《核反应堆热工分析》复习资料大全
核反应堆物理分析--考试重点复习资料及公式整理

核反应堆物理复习分析资料整理中子核反应类型:势散射、直接相互作用、复合核的形成微观截面:一个粒子入射到单位面积内只含一个靶核的靶子上所发生的反应概率,或表示一个入射粒子同单位面积靶上一个靶核发生反应的概率。
宏观截面:表征一个中子与单位体积内原子核发生核反应的平均概率。
中子通量:表示单位体积内所有中子在单位时间内穿行距离的总和。
核反应率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也逐渐减小,这种现象称为多普勒效应或多普勒展宽。
截面随中子能量的变化规律:1)低能区(E<1eV),吸收截面随中子能量减小而增大,大致与中子的速度成反比,亦称吸收截面的1/v区。
2)中能区(1eV<E<10keV),在此能区许多重元素核的截面出现了许多峰值,这些峰一般称为共振峰。
3)快中子区(E>10keV),截面一般都很小,通常小于10靶,而且截面随能量变化也趋于平滑。
中子循环:快中子倍增系数ε:由一个初始裂变中子所得到的,慢化到U-238裂变阈能以下的平均中子数。
逃脱共振几率P:慢化过程中逃脱共振吸收的中子所占的份额。
热中子利用系数f:(燃料吸收的热中子数)/(被吸收的全部热中子数,包括被燃料,慢化剂,冷却剂,结构材料等所有物质吸收的热衷子数)。
有效裂变中子数η:燃料每吸收一个热中子所产生的平均裂变中子数。
快中子不泄漏几率Vs:快中子没有泄漏出堆芯的几率。
热中子不泄漏几率Vd:热中子在扩散过程中没有泄漏出堆芯的几率。
四因子公式:=εPfη六因子公式:K=εPfηVsVd直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里发射出来,而中子却留在了靶核内的核反应。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反应过程。
非弹性散射:中子首先被靶核吸收而形成处于激发态的复合核,然后靶核通过放出中子并发射γ射线而返回基态。
核反应堆热工分析试题(西安交大)

5. 试导出α ,x 与 S 的关系式
1 vf 1 x 1 S v x g
式中,α 为空泡份额,x 为含汽量,S为滑速比。
三、 (20 分)何谓积分热导率,并以棒状燃料元件为例,推倒出积分热导率的表 达式为: t0 qv 2 tu k u dt 4 ru 其中,tu 是燃料芯块的表面温度, t0 是燃料芯块的中心温度,qv 是体积释热率。 四、计算题(20 分) 某压力壳型轻水堆的棒束燃料组件为纵向流过的水所冷却,冷却水的平均温 度为 300℃,平均流速为 4 米/秒,燃料元件的平均热流量为 1430KW/米 2,工作 压力为 14.7MPa,栅格为正方形(如图 1 所示),燃料元件直径为 10 毫米,包壳厚度 为 0.5 毫米,燃料芯块外径为 8.8 毫米,栅距为 13 毫米。求: (1) 平均放热系数及元件外表面的平均温度。 (2) 包壳内表面温度和燃料中心温度。 已 知 : Nu 0.0306 Re 0.8 Pr 0.4 , 在 该 压 力 下 , k f 0.565W / m. C ,
C , ku 3.5W / m . C ,间 f 0.1226 10 6 m 2 / s, Pr 0.864 , kc 13.0W / m .
