自动化英文论文参考文献范例

合集下载

自动化专业专业英语作文

自动化专业专业英语作文

自动化专业专业英语作文Title: The Role of Automation in Modern Industry。

In recent years, automation has become an integral part of various industries, revolutionizing the way tasks are performed and enhancing efficiency and productivity. This essay delves into the significance of automation in modern industry, exploring its benefits, challenges, and future implications.Firstly, automation has significantly improved efficiency in industrial processes. By replacing manual labor with automated systems, tasks can be completed at a faster pace and with greater precision. This not only reduces production time but also minimizes the margin for error, leading to higher-quality outputs. For example, in manufacturing plants, robotic arms can assemble products with unparalleled speed and accuracy, resulting in increased output and reduced costs.Moreover, automation plays a crucial role in ensuring workplace safety. By delegating hazardous or repetitive tasks to machines, the risk of accidents and injuries to human workers is significantly reduced. For instance, in environments with extreme temperatures or exposure to toxic substances, automated systems can operate seamlessly without endangering human health. This not only protects workers but also minimizes liability for employers and enhances overall operational stability.Furthermore, automation facilitates data-driven decision-making through the integration of advanced sensors and analytics technologies. By collecting and analyzingreal-time data, automated systems can identify inefficiencies, predict maintenance needs, and optimize resource allocation. For instance, in smart factories, sensors embedded in machinery can monitor performance metrics such as temperature, pressure, and energy consumption, allowing managers to make informed decisions to improve operational efficiency and reduce downtime.However, despite its numerous benefits, automation alsopresents certain challenges. One such challenge is the potential displacement of human workers. As more tasks become automated, there is a concern that traditional jobs may become obsolete, leading to unemployment and economic disparity. To address this challenge, it is essential to invest in retraining programs and education initiatives to equip workers with the skills needed to thrive in an automated workforce.Additionally, there are concerns regarding the ethical implications of automation, particularly regarding privacy and job security. As automated systems collect vast amounts of data, there is a risk of privacy breaches and misuse of personal information. Similarly, the widespread adoption of automation raises questions about job security and the rights of workers. It is imperative for policymakers and industry stakeholders to establish clear regulations and guidelines to ensure that automation is implemented ethically and responsibly.Looking ahead, the future of automation holds immense potential for innovation and growth. As technologies suchas artificial intelligence and machine learning continue to advance, the capabilities of automated systems will only expand. From autonomous vehicles to smart cities, automation will revolutionize not only industrial processes but also the way we live and work. However, it is essential to approach automation with caution and foresight, addressing challenges such as job displacement and ethical concerns to ensure that its benefits are equitably distributed across society.In conclusion, automation is a transformative forcethat is reshaping modern industry in profound ways. From enhancing efficiency and productivity to improving workplace safety and enabling data-driven decision-making, the benefits of automation are undeniable. However, it is essential to address the challenges it presents, such as job displacement and ethical considerations, to ensure that automation serves the best interests of society as a whole. By embracing automation responsibly and thoughtfully, we can unlock its full potential to drive innovation, growth, and progress.。

