初一上学期数学知识点归纳总结
初一数学上册知识点总结

初一数学上册知识点总结关于初一数学上册知识点总结在我们平凡的学生生涯里,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
还在为没有系统的知识点而发愁吗?下面是店铺为大家整理的初一数学上册知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
初一数学上册知识点总结1代数初步知识1. 代数式:用运算符号+ - 连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用乘,或省略不写;(2)数与数相乘,仍应使用乘,不用乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a 应写成 a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 .初一数学上册知识点总结2一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如:1700+50x=1800,2(x+1.5x)=5等都是一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.2. 设:设未知数(可分直接设法,间接设法)3. 列:根据题意列方程.4. 解:解出所列方程.5. 检:检验所求的解是否符合题意.6. 答:写出答案(有单位要注明答案)初一数学上册知识点总结3(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ① 整数②分数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数 0和正整数;a0 a是正数;a0 a是负数;a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.初一数学上册知识点总结4第一章:丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
七年级数学上学期知识点归纳总结

一、整数与有理数1.整数概念:正整数、零、负整数2.整数加法:同号相加、异号相减、加减混合运算3.整数减法:减去一个整数相当于加上这个整数的相反数4.整数乘法:同号得正,异号得负5.整数除法:整除和带余除法6.有理数的概念:整数和分数的统称7.有理数的绝对值:正数的绝对值等于它本身,负数的绝对值等于它的相反数8.有理数的大小比较:同号比较大小,异号比较绝对值大小9.有理数的加法和减法:同理整数加法和减法10.有理数乘法:同理整数乘法,注意分数和整数乘法的结果11.有理数除法:同理整数除法,分数相除二、平方根与立方根1.平方根的概念2.求解平方根的方法:开方和求方程3.平方根的性质:非负实数开平方根得到的结果是非负数4.立方根的概念5.求解立方根的方法:开方和求方程6.立方根的性质:实数开立方根得到的结果不一定是实数三、比例与比例关系1.比例的概念:两个量的比2.比例的性质:比例项和比例关系3.比例的延长与缩短:逆运算4.比例的换算:比例恒等式5.比例的加法与减法:倍数关系6.合作比例与独立比例四、幂与指数1.指数的概念:方幂、平方、立方、n次方2.幂的简化与扩展:乘方法则3.指数运算律:幂的乘法律与幂的除法律4.科学计数法:表示大数和小数五、一次函数与一元一次方程1. 一次函数的概念:y = kx + b2.一次函数的性质:线性关系、斜率、截距3.一元一次方程的概念:变量、等式、解的概念4.一元一次方程的解法:逆运算、等式的性质5.一元一次方程的应用:问题求方程六、平面图形与立体图形1.平面图形的分类:点、线段、直线、射线、角、多边形、圆2.平面图形的性质:同位角、对顶角、对角线、正多边形、等边三角形、等腰三角形、等腰直角三角形、全等图形、相似图形3.立体图形的分类:棱柱、棱锥、棱台、球、圆柱、圆锥、圆台4.立体图形的性质:面、棱、顶点、侧面、底面、全等立体、相似立体、体积七、统计与概率1.统计的概念:调查、数据整理、数据分析、中位数、众数、范围2.概率的概念:实验、样本空间、事件、计算概率的方法:频率、等可能性、古典概率法、几何概率法以上为七年级数学上学期的知识点归纳总结,希望能对你的学习有所帮助。
七年级上册数学知识点总结归纳

七年级上册数学知识点总结归纳一、表示数的各种方法1. 自然数:1, 2, 3……(不包括0)。
2. 整数:……-3,-2,-1,0,1,2,3……。
3. 分数:如1/2,3/4等。
4. 小数:如0.5,1.75等。
5. 百分数:如25%,60%等。
6. 带数:如2 1/3,3 3/4等。
二、正比例函数1. 定义:若两个量的比值为固定值,那么这两个量成正比例关系。
2. 公式:y=kx(k为比例系数)。
3. 图像特征:通过原点,且经过第一象限内的点,图像为一条直线。
三、初中几何基本概念1. 点:几何中最基本的概念。
它是没有大小、没有形状的。
2. 线段:由两个端点构成的线段,记为AB。
3. 直线:没有端点的笔直线段,上面有箭头表示。
4. 射线:有一端点,延伸方向上没有终点的线段,记为AB→。
5. 角:由两条射线共同确定的图形叫做角,角的度量用度来表示。
6. 多边形:由线段首尾相连构成的封闭图形,包括三角形、四边形等。
四、三角形和四边形的性质与计算1. 三角形的性质:(1)三角形内角和为180°。
(2)三角形外角等于不相邻两个内角之和。
(3)直角三角形斜边上的中线等于斜边一半。
(4)等腰三角形的底角(底边上的角)相等。
2. 四边形的性质:(1)对角线互相平分。
(2)相邻的角互补,即它们的和等于180°。
(3)平行四边形的对边相等。
(4)任意一个凸四边形的对角线互相交点的连线分成的两条线段之和相等。
五、比例1. 同比例关系:两个分量成正比例或反比例,叫做同比例关系。
2. 比例的性质:(1)比例中有0,另外一个分量也是0。
(2)比例中两个分量分别乘同一个数,比例不变。
(3)比例中两个分量互换,比例不变。
六、平面直角坐标系1. 定义:平面直角坐标系由数轴和坐标轴围成,分为第一象限、第二象限、第三象限和第四象限四个部分。
2. 坐标:平面直角坐标系中,点P到坐标轴的距离分别表示为横坐标和纵坐标,用(x,y)表示。
初一数学知识点总结归纳(5篇)

