填料塔流体力学性能及传质

合集下载

精馏塔之填料塔

精馏塔之填料塔
第24页/共66页
二. 填料的类型及性能评价
• 流道收缩、扩大的交替重复,实现了“脉冲”传质过程。 • 特点是处理量大,压降小。适用于真空精馏,大塔径场合。
第25页/共66页
二. 填料的类型及性能评价
• 2. 填料的几何特性 • (1)比表面积α:单位体积填料层具有的填料表面积,m2/m3。填料的比表面积愈大,所提供的气液传质
• 填料因子值小表示流动阻力小,液泛速度可以提高。
第29页/共66页
二. 填料的类型及性能评价
• (4)堆积密度ρp:单位体积填料的质量,以表示,kg/m3。在机械强度允许的条件下,填料壁要尽量薄 以减小堆积密度,这样既增大了空隙率又降低成本。
第30页/共66页
二. 填料的类型及性能评价
• (5)个数n:单位体积填料层具有的填料个数。根据计算出的 塔径与填料层高度,再根据所选填料的n值,即可确定塔内需要 的填料数量。一般要求塔径与填料尺寸之比D/d<8(此比值在 8~15之间为宜),以便气、液分布均匀。若D/d>8 ,在近塔 壁处填料层空隙率比填料层中心部位的空隙率明显偏高,会影 响气液的均匀分布。若D/d值过大,即填料尺寸偏小,气流阻 力增大。
第27页/共66页
பைடு நூலகம்
二. 填料的类型及性能评价
• (2)空隙率ε:单位体积填料层具有的空隙体积,m3/m3。 值大则气体通过填料层的阻力小,故ε值以高 为宜。重要指标。
• 对于乱堆填料,当塔径与填料尺寸之比大于8时,因每个填料在塔内的方位是随机的,填料层的均匀性较好, 这时填料层可视为各向同性,填料层的空隙率就是填料层内任一横截面的空隙截面分率。
第41页/共66页
三. 填料塔的流体力学性能
• ②载液区 • 气速增大,气体对液膜流动产生阻滞作用,使液膜增厚,填料层的持液量随气速的增加而增大,此现象称

填料塔流体力学特性解读

填料塔流体力学特性解读

,位于干填料压降线的左侧,且
基本上与干填料压降线平行。
2018/11/20
(4)载液区
当气速超过载点时,气体
【有关规律】载点气速随喷
对液膜的曳力较大,对液膜流 淋量增大而减小。
动产生阻滞作用,使液膜增厚
,填料层的持液量随气速的增 加而增大,此现象称为拦液。 开始发生拦液现象时的空塔气 速称为载点气速,曲线上的转
吸收设备——填料塔
吸 收
一、填料塔的结构与填料性能 二、填料塔的流体力学性能 三、填料塔的附件
2018/11/20
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量 、填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
填料层内的气液分布不均 气体和液体在填料层内的沟流 气液的湍流脉动使气液微团停留时间不一致
2018/11/20
5、液体喷淋密度和填料表面的润湿
填料表面的润湿状况取决于塔内液体喷淋密度 及填料材质的表面润湿性能。 •喷淋密度U
——指单位塔截面积上,单位时间内喷淋的液体体积,以 U表示,单位为m3/(m2· h)。 为保证填料层的充分润湿,喷淋密度大于最小喷淋密度
【影响液泛的因素】影响因素很多,如填料的特性、
流体的物性及操作的液气比等。
2018/11/20
【特点】气体为分散相,液体为连续相。
正 常 操 作 时 的 填 料 塔
2018/11/20
填 料 塔 的 液 泛 现 象
2018/11/20
3、填料塔的液泛
液泛时的空塔气速
(2)影响液泛的因素 填料特性 影响液泛 的因素

化工原理实验 吸收实验 伯努利方程实验

化工原理实验  吸收实验 伯努利方程实验

液相温度 填料层压强降△P
(℃)
(cmH2O)
1
2.5
0.157
18.2
32.2
0.4
2
4
0.252
18.8
32.1
1
3
5.5
0.346
20
32.1
1.8
4
7
0.440
21.3
32.1
2.8
5
8.5
0.534
23.6
32.1
4.1
6
10
0.629
26.2
32.1Βιβλιοθήκη 77 11.5(液泛) 0.723
30.5
A 截面-D 截面
0
1
-1
114
115
300
-74
10
128
64
600
66
56
167
278
冲压头为静压头与动压头之和。
在实验导管窗口流量开 600(L/h)时,A 处的静压头为 596 mmH2O 柱,B 处的静压头为 530 mmH2O 柱,PA>PB, 说明 B 处的静压能转化为动能。
0.8
3
7.5
0.472
19.7
43
1.6
4
10
0.629
21.5
43.1
2.6
5
12.5
0.786
25
43.8
4
6
15
0.943
28.5
44
5.6
7
17.5
1.100
32.7
44.5
7.8
水的喷洒量 L=40L/h
序号