生产自动化毕业论文中英文资料外文翻译文献

生产自动化毕业论文中英文资料外文翻译文献

生产自动化毕业论文中英文资料外文翻译文献外文资料:Production AutomationCharles L. Philips, Royce D. Harbor. FeedbackControl Systems. Prentic Hall, Inc..2000Abstract:Automation is a widely used term in manufacturing. In this context, automation can be defined as a technology concerned with the application of mechanical, electronic, and computer-based systems to operate and control production. Examples of this techno logy include:• Automatic machine tools to process parts.• Automated transfer lines and similar sequential production systems.• Automatic assembly machines.• Industrial robots.• Automatic material handling and storagesystems.• Automated inspection systems for qualitycontrol.• Feedback control and computer process control.• Computer systems that automate procedures for planning, data collection, and decision making to support manufacturing activities.Keywords: Automation manufacturing mechanical computerAutomated production systems can be classified into two basic categories: fixed automation and programmable automation.Fixed AutomationFixed automation is what Harder was referring to when he coined the word automation. Fixed automation refers to production systems in which the sequence of processing or assembly operations is fixed by the equipment configuration and cannot be readily changed without altering the equipment. Although each operation in the sequence is usually simple, the integration and coordination of many simple operations into a single system makes fixed automation complex. Typical features of fixed automation include 1. high initial investment for custom-engineered equipment, 2. high production rates, 3. application to products in which high quantities are to be produced, and 4. relative inflexibility in accommodating product changes.Fixed automation is economically justifiable for products with high demand rates. The high initial investment in the equipment can be divided over a large number of units, perhaps millions, thus making the unit cost low compared with alternative methods of production. Examples of fixed automation include transfer lines for machining, dial indexing machines, and automated assembly machines. Much of the technology in fixed automation was developed in the automobile industry; the transfer line (dating to about (1920) is an example.Programmable AutomationFor programmable automation, the equipment is designed in such a way that the sequence of production operations is controlled by a program, i. e., a set of coded instructions that can be read and interpreted by the system. Thus the operation sequence can be readily changed to permit different product configurations to be produced on the same equipment. Some of the features that characterize programmable automation include 1. high investment in general-purpose programmable equipment, 2. lower production rates than fixed automation, 3. flexibility to deal with changes in product configuration, and 4. suited to low and / or medium production of similar products or parts (e. g. part families). Examples of programmable automation include numerically controlled machine tools, industrial robots, and programmable logic controllers.Programmable production systems are often used to produceparts or products in batches. They are especially appropriate when repeat orders for batches of the same product are expected. To produce each batch of a new product, the system must be programmed with the set of machine instructions that correspond to that product. The physical setup of the equipment must also be changed; special fixtures must be attached to the machine, and the appropriate tools must be loaded. This changeover procedure can be time-consuming. As a result, the usual production cycle for a given batch includes 1. a (3 period during which the setup and reprogramming is accomplished and 2. a period in which the batch is processed. The setup-reprogramming period constitutes nonproductive time of the automated system.The economics of programmable automation require that as the setup-reprogramming time increases, the production batch size must be made larger so as to spread the cost of lost production time over a larger number of units. Conversely, if setup and reprogramming time can be reduced to zero, the batch size can be reduced to one. This is the theoretical basis for flexible automation, an extension of programmable automation. A flexible automated system is one that is capable of producing a variety of products (or parts) with minimal lost time for changeovers from one product to the next. The time toreprogram the system and alter the physical setup is minimal and results in virtually no lost production time. Consequently, the system is capable of producing various combinations and schedules of products in a continuous flow, rather than batch production with interruptions between batches. The features of flexible automation are 1. high investment for a custom-engineered system, 2. continuous production of mixtures of products, 3. ability to change product mix to accommodate changes in demand rates for the different products made, 4. medium production rates, and 5- flexibility to deal with product design variations.Flexible automated production systems operate in practice by one or more of the following approaches: 1. using part family concepts, by which the parts made on the system are limited in variety; 2. reprogramming the system in advance and /or off-line, so that reprogramming does not interrupt production; 3. downloading existing programs to the system to produce previouslymade parts for which programs are already prepared;) 4. using quick-change fixtures so that physical setup time is minimized;5. using a family of fixtures that have been designed for a limited number of part styles; and6. equipping the system with a large number of quick-change tools that include the variety of processing operations needed to produce the part family. For these approaches to be successful, the variation in the part styles produced on a flexible automated production system is usually) more limited than a batch-type programmable automation system. Examples of flexible automation are the flexible manufacturing systems for performing machining operations that date back to the late 1960s.Automation StrategiesA number of fundamental strategies exist for improving productivity in manufacturing operations. These strategies often involve the use of automation technology and are, therefore, called automation strategies. Indicating the likely effects of each strategy on operating factors such as cycle time, nonproductive time, manufacturing lead time, and other production parameters.Numerical controlNumerical control (often abbreviated NC) can be defined as a form of programmable automation in which the process is controlled by numbers, letters, and symbols. In NC, the numbers form a program of instructions designed for a particular workpart or job. When the job changes, the program of instructions is changed. This capability to change the program for each new job is what gives NC its flexibility. It is much easier to write new programs than to make major changes in the production equipment.NC equipment is used in all areas of metal parts fabrication and comprises roughly 15% of the modern machine tools in industry today. Since numerically controlled machines are considerably more expensive than their conventional counterparts, the asset value of industrial NC machine tools is proportionally much larger than their numbers. Equipment utilizing numerical control has been designed to perform such diverse operations as drilling, milling, turning, grinding, sheet metal press working, spot welding, arcwelding, riveting, assembly, drafting, inspection, and parts handling. And this is by no means a complete list. Numerical control should be considered as a possible mode of controlling the operation for any production situation possessing the following characteristics:1. Similar workparts in terms of raw material (e. g., metal stock for machining).2. The workparts are produced in various sizes and geometries.3. The workparts are produced in batches of small to medium-sized quantities.4. A sequence of similar processing steps is required to complete the operation on each workpiece.Many machining jobs meet these conditions. The machined workparts are metal, they are specified in many different sizes and shapes, and most machined parts produced in industry today are made in small to medium-size lot sizes. To produce each part, a sequence of drilling operations may be required, or a series of turning or milling operations. The suitability of NC for these kinds of jobs is the reason for the tremendous growth of numerical control in the metalworking industry over the last 25 years.Basic Components of an NC SystemAn operational numerical control system consists of the following three basic components:1. Program of instructions.2. Controller unit, also called machine control unit (MCU).3. Machine tool or other controlled process.The general relationship among the three components is illustrated. The program of instructions serves as the input to the controller unit, which in turn commands) the machine tool or other process to be controlled.Program of instructionsThe program of instructions is the detailed step-by-step set of directions which tell the Wm machine tool what to do. It is coded in numerical or symbolic form on some type of input medium that can be interpreted by the controller unit. The most common input medium is i-inch-wide punched tape. Over the years, other forms of input media have (been used, including punched cards, magnetic tape, and even 35-mm motion picture film.There are two other methods of input to the NC system which should be mentioned. The first is by manual entry of instructional data to the controller unit. This is time-consuming and is rarely used except as an auxiliary means of control or when only one or a very limited number of parts are to be made. The second method of input is by means of a direct link with a computer. This is called direct numerical control, or DNC.The program of instructions is prepared by someone called a part programmer. The programmer's job is to provide a set of detailed instructions by which the sequence of processing steps is to be performed. For a machining operation, the processing steps 4 involve the relative movement of the machine tool table and the cutting tool.Controller unitThe second basic component of the NC system is the controller unit. This consists of the electronics and hardware that read and interpret the program of instructions and convert it into mechanical actions of the machine tool. The typical elements of the controller unit include the tape reader, a data buffer, signal output channels to the machine tool, feedback channels from the machine tool, and the sequence controls to coordinate the overall operation of the foregoing elements.The tape reader is an electrical-mechanical device for winding and reading the punched tape containing the program of instructions. The data contained on the tape are read into the data buffer. The purpose of this device is to store the input instructions in logical blocks of information. A block of information usually represents one complete step in the sequence of processing elements. For