C ), 隙等效传热系数为 hg 5678W /(m 2 . 燃料和包壳的热导率随温度的变化可程与核技术414243期中期末一名词解释每题3分共30摩擦倍增因子10自然循环二简答题每题6分共30在一垂直的均匀受热圆管中过冷水由进口向上流动在出口处处于过热状态叙述水在圆管中流动时所经历的两相流的流型并简要介绍它们的特点
西安交通大学考试题
课
学
核反应堆工程复习参考题

核反应堆工程复习参考题.1、压水堆与沸水堆的主要区别是什么?沸水堆上使用一个电路,压水堆存有两个电路;沸水堆上由于堆芯顶部必须加装汽水分离器等设备,故控制棒Bagalkot堆芯底部向上填入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部步入堆芯;沸水堆上具备较低的运转压力(约为70个大气压),冷却水在堆上内以汽液形式存有,压水堆一回路压力通常超过150个大气压,冷却水不产生融化。
2、详细描述一种常用堆型的基本工作原理?沸水堆(boilingwaterreactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。
压水堆(pressurizedwaterreactor)字面上看看就是使用高压水去加热核燃料的一种反应堆,其工作原理为:主泵将120~160个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环。
3、重水堆上的燃料天然度为什么可以比压水堆的高,哪种堆型对燃料的第四枚性更好?因为卸料燃耗较浅,用重水(d2o,d为氘)作慢化剂,其热中子吸收截面约为轻水(h2o)的1/700,慢化中子能力不如后者,需要更多的碰撞次数,可直接利用天然铀作核燃料。
4、快中子堆上和热中子堆上较之存有哪些优缺点?优:快中子堆没有慢化剂,所以体积小,功率密度高。
失:快中子堆上必须存有较低的核燃料天然度,初装量也小。
快中子堆上燃料元件加工及乏燃料后处理建议低,快中子紫外光通量率为小,对材料建议严苛。
平均寿命比热中子堆短,掌控困难。
反应堆热工期末复习资料

1.比较成熟的动力堆主要有哪些,它们各有什么特点?1)压水堆加压轻水作的冷却剂,控制棒为棒束型结构,正常运行水处于欠热状态;核燃料为低富集度的二氧化铀陶瓷燃料,两回路布置,一回路压力15.5Mpa,二回路压力7.75Mpa;2)沸水堆加压轻水作冷却剂和慢化剂控制棒截面为十字形堆芯中的水处于饱和沸腾状态蒸汽直接推动气轮机做功;3)重水堆重水堆慢化剂和冷却剂天然铀作核燃料一个或两个环路组成2.反应堆热工分析主要包括哪些内容主要是分析燃料元件内的温度分布,冷却剂的流动和传热特性,预测在各种工况下反应堆的热力参数,以及在各种瞬态和事故工况,压力,温度,流量等参数随时间的变化过程3.试叙述堆的热源的由来及其分布堆的热源来自核裂变过程中释放出来的能量,每次裂变释放出来的总能量平均值为200Mev,其中裂变碎片占总能量的84%,在燃料元件内转换为热能;裂变中子的热量分布取决于它的平均自由程,主要在慢化剂中;伽马射线(瞬发缓发)的能量分别在堆芯,反射层,热屏蔽和生物屏蔽中装化为内能,极少部分穿出堆外;高能贝塔粒子能量大部分在燃料元件内转化为热能4.影响堆功率分布的因素有哪些1)燃料布置,均匀装载燃料堆芯功率分布非常不均匀,平均燃耗低,分区装载燃料可以使堆芯功率得到展平,提高了整个堆的热功率,同时也提高了平均热耗。
2)控制棒,均匀的布置在具有高中子通量的区域,既有利于提高控制棒的效率也有利于径向中子通量的瓶平,但对轴向功率有不利的影响:堆芯寿期初功率峰偏向上部。
