第一章基础知识气体动力学共52页

合集下载

《气体动力学基础》课件

《气体动力学基础》课件

气体状态方程
理想气体状态方程 真实气体状态方程 压缩因子
pV = nRT pV = ZnRT Z = pV/nRT
通过状态方程计算气体的压力、体积和温度之间的关系,深入理解气体的行为和性质。
绝热过程
绝热过程定义
在没有热量交换的情 况下,气体的温度和 压力发生变化。
绝热气体定律
pV^γ = 常数,其中γ 为气体比热容比。
2
绝热气体的等容过程
忽略热量交换的影响,讨论绝热气体的等容过程。
3
等容过程的性质
研究等容过程中气体的性质变化和热力学参数的关系。
气体动力学中的速度、密度、压力
速度概念
学习气体分子的平均速度、最 概然速度和均方速率。
密度计算
探索气体的密度定义和计算方 法,并分析密度对气体性质的 影响。
压力测量
介绍不同压力单位和测量方法, 了解压力与气体动力学的关系。
3 解析气体流动
通过研究气体的速度、压力和密度等参数,揭示气体在空气中的传播和扩散规律。
分子运动模型
1 碰撞理论
分析气体分子之间的碰撞,解释气体压力和 温度的关系。
2 动能理论
揭示分子的运动能量如何影响气体的性质和 状态变化。
3 分子均方速率
4 布朗运动
推导和计算气体分子的平均速度和速率分布。
探索分子在气体中的随机运动,为扩散和浓 度分布的研究提供基础。
绝热线和绝热 曲线
绝热过程在叠加状态 空间中形成特定形状 的线和曲线。
绝热耦合
将气体动力学与热力 学相结合,研究绝热 过程中的能量转换。
等温过程
1
等温过程定义
保持气体温度恒定,改变气体的压力和
理想气体的等温过程

气体动力学基本概念 气体动力学,流体力学,航空飞行原理

气体动力学基本概念       气体动力学,流体力学,航空飞行原理

第1.4节 流体运动的数学描述方法
流线方程
流线谱:流场中许多流线的集合 流线密的地方速度大,反之速度小 流管:在流场中取一非流线又不自交的闭合曲 线,通过曲线上每一点作流线,得到的管状曲 面
作业
1 2 3 5

习题
1 已知不可压缩流体平面流动的流速场为
v x = xt + 2 y v y = xt − yt
2
试求在时刻为1s时点A(1,2)处液体质点 的加速度
2 已知平面不可压缩流体的流速分量为
vx = 1 − y vy = t
求: (1) t=0 时过(0,0)点的迹线方程 (2) t=1 时过(0,0)点的流线方程
第1.3节 气体的压缩性和粘性
1.3.2 气体的粘性 流体是不能承受剪切力的,即使在很小的 剪切力作用下,流体会连续不断的变形,但 是不同的流体在相同作用的剪切力下变形的 速度是不同的,也就是不同的流体抵抗剪切 力的能力不同,这种能力成为流体的粘性。
1、附面层
第1.3节 气体的压缩性和粘性
2、 牛顿内摩擦定律 (1)牛顿内摩擦定律
第1.3节 气体的压缩性和粘性
(2)动力粘性系数 影响因素:气体的物理性质、压力和温度 动力粘性系数
运动粘性系数

空气
至于粘性系数与温度的关系已被大量的实验所证 明。即液体的粘性系数随温度的增加而下降,气 体的粘性系数随温度而增加。这种截然相反的结 果可用液体的微观结构去阐明。流体间摩擦的原 因是分子间的内聚力、分子和壁面的附着力及分 子不规则的热运动而引起的动量交换,使部分机 械能变为热能。这几种原因对液体与气体的影响 是不同的。因为液体分子间距增大,内聚力显著 下降。而液体分子动量交换的增加又不足以补 偿,故其粘性系数下降。对于气体则恰恰相反, 其分子热运动对粘滞性的影响居主导地位,当温 度增加时,分子热运动更为频繁,故气体粘性系 数随温度而增加。