example, one block may be the data required to move the machine table to a certain position and drill a hole at that location.The signal output channels are connected to the servomotors and other controls in the machine tool. Through these channels, the instructions are sent to the machine tool from the controller unit. To make certain that the instructions have been properly executed by the machine, feedback data are sent back to the controller via the feedback channels. The most important function of this return loop is to assure that the table and workpart have$ been properly located with respect to the tool. Most NC machine tools in use today are provided with position feedback controls for this purpose and are referred to as closed-loop systems. However, in recent years there has been a growth in the use of open-loop systems, which do not make use of feedback signals to the controller unit. The advocates of the open-loop concept claim that the reliability of the system is great enough that feedback controls are not needed and are an unnecessary extra cost.Sequence controls coordinate the activities of the other elements of the controller unit. The tape reader is actuated to read data into the buffer from the tape, signals are sent to and from the machine tool, and so on. These types of operations must be synchronized and this is the function of the sequence controls.Another element of the NC system, which may be physically part of the controller unit or part of the machine tool, is the control panel. The control panel or control console contains the dials and switches by which the machine operator runs the NC system. It may also contain data displays to provide information to the operator. Although the NC system is an automatic system, the human operator is still needed to turn the machine on and off, to change tools (some NC systems have automatic tool changers), to load and unload the machine, and to perform various other duties. To be able to discharge these duties, the operator must be able to control the system, and this is done through the control panel.Machine toolThe third basic component of an NC system is the machine tool or other controlled process. It is the part of the NC system which performs useful work. In the most common example of an NC system, one designed to perform machining operations, the machine tool consists of the worktable and spindle as well as the motors and controls necessary to drive them. It also includes the cutting tools, work fixtures, and other auxiliary equipment needed in the machining operation.Transfer MachinesThe highest degree of automation obtainable with special-purpose, multifunction machines is achieved by using transfer machines. Transfer machines are essentially acombination of individual workstations arranged in the required sequence, connected by work transfer devices, and integrated with interlocked controls. Workpieces are automatically transferred between the stations, which are equipped with horizontal, vertical, or angular units to perform machining, gagging, workpiece repositioning, assembling, washing, or other operations. The two major classes of transfer machines are rotary and in-line types.An important advantage of transfer machines is that they permit the maximum number of operations to be performed simultaneously. There is relatively no limitation on (the number of workpiece surfaces or planes that can be machined, since devices can be interposed in transfer machines at practically any point for inverting, rotating, or orienting the workpiece, so as to complete the machining operations. Work repositioning also minimizes the need for angular machining heads and allows operations to be performed in optimum time. Complete processing from rough castings or forgings to finished parts is often possible.One or more finished parts are produced on a transfer machine with each index of the transfer system that moves the parts from station to station. Production efficiencies of such machines generally range from 50% for a machine producing a variety of different parts to 85% for a machine producing one part, in high production, depending upon the workpiece and how the machine is operated (materials handling method, maintenance procedures, etc.)All types of machining operations, such as drilling, tapping, reaming, boring, and milling, are economically combined on transfer machines. Lathe-type operations such as turning and facing are also being performed on in-line transfer machine, with the workpieces being rotated in selected machining stations. Turning operations are performed in lathe-type segments in which multiple tool holders are fed on slides mounted on tunnel-type bridge units. Workpieces are located on centers and rotated by chucks at each turning station. Turning stations with CNC are available for use on in-line transfer machines. The CNC units allow the machine cycles to be easily altered to accommodate changes in workpiece design and can also be used for automatic tooladjustments.Maximum production economy on transfer lines is often achieved by assembling parts to the workpieces during their movement through the machine. Such items as bushings, seals, Welch plugs, and heat tubes can be assembled and then machined or tested during the transfer machining sequence. Automatic nut torturing following the application of part subassemblies can also be carried out.Gundrilling or reaming on transfer machines is an ideal application provided that proper machining units are employed and good bushing practices are followed. Contour boring and turning of spherical seats and other surfaces can be done with tracer controlled single-point inserts, thus eliminating the need for costly special form tools. In-process gaging of reamed or bored holes and automatic tool setting are done on transfer machines to maintain close tolerances.Less conventional operations sometimes performed on transfer machines include grinding, induction heating of ring gears for shrink-fit pressing on flywheels, induction hardening of valve seats, deep rolling to apply compressive preloads, and burnishing.Transfer machines have long been used in the automotive industry for producing identical components at high production rates with a minimum of manual part handling. In addition to decreasing labor requirements, such machines ensure consistently uniform high-quality parts at lower cost. They are no longer confined just to rough machining and now often eliminate the need for subsequent operations such as grinding and honing.More recently, there has been an increasing demand for transfer machines to handle lower volumes of similar or even different parts in smaller sizes, with means for quick changeover between production runs. Built-in flexibility, the ability to rearrange and interchange machining units, and the provision of idle stations increases the cost of any transfer machine, but such features are economically feasible when product redesigns are common. Many such machines are now being used in no automotive applications for lower production requirements.Special features now available to reduce the time required for part changeover include I standardized dimensions, modularconstruction, interchangeable fixtures mounted on master pallets that remain on the machine, interchangeable fixture components, the ability to lock out certain stations for different parts by means of selector switches, and programmable controllers. Product design is also important and common transfer and clamping surfaces should be provided on different parts whenever possible.Programmable Logic ControllersA programmable logic controller (PLC) is a solid-state device used to control machine motion or process operation by means of a stored program. The PLC sends output control signals and receives input signals through input/output (I/O) devices. A PLC controls outputs in response to stimuli at the inputs according to the logic prescribed by the stored program. The inputs are made up of limit switches, pushbuttons, and thumbwheels switches, pulses, analog signals, ASCII serial data, and binary or BCD data from absolute position encoders. The outputs are voltage or current levels to drive end devices such as solenoids, motor starters, relays, lights, and so on. Other output devices include analog devices, digital BCD displays, ASCII compatible devices, servo variable-speed drives, and even computers.Programmable controllers were developed (circa in 1968) when General Motors Corp, and other automobile manufacturers were experimenting to see if there might be an alternative to scrapping all their hardwired control panels of machine tools and other production equipment during a model changeover. This annual tradition was necessary because rewiring of the panels was more expensive than buying new ones.The automotive companies approached a number of control equipment manufacturers and asked them to develop a control system that would have a longer productive life without major rewiring, but would still be understandable to and repairable by plant personnel. The new product was named a "programmable controller".The processor part of the PLC contains a central processing unit and memory. The central processing unit (CPU) is the "traffic director" of the processor, the memory stores information. Coming into the processor are the electrical signals from the input devices, as conditioned by the input module to voltage levelsacceptable to processor logic. The processor scans the state of I / O and updates outputs based on instructions stored in the memory of the PLC. For example, the processor may be programmed so that if an input connected to a limit switch is true (limit switch closed), then a corresponding output wired to an output module is to be energized. This output might be a solenoid, for example.The processor remembers this command through its memory and compares on each scan to see if that limit switch is, in fact, closed. If it is closed, the processor energizes the solenoid by turning on the output module.The output device, such as a solenoid or motor starter, is wired to an output module's terminal, and it receives its shift signal from the processor, in effect, the processor is performing a long and complicated series of logic decisions. The PLC performs such decisions sequentially and in accordance with the stored program. Similarly, analog I / O allows the processor to make decisions based on the magnitude of a signal, rather than just if it is on or off. For example, the processor may be programmed to increase or decrease the steam flow to a boiler (analog output) based on a comparison of the actual temperature in the boiler {analog input) to the desired temperature. This is often performed by utilizing the built-in PID (proportional, integral, derivative) capabilities of the processor.Because a PLC is "software based", its control logic functions can be changed by reprogramming its memory. Keyboard programming devices facilitate entry of the revised program, which can be designed to cause an existing machine or process to operate in a different sequence or to respond to different levels of, or combinations of stimuli. Hardware modifications are needed only if additional, changed, or relocated input / output devices are involved.中文翻译:生产自动化摘要:自动化是一个在制造业中广泛使用的术语。