3)水隙及空泡,水隙引起的附加慢化作用,使其周围元件的功率升高,从而增大了功率分布的不均匀程度,空泡对中子慢话减弱,会导致堆芯反应性下降5.控制棒的热源:1.吸收堆芯的γ辐射;2.控制棒本身吸收中子的(n. γ)和(n. α)反应。
6.慢化剂产生的热量:1.裂变中子的慢化;2.吸收裂变产物放出的β粒子的一部分能量;3.吸收各种γ射线的能量。
7.热量从堆芯输出依次经过导热、对流换热和输热三个过程。
第七章讲义核反应堆热工

1.2、包壳材料(1)
对包壳材料的要求:
具有良好的核性能,也就是中子吸收截面要小,感生放射性要 弱。
具有良好的导热性能。 与核燃料的相容性要好,也就是说在燃料元件的工作状态下, 包壳与燃料的界面处不会发生使燃料元件性能变坏的物理作用和化 学反应。 具有良好的机械性能,即能够提供合适的机械强度和韧性,使 得在燃耗较深的条件下,仍能保持燃料元件的机械完整性。 应有良好的抗腐蚀能力。 具有良好的辐照稳定性。 容易加工成形,成本低廉,便于后处理。
核燃料的形态: 固态:实际应用的核燃料 液态:未达到工业应用的程度
1.1、核燃料(2)
对固体核燃料的要求:
具有良好的辐照稳定性,保证燃料元件在经受深度 燃耗后,尺寸和形状的变化能保持在允许的范围之内
具有良好的热物性(熔点高,热导率大,热膨胀系 数小),使反应堆能达到高的功率密度
在高温下与包壳材料的相容性好 与冷却剂接触不产生强烈的化学腐蚀 工艺性能好,制造成本低,便于后处理
1.2、包壳材料(2)
包壳材料: 锆合金:特点、物性(自修) 不锈钢和镍基合金
水堆中应用最普遍的是锆-2和锆-4合金 快堆中主要考虑高温性能和抗辐照损伤性能,目前多采用奥氏体不 锈钢,有时也使用镍基合金。
1.3、冷却剂(1)
对冷却剂的要求:
中子吸收截面小,感生放射性弱。 具有良好的热物性(比热大、热导率大、熔点低、沸点高, 饱和蒸汽压低等),以便从较小的传热面积带走较多的热量。 粘度低,密度高,使循环泵消耗的功率小。 与燃料和结构材料相容性好。 良好的辐照稳定性和热稳定性。 慢化能力与反应堆类型相匹配。 成本低,使用方便,尽可能避免使用价格昂贵的材料。
二、反应堆热工分析的内容
1、堆芯材料和热物性 2、反应堆的热源 3、稳态热工分析 4、瞬态热工分析
核反应堆热工分析

核科学与技术学院
2 堆芯功率的分布及其影响因素
轻水作慢化剂的堆芯中,水隙的存在引起附加慢化作 用,使该处的中子通量上升,提高水隙周围元件的功 率,增大了功率分布的不均匀程度
影
响
燃料布置
功
率
分
控制棒
布
的
因 水隙及空泡
素
克服办法:采用棒束型控制棒组件
核科学与技术学院
2 堆芯功率的分布及其影响因素
轻水作慢化剂的堆芯中,水隙的存在引起附加慢化作 用,使该处的中子通量上升,提高水隙周围元件的功 率,增大了功率分布的不均匀程度
整个堆芯的 热功率
计入位于堆 芯之外的反 射层、热屏 蔽等的释热 量
R f N f 正比 Nc 1.60211010 Fa Ef N f Vc
qv Fa E f N f
Nt Nc / Fa (qvVc )106 / Fa
106 E f N f Vc
核科学与技术学院
2 堆芯功率的分布及其影响因素
核科学与技术学院
1 核裂变产生能量及其分布
裂变碎片的动能 约占总能量的 84%
裂变能的绝大部 分在燃料元件内 转换为热能,少 量在慢化剂内释 放,通常取 97.4% 在 燃 料 元 件内转换为热能
核科学与技术学院
1 核裂变产生能量及其分布
不同核素所释放出来的裂变能量是有差异的,一般认为取
Ef 200MeV
核科学与技术学院
2 堆芯功率的分布及其影响因素
非均匀堆栅阵
用具有等效截面的圆来代替原来的正方形栅元 假设热中子仅在整个慢化剂内均匀产生
运用扩散理论,燃料元件内热中子通量分布的表达式:
AI0 (K0r)