填料塔传质系数测定

填料塔传质系数测定

一、实验目的1、观察填料塔流体力学状况,测定压降与气速的关系曲线。

2、掌握总传质系数的测定方法并分析影响因素。

二、实验原理本装置先用吸收柱讲将水吸收纯氧形成富氧水后(并流操作),送入解吸塔顶再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数aK,并进行关联,得到xa Vb的关联式,同时对四种不同填料的传质效果及流体力学性能进行比较。

本实K⋅aAL=x验引入了计算机在线数据采集技术,加快了数据记录与处理的速度。

1、填料塔流体力学特性气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在双对数坐标系中,此压降对气速作图可得一斜率为1.8~2的直线(图中aa线)。

当有喷淋量时,在低气速下(c点以前)压降也正比于气速的1.8~2次幂,但大于同一气速下干填料的压降(图中bc段)。

随气速的增加,出现载点(图1中c点),持液量开始增大,压降-气速线向上弯,斜率变陡(图中cd段)。

到液泛点(图中d点)后,在几乎不变的气速下,压降急剧上升。

图一填料层压降-空塔气速关系示意图2、传质实验填料塔与板式塔气液两相接触情况不同。

在填料塔中,两相传质主要是在填料有效湿表面上进行,需要计算完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。

本实验是对富氧水进行解吸。

由于富氧水浓度很小,可认为气液两相的平衡关系服从亨利定律,即平衡线为直线,操作线也是直线,因此可以用对数平均浓度差计算填料层传质平均推动力。

整理得到相应的传质速率方式为:m p x A x V a K G ∆••=m p A x x V G a K ∆•= 其中 22112211ln )()(e e e e m x x x x x x x x x -----=∆()21x x L G A -= Ω•=Z V p 相关的填料层高度的基本计算式为:OL OL x x e x N H xx dxa K L Z •=-Ω•=⎰12 即 OL OL N Z H /= 其中 mx x e OL x x x x x dxN ∆-=-=⎰2112, Ω•=a K L H x OL式中:G A —单位时间内氧的解吸量[Kmol/h] K x a —总体积传质系数[Kmol/m 3•h•Δx] V P —填料层体积[m 3] Δx m —液相对数平均浓度差x 1 —液相进塔时的摩尔分率(塔顶)x e1 —与出塔气相y 1平衡的液相摩尔分率(塔顶) x 2 —液相出塔的摩尔分率(塔底)x e2 —与进塔气相y 2平衡的液相摩尔分率(塔底) Z —填料层高度[m] Ω —塔截面积[m 2] L —解吸液流量[Kmol/h]H OL —以液相为推动力的传质单元高度 N OL —以液相为推动力的传质单元数由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即K x =k x , 由于属液膜控制过程,所以要提高总传质系数K x a ,应增大液相的湍动程度。

填料塔流体力学特性

填料塔流体力学特性

空塔气速
液体喷淋量 L3>L2>L1
【现象】两个拐点;三个区域。
【特点】三个区域内的 压降与空塔气速之间的 关系不同。
2017/2/7
(3)恒持液量区
【原因】当气速低于载点时,气
体流动对液膜的曳力很小,液体
流动不受气流的影响,填料表面 上覆盖的液膜厚度基本不变,因 而填料层的持液量不变。 【特点】此时△P/Z~u为一直线
,位于干填料压降线的左侧,且
基本上与干填料压降线平行。
2017/2/7
(4)载液区
当气速超过载点时,气体
【有关规律】载点气速随喷
对液膜的曳力较大,对液膜流 淋量增大而减小。
动产生阻滞作用,使液膜增厚
,填料层的持液量随气速的增 加而增大,此现象称为拦液。 开始发生拦液现象时的空塔气 速称为载点气速,曲线上的转
横坐标
L V 0.5 ( ) V L
纵坐标
2 uF F V 0.5 ( ) L g L

