衍生物固定在电极上, 用来传感特殊 的客体分子。
4.2生物模拟
模拟生物体系的本质并开发具有更高功能的人工超分 子体系的科学叫做生物模拟化学。功能开发的内容包 括物质运输、信息传输和转化、能量转化和物质转化 (酶的功能)等。根据离子传输的机理可以利用超分子 化学构筑类似于生物体内的离子通道
2.超分子稳定形成的因素
2.1能量降低因素 2.2熵增加因素 2.3锁和钥匙原理
2.1能量降低因素
超分子体系和其他化学体系一样,由分子 形成稳定超分子的因素,在不做有用功能 时,可从热力学自由焓的降低(△G<0)来 理解:
△G= △H-T△S △H为焓变,代表降低体系能量的因素; △S为体系熵增的因素
4.3在分析化学上的应用
Shinkai 等在研究硼酸衍生化卟啉的分子组装行为, 并用于测定糖分子构型方面取得了许多成果.例如:四 (4- 硼酸基苯基)卟啉(TBPP)在水溶液中和糖分子存在 下由π-π堆积成的聚集体, 圆二色谱(CD)的激子偶合带 (ECB)符号, 对糖分子的绝对构型有专一性, 可检测糖 分子的绝对构型等等
2.1能量降低因素
(c)M-L配位键:金属原子和配位体分子间形成 的各种各样的M-L配位键,其中以共价配位键 更为普遍和重要。 (d)疏水效应:溶液中疏水基团或油滴互相聚集, 增加水分子间氢键的数量。 (e)诱导偶极子—偶极子的作用 (f)π—π堆叠作用
面对面作用
边对面作用ຫໍສະໝຸດ 2.2熵增加因素螯合效应:由螯合体形成的配位化合物,要比相同 的配位原子和相同的配位数的单啮配位体所形成的 配位化合物稳定。 大环效应:与螯合效应相关,在能量因素和熵因素 上都增进了体系的稳定性。 疏水空腔效应:疏水空枪效应指疏水空腔所呈现的 疏水效应或熵效应。
超分子化学
目录
1.超分子化学的形成与发展 2.超分子稳定形成的因素 3.分子识别和自组装 4.超分子化学的应用
1.超分子化学的形成与发展
1987年诺贝尔奖得主在获奖演讲中首次提出“超 分子化学”的概念。
C.Pedersen发现冠醚化合物;J-M.Lehn 发现穴 醚化合物并提出超分子概念;D.Cram主客体化 学先驱者。此后十多年, 超分子化学获得很大 发展。
2.3锁和钥匙原理
锁和钥匙原理示意图
3.分子识别和自组装
分子识别:一个底物和一个接受体分子各自在其 特殊部位具有某些结构,适合于彼此成键的最佳 条件,互相选择对方结合在一起。 超分子自组装:分子之间依靠分子间相互作用, 自发的结合起来,形成分立的或伸展的超分子。
识别和自组装的根据是: 电子因素:各种分子间作用力得到发挥 几何因素:分子的几何形状和大小互相匹配
相关文档
最新文档