初一数学知识点总结归纳第一章有理数1、大于0的数是正数。
2、有理数分类:正有理数、0、负有理数。
3、有理数分类:整数(正整数、0、负整数)、分数(正分数、负分数)4、规定了原点,单位长度,正方向的直线称为数轴。
5、数的大小比较:①正数大于0,0大于负数,正数大于负数。
②两个负数比较,绝对值大的反而小。
6、只有符号不同的两个数称互为相反数。
7、若a+b=0,则a,b互为相反数8、表示数a的点到原点的距离称为数a的绝对值9、绝对值的三句:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
10、有理数的计算:先算符号、再算数值。
11、加减:①正+正②大-小③小-大=-(大-小)④-☆-О=-(☆+О)12、乘除:同号得正,异号的负13、乘方:表示n个相同因数的乘积。
14、负数的奇次幂是负数,负数的偶次幂是正数。
15、混合运算:先乘方,再乘除,后加减,同级运算从左到右,有括号的先算括号。
16、科学计数法:用ax10n表示一个数。
(其中a是整数数位只有一位的数)17、左边第一个非零的数字起,所有的数字都是有效数字。
【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。
实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。
2024年初一上学期数学知识点总结归纳

2024年初一上学期数学知识点总结归纳1. 数的认识和比较- 自然数的认识- 数的比较与排序- 求多个数之和2. 加法和减法- 加法的认识和应用- 减法的认识和应用- 进位和退位的概念3. 乘法和除法- 乘法的认识和应用- 乘法的性质与规律- 除法的认识和应用- 除法的性质与规律4. 分数的认识和运算- 单位分数的认识- 分数的比较与排序- 分数的加减乘除5. 小数的认识和运算- 小数的读法和写法- 小数的加减乘除- 小数和分数的转换6. 表格和图表- 读懂表格和图表的数据- 分析表格和图表的信息- 制作简单的表格和图表7. 长度的认识和计量- 米和厘米的认识- 里程的计算- 距离的比较和排序8. 重量的认识和计量- 克和千克的认识- 重量的比较和排序- 常见物品的重量估算9. 容积的认识和计量- 升和毫升的认识- 容量的比较和排序- 液体的倒注和倒出10. 时间的认识和计量- 时、分、秒的认识- 时间的读写和计算- 日常生活中的时间问题11. 运算顺序与算式的变换- 运算顺序的理解- 算式的变换与化简- 利用已知数据求解未知数12. 图形的认识和分类- 点、线和面的认识- 常见二维图形的认识和分类- 对称性和轴对称图形13. 二维图形的性质和运算- 长方形、正方形和圆的性质- 二维图形的面积和周长- 二维图形的位置关系和运动14. 位置与方位- 点、线和面的位置- 方位的认识和描述- 方位的相对位置与移动方向15. 算术表达式与方程式- 算术表达式和运算符号- 方程式的认识和应用- 方程式的解和应用16. 数据的统计和概率- 数据的收集和整理- 数据的图形表示和数据的分析- 概率的认识和应用以上是____年初一上学期数学知识点的总结归纳,希望对你有帮助。
初一数学上学期知识点总结

