螺纹断裂分析

合集下载

螺栓断口失效分析

螺栓断口失效分析

1、解理断裂(大多数情况下为脆性断裂)2、剪切断裂1、静载断裂(拉伸断裂、扭转断裂)2、冲击断裂3、疲劳断裂1、低温冷脆断裂2、静载延滞断裂(静载断裂)3、应力腐蚀断裂4、氢脆断裂断口微观形貌(图3/4/5/6),断口呈脆性特征,表面微观形貌为冰糖状沿晶断裂,芯部为沿晶+准解理断裂,在断裂的晶面上有细小的发纹状形貌。

结论:零件为沿晶断裂的脆性断口。

断口呈脆性特征,表面微观形貌沿晶断裂,芯部为准解理断裂;终断区(图4)微观为丝状韧窝形貌,为最终撕裂区结论:断口为脆性断裂宏观断口无缩颈现象且微观组织多处存在剪切韧窝形貌,为剪切过载断裂断口。

综上分析:零件为氢脆导致的断裂,氢进入钢后常沿晶界处聚集,导致晶界催化,形成沿晶裂纹并扩展,导致断面承载能力较弱,最终超过其承载极限导致断裂典型氢脆断口的宏观形貌如右图所示:氢脆又称氢致断裂失效是由于氢渗入金属内部导致损伤,从而使金属零件在低于材料屈服极限的静应力持续作用下导致的失效。

