最优化方法练习题

最优化方法练习题

最优化练习题1

第 1 页 共 1 页 练习题1

1写出凸集和凸函数的定义。并证明:水平集{}|,()S x x S f x αα

=∈≤是凸集,其中已知

S 为d R 中非空凸集,f 是定义于S 上的凸函数,α为实数。 写出凸函数的定义。并判断函数222123131212()3252489f x x x x x x x x x x =+++-+++ 是否为凸函数。

2写出精确一维搜索的黄金分割法与Fibonacci 法的主要异同点。

3写出精确一维搜索的黄金分割法的基本思想和算法步骤。

4写出下降方向的定义及两种无约束优化问题的微分方法的搜索方向,并证明它们均为下降方向。

5解释最速下降法中,产生锯齿现象的原因。

6计算函数2211221()2f x x x x x x =-+-的梯度与Hessian 矩阵,并证明:*2717x ?? ?= ? ? ???

是函数的局部极小值点。

7用乘子法求解等式约束最优化问题???22121212min ()22..

10f x x x x x s t x x =+-+-=,取(1)1v =,2σ=。

8采用精确一维搜索的Newton 法求解下面无约束问题22121211min ()2f x x x x x x =

+--,取初始点(1)x =01?? ???

。 9名词解释

1 凸集 2下降方向 3 梯度、Hessian 矩阵 4 单峰函数 5共轭 6 α阶收敛

10求与向量12-?? ???

关于矩阵1225A -??= ?-??共轭的向量。

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化方法复习题66882.docx

《最优化方法》复习题 第一章概述(包括凸规划) 一、判断与填空题 ar§ max /W =玄生min【―/(兀)】?7 1 xeR n xeR n 2max |/(x): x e D o }= - min [f(x): x e D Q R H\ x 3设f : D u RJ R?若T wR”,对于一切xeR n恒有/(Z)上的凸函数当且仅当—/为D上的凹函数.V 1()设f : D u R” T R为凸集D上的可微凸函数,Z G Z).则对V XG D,有/(x)-/(x*) 0}是凸集。V 12设{*}为由求解min的算法A产生的迭代序列,假设算法A为下降算法, XG D

则对\^^{0,1,2,???},恒有____ /(x A.+1)< f(x k) ____________ :

13算法迭代时的终止准则(写出三种): ____________________________ o 14凸规划的全体极小点组成的集合是凸集。V 15函数f : D u R“ T R在点('沿着迭代方向d* eR n \ {()}进行精确一维线搜索的步长匕.,则其搜索公式为_____________________________ . 16函数f ?. D匚R“ T R在点*?沿着迭代方向d k e/?z, \{0}进行梢确一?维线搜索的步长匕,则V/(x A+a k d k Yd k = ___________ 0 . 17设d k eR n\{0}为点/ w D匸R“处关于区域D的一个下降方向,则对于Va >0, 3?G(0,a)使得x 二、简述题 1写出Wolfe-Powell非精确一维线性搜索的公式。 2怎样判断一个函数是否为凸函数. (例如:判断函数/(x) = xf +2兀|兀2 +2兀;一10兀1 +5兀2是否为凸函数) 三、证明题 1证明一个优化问题是否为凸规划.(例如 1Z* T —X Gx + c x + b 2 判断s.t. Ax = b(其小G是正定矩阵)是凸规划. x>0 2熟练掌握凸规划的性质及英证明.

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

最优化练习题

最优化练习题 1.设A 为m n ?阶矩阵,n b R ∈,试证集合{|,,0}n S x x R Ax b x =∈=≥为凸集。 2.试证平面上椭圆22 221x y a b +=所包围的区域为凸集。 3.判断下列函数为凸函数或凹函数或严格凸函数或严格凹函数: (1)2 2 1212(,)23f x x x x =+;(2)2 2 2 1231231231(,,)22712f x x x x x x x x x x =+++--+ 4.设()f x 为定义在凸集D 上的凸函数,试证()f x 的任何局部极小点同时也必为全局极小点。 5.设n 阶矩阵0T Q Q =>,非零向量12,,,()n n p p p R m n ∈≤ 为Q 共轭的,证明: (1)12,,,n p p p 线性无关;(2)若n 维向量x 和12,,,n p p p 为Q 共轭的,则x=0。 6.设()T T f x x Ax b x =-,2112A ??=? ? ?? ,(3,3)T b =,取1(0,0)T x =,1(1,0)T p =,2(1,2)T p =-,试证由共轭方向法产生的3x 为()f x 的最优解。 7.设1()2 T T f x x Qx b x c = ++,0T Q Q =>,试证由精确线搜索的共轭梯度法中,有 T k k k T k k g d d Qd λ=- 8.取初始点0(0,0)T x =,并且设定净度误差0.01ε=,试利用最速下降法求解下面的优化 问题:2 22 112212min 243x R x x x x x x ∈-++- 9.考虑极小化问题1min ()2 n T T x R f x x Ax b x ∈=+,其中0T A A =>,n b R ∈。记函数()() g x f x Ax b =?=+。设从k x 点出发,利用精确搜索的最速下降法求出改进点1k x +, 证明: (1)最速下降法的迭代公式形如1T k k k k k T k k g g x x g g Ag +=-,其中()k k g g x =; (2)一步迭代中引起目标函数的下降量为2 1()()()2T k k k k T k k g g f x f x g Ag +-=。 10.研究形如1T k k k k k H H Z Z α+=+的迭代校正公式,使之满足拟牛顿方程,