自动化专业可参考的外文文献

自动化专业可参考的外文文献

1外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss o r s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e d ev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at i o ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m a d e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he rec a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面

1、外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le-c hi p m ic ro co mp ut er i s t he c ul mi na ti on of b oth t h e de ve lo pm en t o f t he d ig it al co m pu te r an d th e i n te gr at edc i rc ui t a rg ua bl y t h e to w m os t s ig ni f ic an t i nv en ti on s o f t he20th c e nt ur y [1].Th es e t ow ty pe s of ar ch it ec tu re a re fo un d i n s in g le-c hip m i cr oc om pu te r. So m e em pl oy t he spl i t pr og ra m/da ta m e mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t he p h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a nd m i cr op ro ce ss o r s, o f ma ki ng n o log i ca l di st in ct ion be tw ee np r og ra m an d d at a m e mo ry a s i n t he P r in ce to n ar ch ite c tu re, sh ow n i n F ig.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y t he i nc or po ra ti on of a ll t he un it s of a co mp ut er i n to a s in gl e d ev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s us ua ll y f or th e p e rm an en t,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d m ar e in te nd e d f or hi gh-v ol um e a p pl ic at io ns a n d he nc e t h e eco n om ic al m an uf act u re o f th e de vic e s re qu ir es t h at t he co nt en t s o f t he pr og ra m me m or y b e co mm it t ed pe rm a ne nt ly d u ri ng t he m an ufa c tu re o f ch ip s .Cl ea rl y, t hi s i m pl ie s ar i go ro us a pp ro ach to R OM c od e de ve l op me nt s in ce ch a ng es c an no t b e m ad e af te r m anu f a c tu re .Th is d ev e lo pm en t pr oc ess ma y in vo lv e e m ul at io n us in g a so ph is ti ca te d d e ve lo pm en t sy ste m w it h ah a rd wa re e mu la tio n c ap ab il it y as w el l as t he u se o f po we rf ul s o ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th eir r a n ge d ev ic es wi t h (or i nt en de d f o r u se w it h) u s er p ro gr am ma ble me mo ry. Th e sim p le st o f th es e i s u su al lyd e vi ce w hi ch c an o p er at e in a mi cro p ro ce ss or m od e b y u si ng s om e o f t he i np ut/o utp u t li ne s as a n a d dr es s an d da ta b us f ora c ce ss in g ex te rna l m em or y. T hi s t y pe o f de vi ce ca nb eh av ef u nc ti on al ly a s t h e si ng le ch ip mi cr oc om pu te r fro m w hi ch it is d e ri ve d al be it wi t h re st ri ct ed I/O a nd a m od if ied ex te rn alc i rc ui t. Th e u se o f th es ed ev ic es i s c om mo ne ve n i n pr od uc ti on c i rc ui ts wh er e t he vo lu me do es no t j us tif y t h e d ev el o pm en t c os ts o f c us to m o n-ch i p R OM[2];t he re c a n s ti ll be a s ig nif i ca nt sa vi ng i n I/O an d o th er c h ip s c om pa re d t o a co nv en ti on al mi c ro pr oc es so r b a se d ci rc ui t. Mo r e ex ac t re pl ace m en t fo r RO M dev i ce s ca n be o b ta in ed i n th e f o rm o f va ri an ts w it h 'p ig gy-b ack'E P RO M(Er as ab le pr o gr am ma bl e RO M )s oc ke ts o r d ev ic e s wi th EP RO M i n st ea d o f RO M 。

生产自动化毕业论文中英文资料外文翻译文献

生产自动化毕业论文中英文资料外文翻译文献

生产自动化毕业论文中英文资料外文翻译文献随着科技的不断进步和人们对效率的追求,生产自动化已经成为现代工业的重要组成部份。

生产自动化通过引入先进的机械和电子设备,以及自动化控制系统,实现了生产过程的自动化和智能化。

本文将介绍一些关于生产自动化的研究和应用的外文翻译文献。

1. 文献一:《生产自动化的发展与趋势》这篇文献介绍了生产自动化的发展历程和未来的趋势。

文章指出,生产自动化的发展可以追溯到20世纪初,随着电子技术和计算机技术的不断进步,生产自动化得到了快速发展。

未来,生产自动化将更加注重智能化和柔性化,以适应不断变化的市场需求。

2. 文献二:《生产自动化在汽车创造业中的应用》这篇文献探讨了生产自动化在汽车创造业中的应用。

文章指出,汽车创造业是生产自动化的典型应用领域之一。

通过引入机器人和自动化生产线,汽车创造商可以大大提高生产效率和产品质量。

此外,生产自动化还可以减少人力成本和人为错误。

3. 文献三:《生产自动化对工作环境和员工的影响》这篇文献研究了生产自动化对工作环境和员工的影响。

文章指出,尽管生产自动化可以提高生产效率,但它也带来了一些负面影响。

例如,自动化设备的噪音和振动可能对员工的健康造成影响。

此外,自动化还可能导致一些工人失去工作机会。

因此,为了最大限度地发挥生产自动化的优势,必须采取适当的安全措施和培训计划。

4. 文献四:《生产自动化在食品加工行业中的应用》这篇文献讨论了生产自动化在食品加工行业中的应用。

文章指出,食品加工是一个复杂而繁琐的过程,生产自动化可以大大提高生产效率和产品质量。

通过引入自动化设备和控制系统,食品加工商可以减少人为错误和污染风险。

此外,生产自动化还可以实现对食品生产过程的精确控制和监测。

5. 文献五:《生产自动化在医药创造业中的应用》这篇文献探讨了生产自动化在医药创造业中的应用。

文章指出,医药创造是一个高度精细和复杂的过程,生产自动化可以提高生产效率和产品质量的同时,确保药品的安全和一致性。

自动化外文参考文献(精选120个最新)