氢脆多发生于螺纹牙底或头部与杆部过渡位置等应力集中处。

断口附近无明显塑性变形,断口平齐,结构粗糙,氢脆断裂区呈结晶颗粒状,一般可见放射棱线。

色泽亮灰,断面干净,无腐蚀产物。

应力腐蚀也属于静载延滞断裂,其断口宏观形貌与一般的脆性断口相似,断口平齐而光亮,且与正应力相垂直,断口上常有人字纹或放射花样。

裂纹源区、扩展区通常色泽暗灰,伴有腐蚀产物或点蚀坑,离裂纹源区越近,腐蚀产物越多。

应力腐蚀断面最显著宏观形貌特征是裂纹源表面存在腐蚀介质成分贝纹线是疲劳断口最突出的宏观形貌特征,是鉴别疲劳断口的重要宏观依据。

如果在宏观上观察到贝壳状条纹时,在微观上观察到疲劳辉纹,可以判别这个断口属于疲劳断口。

车削螺纹时常见故障及解决方法

车削螺纹时常见故障及解决方法

车削螺纹时常见故障及解决方法螺纹车削是机械加工中的一项重要工艺,常用于制作螺栓、螺母等产品。

在车削螺纹过程中,有时会遇到一些常见的故障,如螺纹断裂、螺纹毛刺等问题。

本文将针对这些常见故障,给出相应的解决方法。

一、螺纹断裂螺纹断裂是车削螺纹中最常见的故障之一,主要原因有以下几点:1. 切削量过大。

车削螺纹时,如果一次性切削量过大,容易导致螺纹切削力过大,从而造成螺纹断裂。

2. 车削速度过高。

车削速度过高,会使螺纹材料在车削过程中产生过热现象,从而影响螺纹强度,导致断裂。

3. 切削刃磨损严重。

切削刃磨损严重会导致螺纹车削时切削力不均匀,从而容易引起断裂。

解决方法:1. 合理控制切削量。

在车削螺纹时,应根据工件的材料和尺寸,选择合适的切削量,避免一次性过大的切削力。

2. 控制切削速度。

根据螺纹材料的硬度和热处理情况,选择合适的切削速度,避免过高的车削速度造成螺纹断裂。

3. 及时更换刀具。

定期检查和更换切削刃,保证切削刃的锐利度,避免因刀具磨损产生过大的切削力。

二、螺纹毛刺螺纹毛刺是车削螺纹常见的表面缺陷之一,主要原因有以下几点:1. 加工精度不高。

车削螺纹时,如果刀具偏斜、工件夹紧不稳定等,容易导致精度不高,从而产生毛刺。

2. 切削液不合适。

切削液在车削螺纹时起到冷却、润滑的作用,选用不合适的切削液容易造成毛刺。

3. 刀具磨损严重。

刀具磨损严重会导致切削力不均匀,从而产生毛刺。

解决方法:1. 提高加工精度。

在车削螺纹前,检查刀具和夹持装置,确保工艺参数设置正确,以提高加工精度。

2. 合理选择切削液。

根据螺纹材料的特性和切削条件,选择合适的切削液,保证切削液的冷却和润滑效果,减少毛刺。

3. 及时更换刀具。

定期检查和更换刀具,保证刀具的切削锋利度,减少切削力不均匀引起的毛刺问题。

三、螺纹尺寸不准确螺纹尺寸不准确是车削螺纹常见的质量问题之一,主要原因有以下几点:1. 刀具磨损不均匀。

刀具磨损不均匀会导致切削力不均匀,从而影响螺纹尺寸的精度。

高强度螺栓断裂分析-扭矩过大

高强度螺栓断裂分析-扭矩过大
测试过程与结果断口分析断口宏观形貌属纤维状断口如图1所示由纤维状分布形态可判断螺栓为扭力作用下引起的断裂
记录号:JS-AL-紧固件-023
高强度螺栓断裂分析
摘要:由 30CrMnSi 制造的高强度螺栓,经调质处理,在安装时发生断裂。分析结果表明: 螺栓断裂是由于外应力过载引起的超载断裂。
中关键词:高强度螺栓;超载断裂 材料种类/牌号:合金结构钢/30CrMnSi 概述 国由30CrMnSi制造的高强度螺栓,经调质处理,在安装时发生断裂。 测试过程与结果 断口分析 应 断口宏观形貌属纤维状断口,如图1所示,由纤维状分布形态可判断螺栓为扭力作用下 引起的断裂。
急 分 析 网
图1 螺栓断口宏观形貌,纤维状条纹由螺纹根部区发散,条纹呈弧形弯曲, 说明主要是在超载扭转应力作用下引起的断裂。
扫描电镜观察断口属韧窝型断裂,如图2所示。由于材料强度较高,断裂时速度较快, 在某些部位出现准解理断裂,如图3 所示。
1
中 国 应 急 图2 螺栓断口扫描电镜形貌,略带方向性的韧窝,由于螺栓材料强度较高,
故韧窝较小。
分 析 网
图3 螺栓断口微观形貌以韧窝为主,局部有少量的准解理断裂,这是由于螺栓材 料强度较高及断裂时外应力较高所致。这些特征均为外应力过载造成的断裂 特征。
金相检验 金相检验显微组织为回火索氏体,组织正常。
结论
2
分析结果表明螺栓断裂是由于外应力过载引起的超载断裂。
参考文献
[1]黄振东.钢铁金相图谱.北京:中国科技文化出版社,2005,1258-1259 页.
中资料整理人:王冬梅 审核人: 吴伯群
国家钢铁材料测试中心 国家钢铁材料测试中心

应急分析网 Nhomakorabea3

40Cr高强螺栓断裂分析

40Cr高强螺栓断裂分析
大尺寸的具有裂纹性质的白点缺陷是造成螺栓在远未达到设计要求的载荷下发生脆性断裂 的主要原因。
螺栓材料的化学成分符合规定要求,螺栓的组织不是正常的调质组织,材料的硬度也偏
低。
主要分析人员及单位
朱衍勇 教授级高工 钢铁研究总院
董毅 工程师
钢铁研究总院
资料整理人:王冬梅 国家钢铁材料测试中心 审核人: 吴伯群 国家钢铁材料测试中心
网 理断口呈片层状、羽毛状和细条状,在高倍下看出,微观断面上的片层撕裂棱边缘发生轻微
的圆钝化,具有开裂后又受到热影响的痕迹,这是钢中白点缺陷的断口微观特征。
2


缺陷区断口形态


分 缺陷区混合断口


断口受到热影响表面轻微的圆钝化 图 2 断裂源区微观形态
在裂纹源区的边缘断口中可以观察到有韧窝状断口,如图 3,这是在被钝化的初始裂纹 的基础上发生裂纹扩展形成的伸张区断口特征。伸张区断口的外侧为裂纹快速扩展形成的解 理断口,如图 4,解理断裂是一种穿晶脆性断裂。与裂纹源与扩展区之间过渡观察到伸张区 韧窝断口带形成鲜明的对比。断口上也没有看到疲劳的痕迹。由此可以断定,螺栓断口是在
记录号:JS-AL-紧固件-015
40Cr 高强螺栓断裂原因分析
摘要:某螺栓设计安装公称预紧拉力 450 吨,在安装过程中拉力达到 120 吨左右时突然断裂。
中对断裂螺栓试样进行化学成分分析、断口分析、无损检测、金相组织分析及硬度测试,结果 表明:该螺栓属于一次性正应力载荷作用下的脆性断裂,螺栓材料内部存在较大尺寸的具有 裂纹性质的白点缺陷是造成螺栓在远未达到设计要求的载荷下发生脆性断裂的主要原因。
断裂源位置和裂纹扩展的方向如图中箭头所示。断裂源位于偏离中心约 1/3 半径的位置,源