最优化方法练习题答案修改建议版本--删减版

练习题一 1、建立优化模型应考虑哪些要素? 答:决策变量、目标函数和约束条件。 2、讨论优化模型最优解的存在性、迭代算法的收敛性及停止准则。 答:针对一般优化模型()()min () .. 0,1,2, 0,1, ,i j f x s t g x i m h x j p ≥===,讨论解的可行域D ,若存在一点*X D ∈,对于X D ?∈ 均有*()()f X f X ≤则称*X 为优化模型最优解,最优解存在;迭代算法的收敛性是指迭代所得到的序列(1)(2)() ,, ,K X X X ,满足(1)()()()K K f X f X +≤,则迭代法收敛;收敛的停止准则有 (1)()k k x x ε+-<,(1)() () k k k x x x ε+-<,()()(1)()k k f x f x ε+-<, ()()() (1)()()k k k f x f x f x ε+-<,()()k f x ε?<等 等。 练习题二 1、某公司看中了例2.1中厂家所拥有的3种资源R 1、R 2、和R 3,欲出价收购(可能用于生产附加值更高的产品)。如果你是该公司的决策者,对这3种资源的收购报价是多少?(该问题称为例2.1的对偶问题)。 解:确定决策变量 对3种资源报价123,,y y y 作为本问题的决策变量。 确定目标函数 问题的目标很清楚——“收购价最小”。 确定约束条件 资源的报价至少应该高于原生产产品的利润,这样原厂家才可能卖。 因此有如下线性规划问题:123min 170100150w y y y =++ 123123123 5210 ..23518,,0y y y s t y y y y y y ++≥??++≥??≥? *2、研究线性规划的对偶理论和方法(包括对偶规划模型形式、对偶理论和对偶单纯形法)。 答:略。 3、用单纯形法求解下列线性规划问题:

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

最优化方法及其应用课后答案

1 2 ( ( 最优化方法部分课后习题解答 1.一直优化问题的数学模型为: 习题一 min f (x ) = (x ? 3)2 + (x ? 4)2 ? g (x ) = x ? x ? 5 ≥ ? 1 1 2 2 ? 试用图解法求出: s .t . ?g 2 (x ) = ?x 1 ? x 2 + 5 ≥ 0 ?g (x ) = x ≥ 0 ? 3 1 ??g 4 (x ) = x 2 ≥ 0 (1) 无约束最优点,并求出最优值。 (2) 约束最优点,并求出其最优值。 (3) 如果加一个等式约束 h (x ) = x 1 ? x 2 = 0 ,其约束最优解是什么? * 解 :(1)在无约束条件下, f (x ) 的可行域在整个 x 1 0x 2 平面上,不难看出,当 x =(3,4) 时, f (x ) 取最小值,即,最优点为 x * =(3,4):且最优值为: f (x * ) =0 (2)在约束条件下, f (x ) 的可行域为图中阴影部分所示,此时,求该问题的最优点就是 在约束集合即可行域中找一点 (x 1 , x 2 ) ,使其落在半径最小的同心圆上,显然,从图示中可 以看出,当 x * = 15 , 5 ) 时, f (x ) 所在的圆的半径最小。 4 4 ?g (x ) = x ? x ? 5 = 0 ? 15 ?x 1 = 其中:点为 g 1 (x ) 和 g 2 (x ) 的交点,令 ? 1 1 2 ? 2 求解得到: ? 4 5 即最优点为 x * = ? ?g 2 (x ) = ?x 1 ? x 2 + 5 = 0 15 , 5 ) :最优值为: f (x * ) = 65 ?x = ?? 2 4 4 4 8 (3).若增加一个等式约束,则由图可知,可行域为空集,即此时最优解不存在。 2.一个矩形无盖油箱的外部总面积限定为 S ,怎样设计可使油箱的容量最大?试列出这个优 化问题的数学模型,并回答这属于几维的优化问题. 解:列出这个优化问题的数学模型为: max f (x ) = x 1x 2 x 3 ?x 1x 2 + 2x 2 x 3 + 2x 1x 3 ≤ S