自动化外文参考文献(精选120个最新)

自动化外文参考文献(精选120个最新)自动化外文参考文献(精选120个最新)本文关键词:外文,参考文献,自动化,精选,最新自动化外文参考文献(精选120个最新)本文简介:自动化(Automation)是指机器设备、系统或过程(生产、管理过程)在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现业绩预期的目标的过程。

下面是搜索整理的关于自动化参考文献,欢迎借鉴参考。

自动化外文释义一:[1]NazriNasir,Sha自动化外文参考文献(精选120个最新)本文内容:自动化(Automation)是指机器设备、系统或过程(生产、管理过程)在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现预期的目标的过程。

下面是搜索整理的关于自动化后面外文参考文献,欢迎借鉴参考。

自动化外文引文一:[1]Nazri Nasir,Shabudin Mat. An automated visual tracking measurement for quantifying wing and body motion of free-flying houseflies[J]. Measurement,2021,143.[2]Rishikesh Kulkarni,Earu Banoth,Parama Pal. Automated surface feature detection using fringe projection: An autoregressive modeling-based approach[J]. Optics and Lasers in Engineering,2021,121.[3]Tengyue Fang,Peicong Li,Kunning Lin,NengwangChen,Yiyong Jiang,Jixin Chen,Dongxing Yuan,Jian Ma. Simultaneous underway analysis of nitrate and nitrite inestuarine and coastal waters using an automated integrated syringe-pump-based environmental-water analyzer[J]. Analytica Chimica Acta,2021,1076.[4]Shengfeng Chen,Jian Liu,Xiaosong Zhang,XinyuSuo,Enhui Lu,Jilong Guo,Jianxun Xi. Development ofpositioning system for Nuclear-fuel rod automated assembly[J]. Robotics and Computer Integrated Manufacturing,2021,61.[5]Cheng-Ta Lee,Yu-Ching Lee,Albert Y. Chen. In-building automated external defibrillator location planning and assessment through building information models[J]. Automation in Construction,2021,106.[6]Torgeir Aleti,Jason I. Pallant,Annamaria Tuan,Tom van Laer. Tweeting with the Stars: Automated Text Analysis of the Effect of Celebrity Social Media ications on ConsumerWord of Mouth[J]. Journal of Interactive Marketing,2021,48.[7]Daniel Bacioiu,Geoff Melton,MayorkinosPapaelias,Rob Shaw. Automated defect classification of SS304 TIG welding process using visible spectrum camera and machine learning[J]. NDT and E International,2021,107.[8]Marcus von der Au,Max Schwinn,KatharinaKuhlmeier,Claudia Büchel,Bj?rn Meermann. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis[J]. Analytica ChimicaActa,2021,1077.[9]Jitendra Mehar,Ajam Shekh,Nethravathy M. U.,R. Sarada,Vikas Singh Chauhan,Sandeep Mudliar. Automation ofpilot-scale open raceway pond: A case study of CO 2 -fed pHcontrol on Spirulina biomass, protein and phycocyanin production[J]. Journal of CO2 Utilization,2021,33.[10]John T. Sloop,Henry J.B. Bonilla,TinaHarville,Bradley T. Jones,George L. Donati. Automated matrix-matching calibration using standard dilution analysis withtwo internal standards and a simple three-port mixing chamber[J]. Talanta,2021,205.[11]Daniel J. Spade,Cathy Yue Bai,ChristyLambright,Justin M. Conley,Kim Boekelheide,L. Earl Gray. Corrigendum to “Validation of an automated counting procedure for phthalate-induced testicular multinucleated germ cells” [Toxicol. Lett. 290 (2021) 55–61][J]. Toxicology Letters,2021,313.[12]Christian P. Janssen,Shamsi T. Iqbal,Andrew L. Kun,Stella F. Donker. Interrupted by my car? Implications of interruption and interleaving research for automatedvehicles[J]. International Journal of Human - Computer Studies,2021,130.[13]Seunguk Lee,Si Kuan Thio,Sung-Yong Park,Sungwoo Bae. An automated 3D-printed smartphone platform integrated with optoelectrowetting (OEW) microfluidic chip for on-site monitoring of viable algae in water[J]. Harmful Algae,2021,88.[14]Yuxia Duan,Shicai Liu,Caiqi Hu,Junqi Hu,Hai Zhang,Yiqian Yan,Ning Tao,Cunlin Zhang,Xavier Maldague,Qiang Fang,Clemente Ibarra-Castanedo,Dapeng Chen,Xiaoli Li,Jianqiao Meng. Automated defect classification in infrared thermography based on a neural network[J]. NDT and E International,2021,107.[15]Alex M. Pagnozzi,Jurgen Fripp,Stephen E. Rose. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies[J]. NeuroImage,2021,201.[16]Jin Ye,Zhihong Xuan,Bing Zhang,Yu Wu,LiLi,Songshan Wang,Gang Xie,Songxue Wang. Automated analysis of ochratoxin A in cereals and oil by iaffinity magnetic beads coupled to UPLC-FLD[J]. Food Control,2021,104.[17]Anne Bech Risum,Rasmus Bro. Using deep learning to evaluate peaks in chromatographic data[J].Talanta,2021,204.[18]Faris Elghaish,Sepehr Abrishami,M. Reza Hosseini,Soliman Abu-Samra,Mark Gaterell. Integrated project delivery with BIM: An automated EVM-based approach[J]. Automation in Construction,2021,106.[19]Carl J. Pearson,Michael Geden,Christopher B. Mayhorn. Who's the real expert here? Pedigree's unique bias on trust between human and automated advisers[J]. Applied Ergonomics,2021,81.[20]Vibhas Mishra,Dani?l M.J. Peeters,Mostafa M. Abdalla. Stiffness and buckling analysis of variablestiffness laminates including the effect of automated fibre placement defects[J]. Composite Structures,2021,226.[21]Jenny S. Wesche,Andreas Sonderegger. When computers take the lead: The automation of leadership[J]. Computers in Human Behavior,2021,101.[22]Murat Ayaz,Hüseyin Yüksel. Design of a new cost-efficient automation system for gas leak detection in industrial buildings[J]. Energy & Buildings,2021,200.