初一数学上学期知识点总结一、数与代数1. 自然数和整数- 自然数的定义和性质- 整数的定义和性质- 正数和负数的概念- 绝对值的计算2. 有理数- 有理数的定义- 有理数的加法和减法- 有理数的乘法和除法- 有理数的比较和排序3. 整式与分式- 单项式和多项式- 整式的加减法- 分式的加减法和乘除法- 分式的性质和约分4. 线性方程- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)二、几何1. 几何基本概念- 点、线、面、体- 直线、射线、线段- 角的概念和分类2. 平面图形- 平行线的性质- 角的度量和比较- 三角形的基本性质- 四边形的基本性质3. 圆的基本性质- 圆的定义- 圆的半径、直径、弦、弧 - 圆周角和圆心角- 切线的概念和性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 直方图和饼图的绘制2. 概率- 随机事件的概念- 可能性的判断- 简单概率的计算四、应用题1. 与生活实际相结合的数学问题 - 购物问题中的计算- 时间和速度问题- 面积和体积的计算2. 数学建模- 初步了解数学建模的概念- 解决简单的实际问题请注意,这只是一个基本的框架,具体的文档应该包含更详细的解释、示例和练习题。
您可以根据这个框架在Word文档中创建一个结构化和格式化的文档,以便于打印和复制。
每个部分都应该有清晰的标题和子标题,以及适当的列表和表格来组织内容。
初一上学期数学知识点总结归纳

初一上学期数学知识点总结归纳1. 小数与分数1.1 小数的四则运算小数的四则运算包括加、减、乘、除四种运算,具体规则如下:•加减法:先将小数点对齐,然后按照整数位、小数位从左至右进行计算。
•乘法:先不考虑小数点,按照正常的乘法方法进行计算,最后把小数点向左移动相应的位数。
•除法:先让除数与被除数都乘以同一个数,使得除数成为整数,然后按照正常的除法方法计算,最后把小数点向右移动相应的位数。
1.2 分数的加减乘除分数的加减乘除也有相应的规则:•加减法:先通分,再按照整数位、分数位从左至右进行计算。
•乘法:分子相乘,分母相乘。
•除法:将除数倒数后与被除数乘,即变为乘法。
2. 代数式2.1 代数式的基本概念代数式由数、字母和运算符号组成,可以表示数和算式,例如5x2+3x−2就是一个代数式。
2.2 代数式的加减乘除代数式的加减法、乘法、除法同小学阶段所学的算式类似,需要进行合并同类项、分配律、交换律、结合律等运算。
3. 方程与不等式3.1 方程的基本概念方程是指一个等式具有未知数的性质,其中未知数表示为字母,例如3x−5=7就是一个方程,其中x是未知数。
3.2 方程的解法方程的解法包括移项、配方法、代数法、因式分解法等多种方法,需要根据具体的方程情况选择合适的方法。
3.3 不等式的基本概念不等式是指两个数或代数式之间用不等号连起来的关系,例如3x−5<7就是一个不等式。
3.4 不等式的解法不等式的解法也包括移项、配方法、代数法、因式分解法等多种方法,需要注意的是,不等式的解法需要根据不等号的方向和种类来确定。
4. 几何知识4.1 几何图形的认识初中数学中的几何图形包括点、线、面、角、三角形、四边形、圆等,需要掌握它们的定义、性质和分类。
4.2 几何图形的相似几何图形的相似指的是形状相同但大小不同的图形,例如两个相似的三角形可以根据角度比例和边长比例来求解。
4.3 平面镜像与轴对称平面镜像和轴对称都是几何变换的一种,它们可以把一个几何图形通过翻转、旋转、平移等操作得到另一个几何图形。
初一上册数学知识点总结

初一上册数学知识点总结初一上册数学知识点梳理总结1一、代数式的定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。
特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;4.在代数式中出现除法运算时,按分数的写法来写;5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一上学期数学知识点归纳总结
(一)正负数
1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数
1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)
2.整数:正整数、0、负整数,统称整数。
3.分数:正分数、负分数。
(三)数轴
1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
)
2.数轴的三要素:原点、正方向、单位长度。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数还
是0。
4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反p(五)有理数乘法(先定积的符号,再定积的大小)
1.同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
2.乘积是1的两个数互为倒数。
3.乘法交换律:ab=ba
4.乘法结合律:(ab)c=a(bc)
5.乘法分配律:a(b+c)=ab+ac
(六)有理数除法
1.先将除法化成乘法,然后定符号,最后求结果。
2.除以一个不等于0的数,等于乘这个数的倒数。
3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。
(七)乘方1.求n个相同因数的积的运算,叫做乘方。
写作an。
(乘方的结果叫幂,a叫底数,n叫指数)2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。
3.同底数幂相乘,底不变,指数相加。
4.同底数幂相除,底不变,指数相减。
(八)有理数的加减乘除混合运算法则
1.先乘方,再乘除,最后加减。
2.同级运算,从左到右进行。
3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
(九)科学记数法、近似数、有效数字。
第二章整式(一)整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。
单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4。
次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
如果括号外的因数是负数,去括号后原括
号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。