螺栓断裂原因

螺栓断裂原因

高强螺栓断裂原因分析
经过我司技术人员分析,螺栓断裂的可能原因如下:
①是由于机组运行时轴发生窜动,导致螺栓在非受力面发生产生载荷并断裂。

表1为联轴器螺栓发生断裂的可能原因及处理方案。

由于螺栓断裂位置为非受力面,建议贵司对于联轴器进行找正安装。

②疲劳断裂。

从图1可以看出螺栓断裂面位于螺纹的根部并且断裂面无颈缩,从断裂纹判断断裂原因为疲劳断裂。

断裂位置为螺纹根部且为圆角刀槽,如无断裂痕迹此处不应该为应力集中位置,而且夹紧膜片的薄垫也发生断裂,由此判断是由于在安装时没有按照要求施加了过大的预紧力矩,认为预紧力矩越大越好,导致在断裂位置形成肉眼不可见的微小裂痕。

在机组运行中变化的载荷在此位置逐渐形成较大的应力集中,最后导致螺栓发生疲劳断裂。

③该驱动螺栓采用的材料为35CrMo,调制后硬度达到HRC30~35,强度达到10.9级,螺栓出厂前经过多道检验工序检验并且合格才准许出厂。

螺纹断裂问题的分析及结构优化

螺纹断裂问题的分析及结构优化

总615期第7期2017年7月河南科技Henan Science and Technology螺纹断裂问题的分析及结构优化宰守香(河南机电职业学院,河南郑州451191)摘要:螺栓连接作为一种应用最为广泛的钢结构连接方式,其自身的可靠性对结构的整体可靠性影响极大。

本文通过对各类螺栓在使用过程中发生断裂现象的研究,利用三维有限元计算及理论分析,找到大吨位螺杆断裂的一般性原因,并给出解决此问题的有效方法,为螺栓连接的设计及进一步优化提供理论依据,对提高各类螺栓连接的安全性有重要的指导意义。

关键词:螺栓;断裂;有限元;悬置螺母中图分类号:U279.3文献标识码:A文章编号:1003-5168(2017)07-0066-03Analysis and Structural Optimization of Thread FractureZai Shouxiang(Henan Mechanical and Electrical Vocational College ,Zhengzhou Henan 451191)Abstract:As one of the most widely used steel structure connection mode,the reliability of bolt connection is critical to the overall reliability of structures.In this paper,through the study of the fracture phenomenon of various kinds of bolts in use,the general cause of fracture of large tonnage screw rod was found by means of 3D finite element calcula⁃tion and theoretical analysis,and an effective method to solve this problem was given,which provide a theoretical ba⁃sis for design and further optimization of bolt connection.It has important guiding significance for improving the safe⁃ty of various bolted connections.Keywords:bolt ;fracture ;finite element ;suspension nut 螺栓连接作为一种应用最为广泛的钢结构连接方式,其自身的可靠性对结构的整体可靠性影响极大[1-3]。

螺纹断裂的预紧力

螺纹断裂的预紧力

螺纹断裂的预紧力引言螺纹连接是一种常见的机械连接方式,广泛应用于各个行业的设备和结构中。

螺纹连接具有简单、可靠、可拆卸等优点,但在使用过程中,螺纹断裂是一个常见的问题。

螺纹断裂可能导致设备的失效和安全事故的发生,因此对螺纹断裂的预紧力进行研究和控制是非常重要的。

螺纹连接的基本原理螺纹连接是通过螺纹的副面间的摩擦力和螺纹的张力来实现连接的。

在螺纹连接中,当螺栓被旋紧时,螺纹的副面之间会产生一定的摩擦力,这种摩擦力可以防止连接松动。

同时,螺纹的副面之间的摩擦力还会产生一个拉力,即预紧力,这种预紧力可以保证连接的紧固程度。

螺纹断裂的原因螺纹断裂主要有以下几个原因:1.过紧或过松的预紧力:如果预紧力过大,会导致螺纹的应力超过其承载能力,从而导致螺纹断裂。

相反,如果预紧力过小,连接松动,也会导致螺纹断裂。

2.材料强度不足:螺纹连接中使用的材料强度不足,无法承受预紧力的作用,容易导致螺纹断裂。

3.螺纹磨损:螺纹连接在使用过程中,由于摩擦和振动等因素的影响,螺纹表面可能会磨损,进而导致螺纹断裂。

螺纹断裂的预紧力控制为了避免螺纹断裂,需要对螺纹的预紧力进行控制。

以下是一些常用的控制方法:1.合理选择螺纹材料:选择强度适当的螺纹材料,可以提高螺纹连接的承载能力,减少螺纹断裂的风险。

2.控制预紧力的大小:根据螺纹连接的具体要求和材料的特性,合理控制预紧力的大小。

可以通过使用扭力扳手等工具来控制预紧力的大小。

3.检查螺纹连接状态:定期检查螺纹连接的状态,包括螺纹的磨损程度、预紧力的大小等。

如有必要,可以进行维护和更换。

4.使用锁定剂:在一些特殊情况下,可以使用锁定剂来增加螺纹连接的紧固力,防止松动和断裂。

螺纹断裂的预防措施除了控制预紧力外,还可以采取以下预防措施,降低螺纹断裂的风险:1.设计合理的连接结构:在设计螺纹连接时,要考虑到使用环境和负荷条件等因素,合理选择螺纹的尺寸和数量,以及连接的结构形式。