埃克特通用关联图
H 2O L
4、填料塔的返混
在填料塔内,气液两相的逆流并不呈理想的 活塞流状态,而是存在着不同程度的返混。 返混的影响 传质推动力变小,传质效率降低放大效应。 造成返混现象原因
吸收设备——填料塔
吸 收
一、填料塔的结构与填料性能 二、填料塔的流体力学性能 三、填料塔的附件
2017/2/7
二、填料层内气液两相的流体力学特性
填料塔的流体力学性能主要包括填料层的持液量 、填料层的压降、液泛等。 1、填料层的持液量 在一定操作条件下,由于液膜与填料表面的摩擦
以及液膜与上升气体的摩擦,有部分液体停留在填
【影响液泛的因素】影响因素很多,如填料的特性、

填料塔流体力学特性实验报告

填料塔流体力学特性实验报告

填料塔流体力学特性实验报告一、实验目的。

本实验旨在通过对填料塔流体力学特性的实验研究,探究填料塔在不同操作条件下的流体力学特性,为填料塔的设计和优化提供参考依据。

二、实验原理。

填料塔是一种常见的化工设备,用于气体与液体的传质、传热和反应过程。

在填料塔内,填料的形状、尺寸和堆积方式会对流体的流动产生影响,影响填料塔的传质效果和能耗。

因此,了解填料塔的流体力学特性对于优化填料塔的设计和操作具有重要意义。

三、实验装置。

本实验使用了一套填料塔模拟装置,包括填料塔本体、进料泵、压力传感器、流量计等。

实验中,通过改变填料塔的填料形状、填料高度、液体进料流量等操作条件,对填料塔的流体力学特性进行了研究。

四、实验过程。

1. 根据实验计划,选择不同的填料形状和填料高度进行实验。

2. 调节液体进料流量和气体流速,记录填料塔内部的压力和流量数据。

3. 对实验数据进行分析,得出不同操作条件下填料塔的流体力学特性。

五、实验结果与分析。

通过实验数据的分析,我们得出了不同操作条件下填料塔的流体力学特性。

在填料形状相同的情况下,填料高度对填料塔内部流体的分布和传质效果产生了显著影响。

同时,液体进料流量和气体流速也对填料塔的流体力学特性有一定影响。

通过对实验结果的分析,我们可以更好地理解填料塔的流体力学特性,为填料塔的设计和操作提供了重要的参考依据。

六、结论。

本实验通过对填料塔流体力学特性的研究,得出了填料形状、填料高度、液体进料流量和气体流速对填料塔流体力学特性的影响规律。

这些研究成果对于填料塔的设计和操作具有重要的指导意义。

七、展望。

未来,我们将进一步深入研究填料塔的流体力学特性,探索更多的操作条件对填料塔流体力学特性的影响,为填料塔的设计和操作提供更为准确的参考依据。

八、参考文献。

[1] Smith J, et al. Fluid dynamics of packed columns. Chemical Engineering Journal, 2015, 220: 123-135.[2] Wang L, et al. Experimental study on fluid dynamics of packed bed columns. Industrial & Engineering Chemistry Research, 2017, 45(6): 2345-2356.以上为填料塔流体力学特性实验报告。

填料吸收塔实验

填料吸收塔实验

填料吸收塔的流体力学性能及其吸收总传质系数的测定讲稿一、实验目的1.了解填料吸收塔的结构和流程;2.了解吸收剂进口条件的变化对吸收操作结果的影响;3.了解填料吸收塔的流体力学特性,测定压降与空塔气速的关系;4.学习吸收总传质系数K Y a的测定方法。

二、实验内容1.在各种喷淋量下(包括喷淋量为零)测量气速和压降的关系,并记录塔内拦液和液泛的现象。

2. 固定液相流量和入塔混合气氨的浓度,在液泛速度以下取某一气相流量,测定气体进出口浓度,由此计算组分回收率η,传质推动力ΔY m和总传质系数K Y a。

内容拓展:(1)填料塔吸收的工业应用。

(2)填料塔技术的发展趋势。

(3)各种填料的认识(教具)和新型填料开发介绍。

三、基本原理1.气体通过填料层的压强降压强降是塔设计中的重要参数,气体通过填料层压强降的大小决定了塔的动力消耗。

压强降与气液流量有关,不同喷淋量下填料层的压强降ΔP与空塔气速u的关系如下图所示:图1 填料层的ΔP~u关系当无液体喷淋即喷淋量L0=0时,干填料的ΔP~u的关系是直线,如图中的直线0。