[23]Stefan A. Mann,Juliane Heide,Thomas Knott,Razvan Airini,Florin Bogdan Epureanu,Alexandru-FlorianDeftu,Antonia-Teona Deftu,Beatrice Mihaela Radu,Bogdan Amuzescu. Recording of multiple ion current components and action potentials in human induced pluripotent stem cell-derived cardiomyocytes via automated patch-clamp[J]. Journal of Pharmacological and Toxicological Methods,2021,100.[24]Rhar? de Almeida Cardoso,Alexandre Cury,Flavio Barbosa. Automated real-time damage detection strategy using raw dynamic measurements[J]. Engineering Structures,2021,196.[25]Mengmeng Zhong,Tielong Wang,Chengdu Qi,Guilong Peng,Meiling Lu,Jun Huang,Lee Blaney,Gang Yu. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A,2021,1602.[26]Pau Climent-Pér ez,Susanna Spinsante,Alex Mihailidis,Francisco Florez-Revuelta. A review on video-based active and assisted living technologies for automated lifelogging[J]. Expert Systems With Applications,2021,139.[27]William Snyder,Marisa Patti,Vanessa Troiani. An evaluation of automated tracing for orbitofrontal cortexsulcogyral pattern typing[J]. Journal of Neuroscience Methods,2021,326.[28]Juan Manuel Davila Delgado,LukumonOyedele,Anuoluwapo Ajayi,Lukman Akanbi,OlugbengaAkinade,Muhammad Bilal,Hakeem Owolabi. Robotics and automated systems in construction: Understanding industry-specific challenges for adoption[J]. Journal of Building Engineering,2021,26.[29]Mohamed Taher Alrefaie,Stever Summerskill,Thomas W Jackon. In a heart beat: Using driver’s physiological changes to determine the quality of a takeover in highly automated vehicles[J]. Accident Analysis andPrevention,2021,131.[30]Tawseef Ayoub Shaikh,Rashid Ali. Automated atrophy assessment for Alzheimer's disease diagnosis from brain MRI images[J]. Magnetic Resonance Imaging,2021,62.自动化外文参考文献二:[31]Vaanathi Sundaresan,Giovanna Zamboni,Campbell Le Heron,Peter M. Rothwell,Masud Husain,Marco Battaglini,Nicola De Stefano,Mark Jenkinson,Ludovica Griffanti. Automatedlesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding[J]. NeuroImage,2021,202.[32]Ho-Jun Suk,Edward S. Boyden,Ingrid van Welie. Advances in the automation of whole-cell patch clamp technology[J]. Journal of Neuroscience Methods,2021,326.[33]Ivana Duznovic,Mathias Diefenbach,Mubarak Ali,Tom Stein,Markus Biesalski,Wolfgang Ensinger. Automated measuring of mass transport through synthetic nanochannels functionalized with polyelectrolyte porous networks[J]. Journal of Membrane Science,2021,591.[34]James A.D. Cameron,Patrick Savoie,Mary E.Kaye,Erik J. Scheme. Design considerations for the processing system of a CNN-based automated surveillance system[J]. Expert Systems With Applications,2021,136.[35]Ebrahim Azadniya,Gertrud E. Morlock. Automated piezoelectric spraying of biological and enzymatic assays for effect-directed analysis of planar chromatograms[J]. Journal of Chromatography A,2021,1602.[36]Lilla Z?llei,Camilo Jaimes,Elie Saliba,P. Ellen Grant,Anastasia Yendiki. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain[J]. NeuroImage,2021,199.[37]Kate?ina Fikarová,David J. Cocovi-Solberg,María Rosende,Burkhard Horstkotte,Hana Sklená?ová,Manuel Miró. A flow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater[J]. Journal of Chromatography A,2021,1602.[38]Darko ?tern,Christian Payer,Martin Urschler. Automated age estimation from MRI volumes of the hand[J]. Medical Image Analysis,2021,58.[39]Jacques Blum,Holger Heumann,Eric Nardon,Xiao Song. Automating the design of tokamak experiment scenarios[J]. Journal of Computational Physics,2021,394.[40]Elton F. de S. Soares,Carlos Alberto V.Campos,Sidney C. de Lucena. Online travel mode detection method using automated machine learning and feature engineering[J]. Future Generation Computer Systems,2021,101.[41]M. Marouli,S. Pommé. Autom ated optical distance measurements for counting at a defined solid angle[J].Applied Radiation and Isotopes,2021,153.[42]Yi Dai,Zhen-Hua Yu,Jian-Bo Zhan,Bao-Shan Yue,Jiao Xie,Hao Wang,Xin-Sheng Chai. Determination of starch gelatinization temperatures by an automated headspace gas chromatography[J]. Journal of Chromatography A,2021,1602.[43]Marius Tarp?,Tobias Friis,Peter Olsen,MartinJuul,Christos Georgakis,Rune Brincker. Automated reduction of statistical errors in the estimated correlation functionmatrix for operational modal analysis[J]. Mechanical Systems and Signal Processing,2021,132.[44]Wenxia Dai,Bisheng Yang,Xinlian Liang,ZhenDong,Ronggang Huang,Yunsheng Wang,Wuyan Li. Automated fusionof forest airborne and terrestrial point clouds throughcanopy density analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2021,156.[45]Jyh-Haur Woo,Marcus Ang,Hla Myint Htoon,Donald Tan. Descemet Membrane Endothelial Keratoplasty Versus Descemet Stripping Automated Endothelial Keratoplasty andPenetrating Keratoplasty[J]. American Journal of Ophthalmology,2021,207.[46]F. Wilde,S. Marsen,T. Stange,D. Moseev,J.W. Oosterbeek,H.P. Laqua,R.C. Wolf,K. Avramidis,G.Gantenbein,I.Gr. Pagonakis,S. Illy,J. Jelonnek,M.K. Thumm,W7-X team. Automated mode recovery for gyrotrons demonstrated at Wendelstein 7-X[J]. Fusion Engineering and Design,2021,148.