空气动力学01第1章绪论及基础知识-航院

空气动力学01第1章绪论及基础知识-航院

教材:1.2.3.4.参考书:空气与气体动力学的任务、研究方法及发展流体静力学水力学理论流体动力学润滑理论基本任务:航空、航天、天气预报、船舶、体育运动、22v p constρ+=理想不可压流体伯努利方程空气流过飞行器外部时运动规律y L V ρ∞∞=Γ库塔儒可夫-儒科夫斯基定理假设实际黏性附面层旋涡/涡量Stokes 定理ndA Ω⋅=Γ∫y 翼梢小翼下洗速度诱导阻力有效迎角↓下洗角翼尖尾涡升力↓当地升力等效来流来流实际升力尾涡后掠机翼平直机翼n V 是产生升力/激波的有效速度后掠翼可提高产生激波的Ma cr边条涡边条翼:下表面压力>上表面压力气流旋转涡旋转涡心p 低而V 高流经部位压力低注入机翼表面气流能量推迟分离激波1V a >21V V <()120sh D mV V =−> 激波阻力7发动机气体动力学y 压气机/风扇:气体增压涡轮:气体膨胀8y 音障/音爆/音爆云正激波及阻力弱压缩波斜激波y 音障楔型体超音速运动激波及激波阻力阻力系数↑消耗3/4功率y 活塞发动机高速时螺旋桨效率低、桨尖易产生激波⇒喷气发动机y 降低波阻的超音速气动布局如后掠翼、面积率→蜂腰机身等y 音爆激波面上声学能量高度集中,这些能量让人感受到短暂而极其强烈的爆炸声。

超音速低压气流局部正激波斜激波局部亚音气流超音/亚音气流超音速气流膨胀加速压缩减速尾激波压缩减速y 音爆云激波后气体急剧膨胀降压降温潮湿天气气温低于露点水汽凝结水珠云雾y 亚燃冲压发动机进气道及扩压段斜激波及正激波拉伐尔喷管气流增压至亚音速燃烧室燃烧气流超音速喷出推力超燃冲压发动机进气道/斜激波气流增压且超音速气流超音速喷出航天空气动力学y 可压缩性黏性摩擦生热气流带走加热飞行器表面Ma=2⇒温度≈120侦察机Ma=3⇒温度y 热障结构强度↓刚度↓热能热辐射热传导气动热力学常温常压2000K<T<4000K 9000K<T 分子密度低11空气y 扑动速度均匀来流合速度合力升力推力机动性强举升/推进/悬停/快速变向等动作集于一个扑翼系统大升力利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。

基础知识气体动力学

基础知识气体动力学

2 可逆过程与不可逆过程
热力学基本概念与基础知识
热力学系统从一个平衡状态出发,经过一系列中间状态而变化到另一个平衡状态,它所经历的全部状态的综合称为热力过程,简称过程。 如果在过程中系统所经历的一系列状态都无限接近于平衡状态,则这种过程称为“准平衡过程”或“准静态过程”-它是一种无限缓慢的过程。 当系统完成某一过程后,如果令过程逆向进行而能使过程中所涉及的一切(系统及外界)都回复到初始状态,不留下任何变化,则此过程称为可逆过程,反之即为不可逆过程。 可逆过程是消除一切不可逆因素、具有可逆性的过程,必须满足 它是准平衡过程; 过程中不存在耗散效应。 →可逆过程是没有耗散损失的准平衡过程。
热力学中规定,系统吸热时热量为正,系统放热时热量为负。
热量既然是在传递中出现的能量,其数值就必然与传递过程有关。所以,热量也是一个过程量,而不是状态参数,其数值由系统状态和过程性质决定。
热量和功虽然同为过程量,都是系统和外界间通过边界传递的能量,但两者有着本质的差别:热量是通过紊乱的分子热运动发生相互作用而传递的能量,功则是物体间通过有规则的微观运动或宏观运动发生相互作用而传递的能量。
序 言
根据分子运动论,分子总是在不断进行无规则的热运动,不同流动区域的分子所携带的能量、动量和质量是不同的。