天津大学最优化方法复习题

《最优化方法》复习题 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=? ∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为 最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(* x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称* x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈* . 则对D x ∈?,有 ).()()()(* **-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目: P36页 5(1)(4) 5(4) 习题三 包括题目:P61页 1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)11/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ? ++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0)1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-?? =?-?= ?-??

最优化方法习题一

习题一 一、考虑二次函数f(x)= x x x x x x 212 2212132+-++ 1) 写出它的矩阵—向量形式: f(x)=x Qx b x T T +2 1 2) 矩阵Q 是不是奇异的? 3) 证明: f(x)是正定的 4) f(x)是凸的吗? 5) 写出f(x)在点x =) 1,2(T 处的支撑超平面(即切平面)方程 解:1) f(x)= x x x x x x 212 2212 132+-++ =???? ??x x 2121???? ??6222???? ??x x 21+??? ? ??-1 1T ??? ? ??x x 21 其中 x=? ?? ? ??x x 21 ,Q=???? ??6222 , b=???? ??-11 2) 因为Q=??? ? ??6222 ,所以 |Q|=6222=8>0 即可知Q 是非奇异的 3) 因为|2|>0, 6 22 2=8>0 ,所以Q 是正定的,故f(x)是正定的 4) 因为 )(2 x f ? =??? ? ??6222,所以|)(2 x f ?|=8>0,故推出)(2 x f ? 是正定的,即 )(2 x f ? 是凸的 5) 因为)(x f ? = 1) x 6x 1,2-x 2x (22121+++T ,所以)(x f ?=(5,11) 所以 f(x)在点x 处的切线方程为5( 21-x )+11(12 -x )=0 二、 求下列函数的梯度问题和Hesse 矩阵 1) f(x)=2 x 12 +x x x x x 2392 312 1 +++x x x 2322+ 2) f(x)=ln( x 1 2 + x x x 22 21+) 解: 1) )(x f ?= (,94 3 2 1 x x x ++ 263 2 1 +++x x x , x x 2 1 9+)

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

最优化计算试卷模板1

一、 选择、判断、填空(10小题,每题2分,共20分) 1、线性规划问题化为标准型以后,原来的某自由变量被两个非负变量之差代替,在完成一次单纯形法迭代过程后,这两个非负变量的值_______________。 A 、可同时不为0; B 、必然同时为0; C 、最多只能有一个不为0; D 、必然同时不为0。 2、关于线性规划,以下叙述正确的是________。 A 、若存在最优化解,则一定是最优基本可行解; B 、若存在最优基本可行解,则其对偶问题也必存在最优解; C 、若无可行解,则对偶问题一定有无界解; D 、若存在最优解,则必存在最优基本可行解。 3、关于P 类问题、NP 类问题和P 类算法、NP 类算法,以下正确的叙述是______________。 A 、存在P 类算法的判定问题不一定是P 类问题;B 、线性规划问题的单纯形算法不是P 类算法,所以线性规划问题是NP 类问题;C 、NP 类问题包含P 类问题;D 、P 类问题与NP 类问题是互相对立的两类问题。 ***第4-6小题:判断正误,正确的填“√”,错误的填“╳”,填在括号内*** 4、用模拟退火算法求出的组合优化问题的解一定是最优解( )。 5、对于有约束非线性规划问题,目标函数的极值点一定是K-T 点( )。 6、已知LP 为求最小值问题,第i 个约束是“≤”约束,则对偶问题的第i 个对偶变量y i ≤0 7、若x (0)和y (0)分别是线性规划问题min{z =c T x | Ax ≥b , x ≥0}和其对偶问题的可行解,则x (0)和y (0)的关系是____________________(两者目标函数在x (0)和y (0)处值的关系)。 8、设x i 是某线性规划问题的一个决策变量,在单纯形法某次迭代后,若它的检验数不为零,则x i 是________变量。 9、使用黄金分割法和抛物线法进行一维搜索(设目标函数为 min f (x ) )之前,必须首先找到三点,x 1、x 2和x 3,这三点应满足的条件为____________________________________。 10、用牛顿法求解约束优化问题min f (x )的x (1)(假设f (x )在x (1))二阶光滑,且Hasse 矩阵正定)处的牛顿方向是_____________________________。 二、((12分))考虑如下线性规划问题 123123123123m in 4.. 29240,1,2,3 i Z x x x s t x x x x x x x x x x i =++++≤+-≤-++≤≥= 令54,x x 和6x 表示每个约束的松弛变量.应用单纯形方法,得到最优单纯形表如下