2.加强润滑和防腐措施:在螺纹连接中,适当的润滑可以减少螺纹的磨损和摩擦,防止螺纹断裂。

螺栓断裂原因分析

螺栓断裂原因分析

螺栓断裂原因的分析一般情况下,我们对于螺栓断裂从以下四个方面来分析:第一、螺栓的质量第二、螺栓的预紧力矩第三、螺栓的强度第四、螺栓的疲劳强度实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。

因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。

一、螺栓断裂不是由于螺栓的抗拉强度:以一只 M20×80 的 8.8 级高强螺栓为例,它的重量只有0.2 公斤,而它的最小拉力载荷是 20 吨,高达它自身重量的十万倍,一般情况下,我们只会用它紧固20 公斤的部件,也只使用它最大能力的千分之一。

即便是设备中其它力的作用,也不可能突破部件重量的千倍,因此螺纹紧固件的抗拉强度是足够的,不可能因为螺栓的强度不够而损坏。

二、螺栓的断裂不是由于螺栓的疲劳强度:螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。

换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。

三、螺纹紧固件损坏的真正原因是松动:螺纹紧固件松动后,产生巨大的动能 mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。

受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。

受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。

四、选用防松效果优异的螺纹防松方式是解决问题的根本所在:以液压锤为例。

GT80液压锤的重量是 1.663 吨,其侧板螺栓为 7 套 10.9 级 M42螺栓,每根螺栓的抗拉力为 110 吨,预紧力取抗拉力一半计算,预紧力高达三、四百吨。

但是螺栓一样会断,现在准备改成 M48的螺栓,根本原因是螺栓防松解决不了。

螺栓断裂,人们最容易得出的结论是强度不够,因而大都采用加大螺栓直径强度等级的办法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

螺纹断裂分析
螺纹
一般情况下,我们对于螺栓断裂从以下四个方面来分析:
第一、螺栓的质量
第二、螺栓的预紧力矩
第三、螺栓的强度
第四、螺栓的疲劳强度
实际上,螺栓断裂绝大多数情况都是因为松动而断裂的,是由于松动而被打坏的。

因为螺栓松动打断的情况和疲劳断裂的情况大体相同,最后,我们总能从疲劳强度上找到原因,实际上,疲劳强度大得我们无法想象,螺栓在使用过程中根本用不到疲劳强度。

螺纹紧固件的松动不是由于螺栓的疲劳强度:
螺纹紧固件在横向振松实验中只需一百次即可松动,而在疲劳强度实验中需反复振动一百万次。

换句话说,螺纹紧固件在使用其疲劳强度的万分之一时即松动了,我们只使用了它大能力的万分之一,所以说螺纹紧固件的松动也不是因为螺栓疲劳强度。

螺纹紧固件损坏的真正原因是松动:
螺纹紧固件松动后,产生巨大的动能mv2,这种巨大的动能直接作用于紧固件及设备,致使紧固件损坏,紧固件损坏后,设备无法在正常的状态下工作,进一步导致设备损坏。

受轴向力作用的紧固件,螺纹被破坏,螺栓被拉断。

受径向力作用的紧固件,螺栓被剪断,螺栓孔被打成橢圆。

选用防松效果优异的螺纹防松方式是解决问题的根本所在:目前,最先进和效果最好的防松方式是唐氏螺纹紧固件防松方式。

唐氏螺栓在四辊破碎机上使用、在液压破碎锤上使用,其强度都没有增加,而螺栓不再断裂了。

唐氏螺纹防松方式
唐氏, 螺纹
目前,最先进和效果最好的防松方式是唐氏螺纹紧固件防松方式。

唐氏螺纹同时具有左旋和右旋螺纹的特点。

它既可以和左旋螺纹配合,又可以和右旋螺纹
配合。

联接时使用两种不同旋向的螺母。

工作支承面上的螺母称为紧固螺母,非支承面上的螺母称为锁紧螺母。

使用时先将紧固螺母预紧,再将锁紧螺母预紧。

在振动、冲击的情况下,紧固螺母会发生松动的趋势,但是,由于紧固螺母的松退方向是
锁紧螺母的拧紧方向,锁紧螺母的拧紧恰恰阻止了紧固螺母的松退,导致紧固螺母无法松
动。

唐氏螺纹紧固件利用螺纹自身矛盾,以松动制约松动,起到“以毒攻毒”的效果。

它的发明标志着紧固件领域中的振松问题得到突破性的进展。

该方法已经被编入《机械设计手册》化工版,陈大先主编。

相关文档
最新文档