分子可以在不同流动区域之间运动。当某分子从一个区域运动到另一个区域时,同时也就将其能量、动量和质量携带到了该区域,这种迁移特性称为流体的输运性质。
流体的输运性质主要包括:黏性、导热性、质量扩散等,本课程只介绍前两个。
热力学基本概念与基础知识
1平衡状态、状态参数与简单热力学系统
系统的热力学状态:热力学系统在某一瞬时所呈现的宏观物理状况。热力学状态用能够测量的一些物理量来描述,这样的物理量称为状态参数。 对气体组成的系统,最基本的状态参数有3个:温度、压强、密度。 根据定义,状态参数的数值仅取决于系统所处的热力学状态本身,而与系统达到该状态所经历的途径或过程无关。 在没有外界影响的条件下,如果系统的宏观状态不随时间而改变,则系统所处的这种状态称为热力学平衡状态,简称状态。平衡状态是一个理想概念,此时,系统内必然是热平衡、力平衡、化学平衡。 实验和理论均证明,对于由气体组成的系统,其平衡状态只需要两个独立的状态参数来描述,只要确定两个独立状态参数的数值,其余的状态参数就随之确定,系统的状态即可确定。这种只需要两个独立状态参数描述的热力学系统称为简单热力学系统。 对气体组成的简单热力学系统,3个基本状态参数的关系可表示成 称为状态方程。

一元气体动力学基础

一元气体动力学基础

p0、T0 p、T
5.气体按不可压缩处理的极限
空气k=1.4 取M=0.2
0 0 1 2.1% 密度相对变化
取M=0.4
0 8.2%
一般取M=0.2
t=15℃时,v≤M· c=0.2×340=68m/s
第三节 气体一元恒定流动 的连续性方程
1.气流参数与变截面的关系 由连续性方程
k k 1
k 1 2 1 M 2 k 1 2 1 M 2
1 2
k k 1
0 T0 T
1 k 1
1 k 1
c0 T0 k 1 2 1 M c T 2
2.讨论
一元等熵气流各参数沿程的变化趋势 M<1 渐缩管 渐扩管 M>1 渐缩管 渐扩管
流动参数
流速v
压强p 密度ρ 温度T
增大
减小 减小 减小
减小
增大 增大 增大
减小
增大 增大 增大
增大
减小 减小 减小
dv与dp、dρ、dT异号
(1)亚音速流动:A↑→v↓(p,ρ,T)↑
2 由于 M 1 1
气体:视作等熵过程
p

k
c
微分: dp k
p

dp c k
p

kRT
讨论: (1)音速与本身性质有关 (2) c
1 d dp
d / dp 越大,越易压缩,c越小
音速是反映流体压缩性大小的物理参数 (3) c f T f p,V , T (4)空气 c 1.4 287T 当地音速
压强下降
扩压管
解题思路:状态(过程)方程、 连续性方程、能量方程

《气体动力学》课件-绪论

《气体动力学》课件-绪论

声速
166x Galileo Galilei 认识声速和光速差别
1500 Leonardo Da Vinci, 发现声音以波的形式传播
1640 Marin Mersenne 首次测量声音在空气中的传播速度
1660 Robert Boyle 发现声音传播必须有介质
1687 Newton 推导声速关系式;Maxwell 推导声速关系式
1910 瑞利和泰勒
激波的不可逆性
1933 泰勒和马科尔
圆锥激波的数Biblioteka 解气体动力学基础_113
1.3 气体动力学发展简史
第三阶段:气体热力学发展阶段(20世纪30年代中50年代末)
1935年召开“航空中的高速流动问题”学术大会,表明流体力学先驱者对高 速问题的关注和重视。之后,由于以喷气飞机、涡轮喷气发动机、火箭 发动机等为背景的工程问题发展的需求,将空气动力学与热力学相结合, 这个时期为气体热力学的发展阶段,其特点是在完全气体假设下的气体 动力学理论和实验逐渐成熟
气体动力学基础_1
11
1.3 气体动力学发展简史
第一阶段:气体动力学基础阶段
1869 1987
1881
1883 1887 1899 1905 1902
朗金/兰金(英) 雨贡钮/许贡纽(法)
描述大波幅强扰动波-激波的兰金(英)-许贡纽 (法)理论
贝特洛Berthelot(法) 马兰德Mallard
实验发现管中火焰传播速度高达1-3.5 km/s (超音速3-10倍)的超音速燃烧现象,爆轰波 =激波+燃烧波
气动是在经典流体力学的基础上,结合热力学和化学动力 学发展起来(气动热力学),可分为
亚音速流动,跨音速流动,超音速流动 高超音速流动