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化试题及答案

最优化理论、方法及应用试题 一、 (30分) 1、针对二次函数1()2 T T f x x Qx b x c = ++,其中Q 是正定矩阵,试写出最速下降算法的详细步骤,并简要说明其优缺点? 答:求解目标函数的梯度为()g x Qx b =+,()k k k g g x Qx b ==+,搜索方向:从k x 出发,沿k g -作直线搜索以确定1k x +。 Step1: 选定0x ,计算00,f g Step2: 做一维搜索, ()1min k k k t f f x t g +=-,1k k k x x tg +=-. Step3:判别,若满足精度要求,则停止;否则,置k=k+1,转步2。 优缺点:最速下降法在初始点收敛快,算法简单,在最优点附近有锯齿现象,收敛速度慢。 2、有约束优化问题 min () ()0,1,2,,..()0,1,2,,i j f x g x i m s t h x j l ≥=???==?? 最优解的必要条件是什么? 答:假设*x 是极小值点。必要条件是f ,g ,h 函数连续可微,而且极小值点的所有起作用约束的梯度(*)(1,2, ,)i h x i l ?=和(*)(1,2, ,)j g x j m ?=线性无关,则 存在***** * 12 12,,,,,, ,,l m αααβββ使得 ()1 1 * **** * 1 2 12**(*)*(*)*(*)0 *(*)0,1,2, ,,, ,,,, ,0 0,0 l m i i j j i i j j l m i j f x h x g x g x j m αββαααβββαβ==?-?-?===≠>≥∑∑ 3、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方 向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定? 答:起作用约束:若0()0j g x =,这时点0x 处于该约束条件形成的可行域边界上,它对0x 的摄动起到某种限制作用。 可行方向:0x 是可行点,某方向p ,若存在实数00λ>,使得它对任意

最优化方法试卷与答案5套

《最优化方法》1 一、填空题: 1.最优化问题的数学模型一般为:____________________________,其中 ___________称为目标函数,___________称为约束函数,可行域D 可以表示 为_____________________________,若______________________________, 称*x 为问题的局部最优解,若_____________________________________,称*x 为问题的全局最优解。 2.设f(x)= 212121522x x x x x +-+,则其梯度为___________,海色矩阵___________,令,)0,1(,)2,1(T T d x ==则f(x)在x 处沿方向d 的一阶方向导数为___________,几何意义为___________________________________,二阶 方向导数为___________________,几何意义为_________________________ ___________________________________。 3.设严格凸二次规划形式为: 012. .222)(min 21212 12 221≥≥≤+--+=x x x x t s x x x x x f 则其对偶规划为___________________________________________。

4.求解无约束最优化问题:n R x x f ∈),(min ,设k x 是不满足最优性条件的第k 步迭代点,则: 用最速下降法求解时,搜索方向k d =___________ 用Newton 法求解时,搜索方向k d =___________ 用共轭梯度法求解时,搜索方向k d =_______________ ____________________________________________________________。 二.(10分)简答题:试设计求解无约束优化问题的一般下降算法。 三.(25分)计算题 1. (10分)用一阶必要和充分条件求解如下无约束优化问题的最优解: )1(632)(m in 21212131----=x x x x x x x f . 2. (15分)用约束问题局部解的一阶必要条件和二阶充分条件求约束问题: 1)(. .)(min 22 2 1 2 1=-+==x x x c t s x x x f 的最优解和相应的乘子。 四. 证明题(共33分) 1.(10分)设δ++=x r Gx x x f T T 2 1 )(是正定二次函数,证明一维问题

最优化方法(试题+答案)

一、 填空题 1.若()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f , 则=?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 21211222121≥≥≤+-+-= x x x x t s x x x x x x f

天津大学《最优化方法》复习题(含答案)

大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切 )(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为下降算法, 则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

相关文档
最新文档