[47]Andrew Kozbial,Lekhana Bhandary,Shashi K. Murthy. Effect of yte seeding density on dendritic cell generation in an automated perfusion-based culture system[J]. Biochemical Engineering Journal,2021,150.[48]Wen-Hao Su,Steven A. Fennimore,David C. Slaughter. Fluorescence imaging for rapid monitoring of translocation behaviour of systemic markers in snap beans for automatedcrop/weed discrimination[J]. Biosystems Engineering,2021,186.[49]Ki-Taek Lim,Dinesh K. Patel,Hoon Se,JanghoKim,Jong Hoon Chung. A fully automated bioreactor system for precise control of stem cell proliferation anddifferentiation[J]. Biochemical Engineering Journal,2021,150.[50]Mitchell L. Cunningham,Michael A. Regan,Timothy Horberry,Kamal Weeratunga,Vinayak Dixit. Public opinion about automated vehicles in Australia: Results from a large-scale national survey[J]. Transportation Research Part A,2021,129.[51]Yi Xie,Qiaobei You,Pingyang Dai,Shuyi Wang,Peiyi Hong,Guokun Liu,Jun Yu,Xilong Sun,Yongming Zeng. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph[J].Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2021,222.[52]Ozal Yildirim,Muhammed Talo,Betul Ay,Ulas Baran Baloglu,Galip Aydin,U. Rajendra Acharya. Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart ratesignals[J]. Computers in Biology and Medicine,2021,113.[53]Marius Kern,Laura Tusa,Thomas Lei?ner,Karl Gerald van den Boogaart,Jens Gutzmer. Optimal sensor selection for sensor-based sorting based on automated mineralogy data[J]. Journal of Cleaner Production,2021,234.[54]Karim Keddadouche,Régis Braucher,Didier L.Bourlès,Mélanie Baroni,Valéry Guillou,La?titia Léanni,Georges Auma?tre. Design and performance of an automated chemical extraction bench for the preparation of 10 Be and 26 Al targets to be analyzed by accelerator mass spectrometry[J]. Nuclear Inst. and Methods in Physics Research, B,2021,456.[55]Christian P. Janssen,Stella F. Donker,Duncan P. Brumby,Andrew L. Kun. History and future of human-automation interaction[J]. International Journal of Human - Computer Studies,2021,131.[56]Victoriya Orlovskaya,Olga Fedorova,Michail Nadporojskii,Raisa Krasikova. A fully automated azeotropic drying free synthesis of O -(2-[ 18 F]fluoroethyl)- l -tyrosine ([ 18 F]FET) using tetrabutylammonium tosylate[J]. Applied Radiation and Isotopes,2021,152.[57]Dinesh Krishnamoorthy,Kjetil Fjalestad,Sigurd Skogestad. Optimal operation of oil and gas production usingsimple feedback control structures[J]. Control Engineering Practice,2021,91.[58]Nick Oliver,Thomas Calvard,Kristina Poto?nik. Safe limits, mindful organizing and loss of control in commercial aviation[J]. Safety Science,2021,120.[59]Bo Sui,Nils Lubbe,Jonas B?rgman. A clustering approach to developing car-to-two-wheeler test scenarios for the assessment of Automated Emergency Braking in China using in-depth Chinese crash data[J]. Accident Analysis and Prevention,2021,132.[60]Ji-Seok Yoon,Eun Young Choi,Maliazurina Saad,Tae-Sun Choi. Automated integrated system for stained neuron detection: An end-to-end framework with a high negative predictive rate[J]. Computer Methods and Programs in Biomedicine,2021,180.自动化外文参考文献八:[61]Min Wang,Barbara E. Glick-Wilson,Qi-Huang Zheng. Facile fully automated radiosynthesis and quality control of O -(2-[ 18 F]fluoroethyl)- l -tyrosine ([ 18 F]FET) for human brain tumor imaging[J]. Applied Radiation andIsotopes,2021,154.[62]Fabian Pütz,Finbarr Murphy,Martin Mullins,LisaO'Malley. Connected automated vehicles and insurance: Analysing future market-structure from a business ecosystem perspective[J]. Technology in Society,2021,59.[63]Victoria A. Banks,Neville A. Stanton,Katherine L. Plant. Who is responsible for automated driving? A macro-level insight into automated driving in the United Kingdom using the Risk Management Framework and Social NetworkAnalysis[J]. Applied Ergonomics,2021,81.[64]Yingjun Ye,Xiaohui Zhang,Jian Sun. Automated vehicle’s behavior decision making using deep reinforcement learning and high-fidelity simulation environment[J]. Transportation Research Part C,2021,107.[65]Hasan Alkaf,Jameleddine Hassine,TahaBinalialhag,Daniel Amyot. An automated change impact analysis approach for User Requirements Notation models[J]. TheJournal of Systems & Software,2021,157.[66]Zonghua Luo,Jiwei Gu,Robert C. Dennett,Gregory G. Gaehle,Joel S. Perlmutter,Delphine L. Chen,Tammie L.S. Benzinger,Zhude Tu. Automated production of a sphingosine-1 phosphate receptor 1 (S1P1) PET radiopharmaceutical [ 11C]CS1P1 for human use[J]. Applied Radiation andIsotopes,2021,152.[67]Sarfraz Qureshi,Wu Jiacheng,Jeroen Anton van Kan. Automated alignment and focusing system for nuclear microprobes[J]. Nuclear Inst. and Methods in Physics Research, B,2021,456.[68]Srikanth Sagar Bangaru,Chao Wang,MarwaHassan,Hyun Woo Jeon,Tarun Ayiluri. Estimation of the degreeof hydration of concrete through automated machine learning based microstructure analysis – A study on effect of image magnification[J]. Advanced Engineering Informatics,2021,42.