若燃料棒表面处的热中子通量为 ,则在 s s,则:
反应堆热工水力期末复习资料

反应堆热工复习第一章一、核能的优缺点1、优点:核能对环境的污染较少;不产生二氧化碳;能量密度高;运输成本低;运行时间长,不需要中途加料;热能产生不需要空气;2、缺点:产生大量的放射性物质;热效率低;不便于调峰;潜在危险大;二、比较成熟的动力堆型有那些,他们各有什么特点?压水堆:用轻水做冷却剂和慢化剂,冷却剂在流过堆芯时一般不发生饱和核态沸腾。
沸水堆:用轻水做冷却剂和慢化剂,堆芯中的水处于饱和沸腾状态,一回路工作压力比压水堆低很多,没有蒸汽发生器。
重水堆:使用重水做慢化剂,使用天然铀作为燃料,冷却剂系统可由一或两个回路组成。
三、反应堆热工分析主要包括那些内容?分析燃料原件内的温度分布、冷却剂的流动和传热特性、预测在各种运行工况下反应堆的热力参数,以及在各种瞬态和事故工况,压力、温度、流量等热力参数随时间的变化过程。
四、第四代反应堆有哪些优点?有哪6种第四代反应堆堆型?第二章一、影响堆功率分布的因素有哪些?试以压水堆为例简述他们各自对堆功率分布的影响。
因素:燃料布置、控制棒、水隙及空泡、燃料自屏效应燃料布置:通过合理布置不同富集度的燃料可以有效的展平堆芯功率分布,提高反应堆热功率。
控制棒:合理的布置有利于堆芯径向功率的展平,但给轴向功率分布带来不利的影响。
水隙及空泡:水隙引起的附加慢化作用使得该处的中子通量上升,水隙周围的燃料原件功率上升。
而空泡中蒸汽的密度比水小得多,慢化作用弱,其会导致周围燃料原件功率下降。
燃料自屏效应:热中子主要被棒外层燃料吸收,造成燃料块里层的燃料核未能充分有效地吸收热中子,使得燃料块内层功率较低。
二、反应堆在停堆后为什么还要继续冷却?停堆后的热源由哪几部分组成?他们各具有什么特点?1、因为反应堆停堆后反应堆会由于剩余中子引发裂变或是裂变产物的衰变等原因继续产热。
2、由燃料棒内储存的显热、剩余中子引发的裂变热,以及裂变产物、中子俘获产物的衰变热组成。
3、显热和剩余中子的裂变热将在30S之内传出,而衰变热将在停堆后的较长时间内持续产生,其功率随停堆时间的增加而逐渐减少。
反应堆热工资料

第一章核能发电原理及反应堆概述第1节核电厂工作基本原理1.核反应堆2. 热交换器3. 蒸气涡轮机4. 发电机5. 冷凝器第2节反应堆的分类(1)按用途分:实验堆:用于实验研究;生产堆:专门用来生产易裂变物质或聚变物质;动力堆:用作动力源(2)按引起堆内大部分裂变的中子能量分。
热中子堆:En< 1eV;中能中子堆:1eV <En< 1keV;快中子堆:En> 1keV。
(3)按核燃料状态分。
固体燃料堆;液体燃料堆(压水堆、沸水堆);重水堆(D2O );(4)按慢化剂和冷却剂种类分. 轻水堆(H2O)石墨气冷堆;钠冷快中子堆。
动力核反应堆组成及功能(1)堆芯——实现链式裂变反应堆区域。
包括:核燃料元件、慢化剂、冷却剂、控制元件、中子源等。
(2)反应堆控制系统——保证反应堆能安全地实现启动、停堆、功率调节。
包括:控制棒及其驱动系统等。
(3)回路冷却系统——提供足够的冷却剂流量以带走堆芯的裂变释热,并传递热动力产生系统。
包括压力容器、主泵等。
(4屏蔽——吸收、减弱来自堆芯的辐射,保护周围人员和部件。
(5)动力产生系统——将一回路的热能转变为动力。
如汽轮机。
(6)辅助系统——保证冷却剂系统及动力系统的正常运行。
包括:余热导出系统、冷却剂净化系统、放射性废液处理系统、废气净化系统等。
(7)安全设施——保证事故情况下提供必要的冷却、密闭放射性物质,避免环境污染如安全壳。