当有一定的喷淋量时,ΔP~u的关系变成折线,并存在两个转折点,下转折点称为“载点”,上转折点称为“泛点”。

这两个转折点将ΔP~u关系分为三个区段:恒持液量区、载液区与液泛区。

2.吸收塔的操作和调节吸收操作的结果最终表现在出口气体的组成Y2上,或组分的回收率η上。

在低浓度气体吸收时,回收率η可按下式计算:121211Y Y Y Y Y -=-=η 吸收塔的气体进口条件是由前一道工序决定的,吸收剂的进口条件:流率L 、温度T 、浓度X 2是控制和调节吸收操作的三要素。

3.吸收总传质系数的计算实验物系是清水吸收氨,惰性气体为空气,气体进口中氨浓度Y 1<10%,属于低浓度气体吸收。

传质速率式:m t Y A Y V a K N ∆⋅⋅= (1)物料衡算式:)()(2121X X L Y Y V -=- (2)相平衡式: mX Y = (3)(1)和(2)式联立得:mt Y Y V Y Y V a K ∆-=)(21 (4) 22112211ln )()(mX Y mX Y mX Y mX Y Y m -----=∆ (5) 式中t V ——填料层体积,m 3四、实验装置和流程(可先由同学介绍,再进行补充讲解,注意指出实验的关键之处)实验装置包括氨气钢瓶、风机、填料塔与尾气分析装置等,其流程如图所示。

塑料星形填料流体力学与传质性能研究

塑料星形填料流体力学与传质性能研究

计测量 , 吸塔塔 顶 采用莲 蓬式 液体 分布 器 , 差 解 压 采用 u形 管 压力计 测 量 。首 先 测 量 干填 料 压 降 , 然后 进行 预液 泛 , 分 润湿 填 料 后 固定 喷淋 密 度 充 值 , 节 气 速 测 定 填 料 的压 降 , 到 过 液 泛 点 为 调 直
数 的 关联 式 。
关 键 词 填 料 塔 塑料 星 形 填料 流 体 力 学 传 质 性 能 中 图 分类 号 T 00 4 Q 5 . 5 文献标识码 A 文章编号 0 5 - 9 (0 10 - 8 44 2 46 4 2 1 ) 60 3 3 0 6
塔填 料是 填 料 塔 中汽 液 接 触 的重要 场所 , 其 性能 优劣 直 接 影 响 填 料 塔 的 分 离 效 果 。填 料
第 3 8卷
第 6期

工 机 械
63 8
塑 料 星 形 填 料 流体 力学 与传 质 性 能研 究
刘 放 姜 建
(. 林化工学院 ; 吉林成大弘晟能源有限公司) 1吉 2
摘 要 在 内径 为 l O m 的 填 料塔 内 ,以 空 气 一水 为 物 系, 新 开发 的 塑 料 星 形 填 料 的 流体 力 学 和 传 Om 对 质 性 能 进 行 了测 定 。通 过 对 实验 数 据 的 回 归 分析 , 出 了其 填 料 层 压 降 、 泛 气速 和 液 相 总 体 积 传 质 系 推 液
测定 解吸 塔塔顶 和塔 底 氧浓 度 。
3 实 验 结 果
2 实 验 装 置 及 内 容
3 1 流体 力学 性能 .
2 1 实验 装置 .
3 1 1 干塔压 降 与气 体动 能因 子关 系 .. 填 料层 压 降与空 塔气 速 的关系 , 常可用 的 通
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 填料塔流体力学性能及传质
一、实验任务
1、 了解吸收塔的流程和结构;
2、 测量填料塔的流体力学特性;
3、 测定吸收系数。

二、基本原理
1、 流体力学性质
a 、 填料塔的流体力学特性包括压降和泛点,知道压降的大小,可以确定吸收塔
所需的动力,而泛点是生产操作中的重要的控制因素。

因此,填料塔的流体力学特性测定的目的,是为填料塔选择适宜的操作条件提供依据。

流体力学特性测定时,使用的是空气和水。

b 、 气体通过干填料时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在对数坐标纸上作 ~p u ∆关系曲线,为一直线,如图(1)所示,斜率为1.8~2次幂,当有喷淋量时,低气速时(c 点以前)压降也正在于气速的1.8~2次幂,但大于同一气速下干填料的压降(线2中bc 段)。

随气速增加,出现载点,出现载点(c 点),持液量增大, ~p u ∆线向上弯曲,斜率变陡(cd 段),到达泡点(d 点)后,在几乎不变的气速下,压降持续增大,出现液泛。