第一章气体动力学基础讲稿.

第一章气体动力学基础讲稿.

上篇热工基础概述一、课程的性质任务1、什么是热工过程,什么是热工设备?热的来源、传递、利用过程;产生热量、利用热量的设备;包含的内容有:研究系统的工作介质、体系的性质以及做功等2、该门课的性质:专业基础与技术课课程的任务:是将热力学的基本原理知识、流体力学的基本知识与工程实际上的热工设备相结合,研究热工过程中的各参数变化情况。

也就是说将讨论与热工过程有关的气体流动性质、气体性质、热的产生,传递、交换及过程中的物质交换等。

3、研究内容二、课程特点:强调“三传一反的能量交换”:动量、质量、热量传递、燃烧与烧成反应。

强调平衡概念:物料平衡、动量平衡、能平衡,强调基本:基本概念、基本定律、基本方法、基本理论知识强调理论与实践用基本的理论知识去理解硅酸盐行业常见的热工设备的工作原理。

强调分析问题、解决问题的能力。

三、课程的主要研究方法1.数学方法:微分方程和积分方程的求解及数值求解;2.分析方法:过程分析与数量级分析等;3.模型方法:物理模型及数学模型的建立;4.类比方法:热电类比及动量,质量,热量传递的类比等。

四、学习本课程的目的与意义1、掌握本专业中所用的热工理论知识,用所学的知识解决工程中出现的问题。

2、在该基础上进一步的深入研究创新,开发新型的热工设备五、本课程的基本要求1、注重研究的方法和思路:要掌握基本概念、掌握基本理论的来龙去脉,强调概念明确、思路清晰。

2、注重理论应用,多做习题,熟悉基本概念与理论。

3、答疑、作业、课堂讨论、考试。

六、课时安排(76学时)绪论(1学时)第一章气体力学在窑炉中的应用(10学时)第二章传热原理(22学时)第三章质量原理(2学时,自学)第四章燃料及其燃烧过程与设备(12学时)第五章干燥过程及设备(10学时)第六章物料烧成与窑炉(18学时)小结(1学时)实验(?学时)七、教材及教学参考书教材:孙晋涛编《硅酸盐热工基础》武汉工业大学出版社参考书(1)沈慧贤胡道和主编《硅酸盐热工工程》武汉工业大学出版社(2)蔡悦民编《硅酸盐工业热工技术》武汉工业大学出版社(3)姜金宁编《热工过程与设备》冶金工业出版社(4)杨世铭编《传热学》人民教育出版社(5)韩昭论主编《燃料及燃烧》冶金工业出版社(6)胡道和编《水泥工业热工设备》武汉工业大学出版社(7)刘振群《陶瓷工业热工设备》武汉工业大学出版社(8)孙曾绪《玻璃工业热工设备》武汉工业大学出版社第一章气体力学在窑炉中的应用内容:研究气体流动规律及相应的热工流动设备。