)第3节压水堆系统压力:15~16 Mpa冷却剂入口温度:300℃,出口温度:330℃冷却剂流量:62000 t/h燃料装量:90 t (电功率1000MWe)最大燃料温度:1780 ℃UO2燃料富集度:2.0~4.0%转化比:0.5第4节沸水堆系统压力:7 Mpa冷却剂入口温度:260~270℃,出口温度:280℃冷却剂流量:47000 t/h燃料装量:140 t (电功率1000MWe)最大燃料温度:1830 ℃UO2燃料富集度:2.0~3.0%转化比:0.5沸水堆核电厂的特点(与压水堆相比):比功率密度较低,燃料装载量较大,总投资略大;压力容器厚度减少、尺寸变大,制造成本相当;采用直接循环,系统比较简单,回路设备少,易于加工制造;采用喷射泵循环系统,功率调节方便,且使压力容器开孔直径减小,降低了失水事故可能性及严重性;放射性物质直接接触汽轮机、冷凝器等设备,对发电机组要求高,污染范围较大,设计、运行和维修不便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论(简答)1. 核反应堆分类:按中子能谱分快中子堆、热中子堆按冷却剂分轻水堆(压水堆,沸水堆)、重水堆、气冷堆、钠冷堆按用途分研究试验堆:研究中子特性、生产堆: 生产易裂变材料、动力堆:发电舰船推进动力2.各种反应堆的基本特征:3.压水堆优缺点:4.沸水堆与压水堆相比有两个优点:第一是省掉了一个回路,因而不再需要昂贵的蒸汽发生器。
第二是工作压力可以降低。
为了获得与压水堆同样的蒸汽温度,沸水堆只需加压到约72个大气压,比压水堆低了一倍。
5.沸水堆的优缺点:6.重水堆优缺点:优点:●中子利用率高(主要由于D吸收中子截面远低于H)●废料中含235U极低,废料易处理●可将238U 转换成易裂变材料238U + n →239Pu239Pu + n →A+B+n+Q(占能量一半)缺点:●重水初装量大,价格昂贵●燃耗线(8000~10000兆瓦日/T(铀)为压水堆1/3)●为减少一回路泄漏(因补D2O昂贵)对一回路设备要求高7.高温气冷堆的优缺点:优点:●高温,高效率(750~850℃,热效率40%)●高转换比,高热耗值(由于堆芯中没有金属结构材料只有核燃料和石墨,而石墨吸收中子截面小。
转换比0.85,燃耗10万兆瓦日/T(铀))●安全性高(反应堆负温度系数大,堆芯热容量大,温度上升缓慢,采取安全措施裕量大)●环境污染小(采用氦气作冷却剂,一回路放射性剂量较低,由于热孝率高排出废热少)●有综合利用的广阔前景(如果进一步提高氦气温度~900℃时可直接推动气轮机;~1000℃时可直接推动气轮机热热效率大于50%;~1000-1200℃时可直接用于炼铁、化工及煤的气化)●高温氦气技术可为将来发展气冷堆和聚变堆创造条件8.钠冷快堆的优缺点:优点:●充分利用铀资源239Pu + n →A+B+2.6个n238U + 1.6个n →1.6个239Pu (消耗一个中子使1.6个238U 转换成239Pu )●堆芯无慢化材料、结构材料,冷却剂用量少●液态金属钠沸点为895℃堆出口温度可高于560 ℃缺点:●快中子裂变截面小,需用高浓铀(达~33%)●对冷却剂要求苛刻,既要传热好又不能慢化中子,Na是首选材料,Na是活泼金属,遇水会发生剧烈化学反应,因此需要加隔水回路9.各种堆型的特点、典型运行参数第二章堆芯材料选择和热物性(简答)1.固体核燃料的5点性能要求:教材14页2.常见的核燃料:金属铀和铀合金、陶瓷燃料、弥散体燃料3.选择包壳材料,必须综合考虑的7个因素:包壳材料选择•中子吸收截面要小•热导率要大•材料相容性要好•抗腐蚀性能 •材料加工性能 •材料机械性能 •材料抗辐照性能只有很少材料适合制作燃料包壳,铝、镁、锆、不锈钢、镍基合金、石墨。
目前在压水堆中广泛应用是锆合金包壳。
4.常见的包壳材料:锆合金、不锈钢和镍基合金5.选择冷却剂要考虑的7个要求:冷却剂应有良好的导热性能和小的中子吸收截面,它与结构材料应有良好的相容性。