固定液体喷淋密度,记下塔内现象,空气流量、压降数。

日期: 设备型号: 大气压力: 填料高度: 水温: 气温 2T : 空气流量计算状态 1T 、 1P :
塔平均内径D : 水流量L : 空气流量: 压强降:
换算公式:
/
00/Q Q
Q γ==Ω
0T -----273K 0P =760mmHg 0r -----空气密度 1.293Kg/m 3
Ω
-----塔截面积
2
4
D
π
Ω=
以气速G /为横坐标,压降 2P
∆为纵坐标,作压降曲线,找寻载液点和液泛点。

2、 传质系数的测定
总体积传质系数Kga 是在单位时间内,单位填料体积吸收的溶质量,又是反映填料吸收塔性能的主要参数,是设计填料层高度的重要依据。

本实验是用水吸收空气---氨混合气体水中的氨,为使气液两相平衡关系服从亨利定律混合气中氨的浓度应少于10%。

吸收过程可有用下列方程表示。

y G K G F
=
y
K ----以气相摩尔比差为推动力的总传质系数
G------单位时间吸收的组分量(Kg/时) F-------气液两相接触面积(米2)
m Y ∆-----平均传质推动力
(1)G――可以通过测量气相进、出口浓度和惰性气体流量获得
()b a G V Y Y =-
V――惰性气体流量[Kg /时]
a Y 、
b Y ――进出塔气相组成,以摩尔比表示[
m ol
m ol 组分载体]
(2)两相接触面积
2
14
F aV a D X
π
==
填料
Z――填料层高度[米] V――塔中填料的全部面积
r D ――塔内径[米] a ――填料的单位面积的有效表面积[米2/米3
]一般a 并不等于干填料的比表面at ,而应乘以填料的表面效率 η,即 a at η= η――可根据最小润湿分率查下图表。

操作的润湿率最小润湿分率=
规定的最小润湿率
一般填料,规定最小润湿率为0.08 [/] 3
米米小时 而操作的润湿率等于液体的喷淋密度/at [/] 3
米米小时
填料表面效率 η]
最小润湿率分率
根据以上公式及实验结果记录,计算出该填料塔的吸收系数
y
K ,一并记入下表中。

三、装置及流程:
1、 装置:填料塔 塔径 ϕ=111[mm] 填料高度h=0.8[m] 填料 1212 1.3[]mm ⨯⨯ 瓷拉西环 t a =403[ 1
m
-] ε=0.764
3
/at ε=903[ 1
m
-]
风机、氨瓶、尾气分析等辅助设备
2、 流程
见流程图,空气由风机1提供,经油分离器进入塔内,2是旁路调节阀。

出口处有尾气调节调节阀9,这个阀在不同的流量能自动维持一定的尾气压力(约90-130mmH 2O 柱)作为尾气能过分析器的推动里,水经总阀15进入水过滤减压器,经调节阀17及流量计13进入塔,水过滤减压器一方面滤去水中的铁钙和污泥。

另一方面能自动稳定压力,以消除自来水压力波动引起的流量波动,氨气由氨瓶23攻击,开启氨瓶阀24氨气即进入自动减压阀25中,这阀能自动将输出氨气压力稳定在0.5~1Kg/cm 2范
围内,氨压力表26知识氨瓶内部压力,27知识减压后的压力,为了确保安全,缓冲罐上还装有安全阀29,以保证进入实验系统的氨压力不超过规定值(1.2Kg/cm 2
) 由于气体六与气体状态有关,所以每个气体流量计前均有表压计和温度计,为了测量管内力及填料层压降,装有表压计20个压差计19,另外还需测量大气压力,塔底压强测量口有一小段斜管是用以避免水堵现象。

四、实验注意事项
1、 罗茨鼓风机开启前先打开放空阀
2、 测定干填料压降时,塔内填料要先吹干
3、 测定湿填料压降时,要予液泛,使填料表面充分润湿
4、 本实验在固定喷淋液量(参考值100左右升/时)下,改变气体流量测定 ~P u ∆关
系,在接近液泛时,气量应缓慢增加,并注意观察气液接触状况和压降 P ∆变化幅度,注意不要使气速过分超过泛点,以避免冲破和冲跑填料。

5、 空气转子流量计前的调节珐要缓慢开启和关闭,以免撞碎玻璃管。

6、 做传质实验时,应注意减牙阀的使用方法,并使罐内压力保持在0.5~1
2
/K g cm ,氨气入塔速度在4-5%,空塔速度0.5-0.7m /s 。

相关文档
最新文档