哈工大-空气动力学-第1章绪论及基础知识

哈工大-空气动力学-第1章绪论及基础知识

纳维-斯托克斯 黏性流体运动方程:N-S方程 雷诺
雷诺实验 层流/湍流 雷诺平均N-S方程 附加雷诺/湍流应力
DV p R Dt
空气-气体动力学
兰金和雨贡纽:激波前后气动参数关系式 瑞利和泰勒:激波关系单向性 马赫:马赫角关系 阿克莱:Ma=V/a 普朗特和迈耶:斜激波和膨胀波理论 布兹曼:圆锥激波解的图解法 泰勒和马可尔:圆锥激波解的数值解 拉伐尔:发明拉伐尔/缩放喷管 斯多道拉、普朗特和迈耶:拉伐尔喷管流动特性
12
森林空气动力学
树木风阻∝风速:种植方式避免风害 风阻树冠/树叶: 树叶在高速风中结构变形 种子传播:繁衍规律、仿生力学
建筑物空气动力学
高/矮建筑物间涡流:风速大于普通布局的3-4倍 建筑物迎背风面: 背风面低压吸力效应 斜屋顶:倾斜角较小吸力效应屋顶掀翻
车辆空气动力学
2
空气与气体动力学的任务、研究方法及发展
流体力学
流体静力学 液体
水力学 理论流体动力学 润滑理论
流体动力学 气体 无黏流动 黏性流动
变化小
不可压缩低速 空气动力学 高度或低压影响
动力气象学 稀薄气体动力学
变化大 高速影响
气体动力学 亚/跨/超声速空气动力学 高超声速空气动力学 3 电磁流体动力学
10
空气/气体动力学的其他应用
鸟类/昆虫飞行及扑翼机
合力 升力 推力 均匀来流 合速度 扑动速度
机动性强 举升/推进/悬停/快速变向等动作集于一个扑翼系统 大升力 利用非定常机制,其升力远高于常规飞行器,能够在低雷诺数条件下飞行。
11
绕障碍物流动的卡门涡街
低Re数 绕流运动 周期性脱落 旋向相反 排列规则 双列线涡 即卡门涡街
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢连续介质假设要求所研究的气体微团或气体中的物体的特征尺寸要远 大于分子之间的距离,使气体的每一个微小变化都能影响到极大量的 分子-所选取的气体微团或气体中的物体(研究对象)尺寸不能太小, 而应有一定的尺寸→ 流动的特征尺寸应远大于分子平均自由程。
1.2 连续介质假设 1.2.1 连续介质假设
由此可以定义一个无量纲判据-克努森数:
导热定律:
q T
n
式中负号表示热量传递的方向与温度梯度的方向相反。
为导热系数。气体的导热系数随温度升高而增大,并可用萨瑟
兰公式近似描述,但萨瑟兰常数取值不同。
1.2 连续介质假设
1.2.1 连续介质假设
微观上,气体是由大量微小粒子(分子、原子)组成的,气体内部存 在空隙,是非密实或不连续的--表征气体属性和状态的各种物理量 在空间和时间上是不均匀、离散和随机的。
1.2 连续介质假设
1.2.1 连续介质假设
根据连续介质假设,研究气体宏观运动时不必考虑单个粒子的瞬时状 态和行为,而只需研究描述气体宏观状态和运动的物理量,如温度、 压强、速度等,这些物理量都是空间和时间的连续函数,在每个空间 点和每个时刻都具有确定的值。
可以从两个方面理解连续介质假设:
➢连续介质假设要求气体宏观运动所涉及的每一个气体微团都必须包含 有极大量的粒子,它们的统计平均性质代表该微团气体的宏观性质- 组成气体的粒子必须是稠密的→这一要求很容易满足;
lim m dm
V VV0
dV
z δm δv
P(x,y,z)
注意:这种微分是以满足连续介质假设为前提的。
m
V
分子效应区
连续介质区
确定密度 的渐近线
y
V x 连续介质中的微团体积与质量
Δ V 0是保证连续介质假设成立的最小体积。
δV
δ V0
连续介质中一点处的密度
1.2 气体的连续介质假设 1.2.3 连续介质一点处的速度
序言
流体包括液体和气体两类,它们无一定形状,容易流动变形。 气体在压强作用下其体积很容易改变,又称为可压缩流体 (Compressible Fluid)。 气体动力学(Gas Dynamics)研究可压缩流体的流动,是更一般 学科—流体动力学的一个分支。 流体服从如下的基本定律:
1.质量守恒定律(The Law of the Conservation of Mass); 2.牛顿第二运动定律(Newton’s Second Law of Motion); 3.热力学第一定律(The First Law of Thermodynamics); 4.热力学第二定律(The Second Law of Thermodynamics) ; 使用基本定律描述某种具体流体的流动时,还需要其热力学性质 (可以用表格、经验方程、理想化模型等形式给出)。
宏观上,观察和测量到气体状态和运动明显地呈现均匀性、连续性和 确定性。
微观和宏观虽然截然不同,但又是和谐统一的。处理方法:
• 统计物理方法-极繁琐
• 连续介质模型-欧拉(Euler)于1753年提出 “连续介质假设” (Continuum Postulate)→气体动力学的根本性假设和基础
连续介质假设用于简化真实气体的微观结构,认为气体是连续介质, 它充满所给定的全部体积,粒子之间不存在自由间隙,没有真空,也 没有粒子热运动。
K nL l1.255 a L 1.2
55 Ma
Re
连续介质假设只适用于Kn < 0.01的流动→通常情况都能满足。 当Kn≥ 0.01时,连续介质假设不再成立。
1.2 连续介质假设
1.2.2 连续介质一点处的密度
密度是气体的一个重要属性,它是空间坐标和时间的函数: f1 x,y,z,t
根据连续介质假设,可以定义一个微团的平均密度,然后令微团体积缩小。当 体积缩小到δ V时0 ,即认为该平均密度为点P的密度,并将其表示成
连续介质中的密度和速度定义是对连续介质假设实质的进一步说明,用 同样方法可以建立压强、温度等概念。
热力学基本概念与基础知识
热力学是研究热能与其它形式能量之间的转换以及能量转换与物质 性质之间关系的学科,工程热力学是热力学的一个分支,它着重研 究与热能工程有关的热能与机械能相互转换的规律。气体动力学与 热力学有着密不可分的关系。
和密度一样,连续介质的速度也是空间和时间的连续函数: cf2x,y,z,t
根据连续介质假设,某点P的流动速度可以定义为包含该点的极限体积d
V
中所
0
有分子速度的平均值。
假设极限体积中有n个分子,第i个分子的质量为mi,速度为 C i ,则P点速度为
n
miC i
C
子的瞬时速度。
1.1 气体的基本性质
1.1.1气体的黏性
❖ 黏性是真实流体的一 个重要输运性质,定 义为流体在经受切向 (剪切)力时发生形 c 变以反抗外加剪切力 的能力,这种反抗能 力只在运动流体相邻 流层间存在相对运动 时才表现出来。
c δ
速度型
固体壁
平板附面层实验
1.1 气体的基本性质
牛顿内摩擦定律-不同速度流
1.1 气体的基本性质
❖ 根据分子运动论,分子总是在不断进行无规则的热运动 ,不同流动区域的分子所携带的能量、动量和质量是不 同的。
❖ 分子可以在不同流动区域之间运动。当某分子从一个区 域运动到另一个区域时,同时也就将其能量、动量和质 量携带到了该区域,这种迁移特性称为流体的输运性质 。
❖ 流体的输运性质主要包括:黏性、导热性、质量扩散等 ,本课程只介绍前两个。
TCTS TTS
时式的中黏μ性0是系1数atm;和0℃ 性Ts性—质苏有士关南;常数,与气体
Tc=273.16K。
1.1 气体的基本性质
1.1.2气体的导热性
导热性:气体将热量从高温区域输运到低温区域的性质。 实验表明,热量总是沿着温度梯度的反方向从高温处传向
低温处。 单位时间内通过单位面积所传递的热量满足傅里叶(Fourier)
体层之间的摩擦力τ
dc dy
式中,μ是与流体性质有关的 比例系数,称为动力黏度,简 称黏度或黏性系数(coefficient of viscosity); dc/dy应为物 面法向上或流动方向法向上的 速度梯度。
参见教材图1-2
萨瑟兰(Sutherland)公
式-黏性系数随温度的变

0TTC
1.5
相关文档
最新文档