冷却剂的化学稳定性要好,能在较高的温度下工作,以获得较高的热效率,价格应该便宜,使用安全。
有时冷却剂和慢化剂用同一种物质。
冷却剂将堆芯热量带出堆外以供利用,本身被冷却返回堆内重新循环6.常见的冷却剂:水和重水、钠、氦气7.选择慢化剂要考虑的要求及常见的慢化剂:教材24-25页第三章 反应堆稳态工况下的传热计算(简答+计算)1.计算: 传热计算(热传导的计算:傅里叶定律) 注:掌握无内热源情况 傅立叶定律: dT q = – k —— dxk 为导热系数,W/m·℃。
它反映了该种物质导热能力的强弱。
k 金属 > k 液 > k 气例题1 一块厚度δ=50 mm 的平板,两侧表面分别维持在tw1=300℃,tw2=100 ℃ ,试求下列条件下通过单位截面积的导热量:(1)材料为铜,导热系数k =374 W /(m.K);(2)材料为钢,导热系数k = 36.3W /(m·K)。
解答:根据傅立叶定律()2101212w w t t w w w w dt q k q dx k dtdx q k t t t t q kδδδ=-⇒=-⇒=--⇒=⎰⎰()62300100 1.49610/0.05374/Kq W m m W m K-==⨯⋅(1)材料为铜, k =374 W /(m.K)代入得:(2)材料为钢, k =36.3 W /(m.K)代入得:牛顿冷却公式: q = α ( tw -tf ) (α为对流换热系数,W/m2·℃)例题2: 在一次测定空气横向流过单根圆管的对流换热试验中,得到下列数据:管壁平均温度tw =69℃,空气温度tf =20℃,管子外径d=14mm ,加热段长80mm ,输入加热段的功率为8.5W 。
如果全部热量通过对流换热传给空气,试问此时的对流换热表面传热 系数为多大?解答:根据牛顿冷却公式:例题3 对一台氟里昂冷凝器的传热过程作初步测算得到以下数据:管内水的对流换热表面传热系数α1=8700 W /(m2·K),管外氟里昂蒸气凝结换热表面传热系数α2=1800 W /(m2·K),换热管子壁厚δ=1.5mm ,管子材料为导热系数k =383W /(m·K)的钢。
试计算:三个环节的热阻及冷凝器的总传热系数;欲增强传热应从哪个环节入手?分析时可把圆管当成平壁处理。
解答: 水侧换热热阻管壁导热热阻蒸气凝结热阻2.教材58页:当量直径的计算3.影响堆芯功率分布的因素有哪些及分别怎样影响的? (教材31页)答:燃料布置、控制棒、水隙及空泡对功率分布的影响 4.什么是热管因子? (教材35页) 5.教材42页ql 、q 、qv 的物理意义6.导热、放热、输热分别指什么?各遵循什么定律? (教材42-49页)7.积分热导率的概念 (教材58页)第四章 反应堆稳态工况下的水力计算()52300100 1.45610/0.0536.3/K q W m mW m K-==⨯⋅()()()228.53.140.0140.08692049.3/w f w fQ F t t Q Wm K F t t W m K αα=-⇒==⨯⨯-⋅-=⋅1.稳态工况下水力计算的3个任务 (教材83页)2.稳态水力计算基本方程:质量守恒方程式—连续性方程、动量守恒方程(教材84页)-- 质量守恒方程式—连续性方程 – 也就是 ρVA =常数 =W ,我们把W 称为质量流量,单位kg/s 。
– 在流动计算中,通常在某一段流道中,流通截面A是不变的(例如在直径不变的一段圆管内流动),则 ρV=常数 我们称ρV=G,G为质量流速,单位为kg/m2·s ,所以在等截面的流道中,得 G=常数– 动量守恒方程式– 根据作用于微元体上的力应该等于其动量变化的原理,可得– 展开上式,并略去微分相乘量,可得--- 如果流通截面A不变,则上式可写为: – 上式就是单相流体一维流动的动量守恒方程式,式中Uh 为微元体的周界长度,τ为壁面剪切应力。
– 能量守恒方程式– 同样对上式微元体考虑能量平衡,可得– 令内能的变化dU 可以写成dU=dq+dF-pdv ,式中,dF 为不可逆的摩擦损失。
当微元体对外不作功,即dW=0,则能量平衡式可写为:– 或– 上式即单相流体一维流动的能量守恒方程式,即单相流体流动中,动量守恒方程式和能量守恒方程式是相同的,同时可得,必须 -- 动量守恒方程和能量守恒方程还可表示成:,称为摩擦压降梯度;,称为提升(或重位)压降梯度; ,称为加速压降梯度。
• 所以,流体在流道中流动,且流道内无局部阻力件时,总的流动压降由摩擦压降、提升压降和加速压降组成。
3.两相流:两个物相在同一个系统内一起流动称为两相流。
4.含汽量和空泡份额 (掌握教材105页 4-51、4-52 式)5.一回路内的流动压降 (教材118页 分段计算)d VA ()ρ=0[()()]()sin ()[()]()()()()PA P dP A dA U hdZ AdZ g VA V dV v -++-⋅-⋅=+-τρθρ压力壁面上的力重力的分力动量改变的力---=d AP U dZ Ag dZ VAdVh ()sin τρθρ-=⋅++dP dZ U Ag G dV dZhτρθsin d pv dU d V d Zg dq dW()()(sin )()()()()()()+++=-122θ压力能内能动能位能加入热量对外作功vdP VdV g dZ dF +++=sin θ0-=++dP dZ dF dZ g V dV dZ ρρθρsin =++ρρθdF dZ g G dV dZsin U A dFdZh τρ=-=---dP dZ dP dZ dP dZ dP dZ f el a-==dP dZ U A dFdZf h τρdP dZg el=ρθsin -=dP dZ G dV dZa6.堆芯冷却剂流量分配不均匀的4个原因 (教材118页)7.自然循环的基本概念: 若回路中流体的循环流动是依靠回路中流体本身的密度差所产生的驱动压头作为推动力,这样的流动称为自然循环流动。
(研究教材121页图4-20,图4-21)8Re ac to r Th e rm alH yd rau lic s三、自然循环流量•显然,在自然循环情况下,Δp p = Δp t =0,于是有:•若用Δp d 表示驱动压头,,用Δp up 和Δp do 分别表示上升段内和下降段内的压降损失之和,则•通常把克服了上升段压力损失之后的剩余驱动压头称为有效压头Δp e ,这样就有Δp e = Δp d -Δp up •这样就得自然循环基本方程式Δp e = Δp do,,,el i f ic iiiip pp -∆=∆+∆∑∑∑,d el i ip p ∆=-∆∑d up dop p p ∆=∆+∆9Re ac to r Th e rm al H ydraulic s假定释热功率不变,则流量增大,导致出口温度下降,出口冷却剂的密度上升,驱动压头下降,而阻力压降随着流量上升而增大。
确定自然循环流量的方法是:驱动压头等于阻力压头8.课后习题:4-1: 某一传热试验装置,包括一根由1.2m 长内径是13mm 的垂直圆管组成的试验段。
水从试验段顶部流出,经过一个90度弯头后进入1.5m 长的套管式热交换器,假设热交换器安装在水平管道的中间部分,水在管内流动,冷却水在管外逆向流动。
热交换器的内管以及把试验段、热交换器、泵连接起来的管道均为内径为25mm 的不锈钢管。
回路高3m ,总长18m ,共有四个弯头。
在试验段的进出口都假设有突然的面积变化。