[69]Fang Tengyue,Li Peicong,Lin Kunning,Chen Nengwang,Jiang Yiyong,Chen Jixin,Yuan Dongxing,Ma Jian. Simultaneous underway analysis of nitrate and nitrite in estuarine and coastal waters using an automated integrated syringe-pump-based environmental-water analyzer.[J]. Analytica chimica acta,2021,1076.[70]Ramos Inês I,Carl Peter,Schneider RudolfJ,Segundo Marcela A. Automated lab-on-valve sequential injection ELISA for determination of carbamazepine.[J]. Analytica chimica acta,2021,1076.[71]Au Marcus von der,Schwinn Max,Kuhlmeier Katharina,Büchel Claudia,Meermann Bj?rn. Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis.[J]. Analytica chimica acta,2021,1077.[72]Risum Anne Bech,Bro Rasmus. Using deep learning to evaluate peaks in chromatographic data.[J].Talanta,2021,204.[73]Spade Daniel J,Bai Cathy Yue,LambrightChristy,Conley Justin M,Boekelheide Kim,Gray L Earl. Corrigendum to "Validation of an automated counting procedure for phthalate-induced testicular multinucleated germ cells" [Toxicol. Lett. 290 (2021) 55-61].[J]. Toxicologyletters,2021,313.[74]Zhong Mengmeng,Wang Tielong,Qi Chengdu,Peng Guilong,Lu Meiling,Huang Jun,Blaney Lee,Yu Gang. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneousquantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters.[J]. Journal of chromatography. A,2021,1602.[75]Stein Christopher J,Reiher Markus. autoCAS: A Program for Fully Automated MulticonfigurationalCalculations.[J]. Journal of computationalchemistry,2021,40(25).[76]Alrefaie Mohamed Taher,Summerskill Stever,Jackon Thomas W. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.[J]. Accident; analysis andprevention,2021,131.[77]Shaikh Tawseef Ayoub,Ali Rashid. Automatedatrophy assessment for Alzheimer's disease diagnosis frombrain MRI images.[J]. Magnetic resonance imaging,2021,62.[78]Xie Yi,You Qiaobei,Dai Pingyang,Wang Shuyi,Hong Peiyi,Liu Guokun,Yu Jun,Sun Xilong,Zeng Yongming. How to achieve auto-identification in Raman analysis by spectral feature extraction & Adaptive Hypergraph.[J]. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy,2021,222.[79]Azadniya Ebrahim,Morlock Gertrud E. Automated piezoelectric spraying of biological and enzymatic assays for effect-directed analysis of planar chromatograms.[J]. Journal of chromatography. A,2021,1602.[80]Fikarová Kate?ina,Cocovi-Solberg David J,Rosende María,Horstkotte Burkhard,Sklená?ová Hana,Miró Manuel. Aflow-based platform hyphenated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater.[J]. Journal of chromatography. A,2021,1602.[81]Moitra Dipanjan,Mandal Rakesh Kr. Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN).[J]. Health information science and systems,2021,7(1).[82]Ramos-Payán María. Liquid - Phase microextraction and electromembrane extraction in millifluidic devices:A tutorial.[J]. Analytica chimica acta,2021,1080.[83]Z?llei Lilla,Jaimes Camilo,Saliba Elie,Grant P Ellen,Yendiki Anastasia. TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain.[J]. NeuroImage,2021,199.[84]Sedghi Gamechi Zahra,Bons Lidia R,Giordano Marco,Bos Daniel,Budde Ricardo P J,Kofoed Klaus F,Pedersen Jesper Holst,Roos-Hesselink Jolien W,de Bruijne Marleen. Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT.[J]. European radiology,2021,29(9).[85]Smith Claire,Galland Barbara C,de Bruin Willemijn E,Taylor Rachael W. Feasibility of Automated Cameras to Measure Screen Use in Adolescents.[J]. American journal of preventive medicine,2021,57(3).[86]Lambert Marie-?ve,Arsenault Julie,AudetPascal,Delisle Benjamin,D'Allaire Sylvie. Evaluating an automated clustering approach in a perspective of ongoing surveillance of porcine reproductive and respiratory syndrome virus (PRRSV) field strains.[J]. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases,2021,73.[87]Slanetz Priscilla J. Does Computer-aided Detection Help in Interpretation of Automated Breast US?[J]. Radiology,2021,292(3).[88]Sander Laura,Pezold Simon,Andermatt Simon,Amann Michael,Meier Dominik,Wendebourg Maria J,Sinnecker Tim,Radue Ernst-Wilhelm,Naegelin Yvonne,Granziera Cristina,Kappos Ludwig,Wuerfel Jens,Cattin Philippe,Schlaeger Regina. Accurate, rapid and reliable, fully automated MRI brainstem segmentation for application in multiple sclerosis and neurodegenerative diseases.[J]. Human brainmapping,2021,40(14).[89]Pajkossy Péter,Sz?ll?si ?gnes,Racsmány Mihály. Retrieval practice decreases processing load of recall: Evidence revealed by pupillometry.[J]. International journal of psychophysiology : official journal of the International Organization of Psychophysiology,2021,143.[90]Kaiser Eric A,Igdalova Aleksandra,Aguirre Geoffrey K,Cucchiara Brett. A web-based, branching logic questionnaire for the automated classification ofmigraine.[J]. Cephalalgia : an international journal of headache,2021,39(10).自动化外文参考文献四:[91]Kim Jin Ju,Park Younhee,Choi Dasom,Kim Hyon Suk. Performance Evaluation of a New Automated Chemiluminescent Ianalyzer-Based Interferon-Gamma Releasing Assay AdvanSure I3 in Comparison With the QuantiFERON-TB Gold In-Tube Assay.[J]. Annals of laboratory medicine,2021,40(1).[92]Yang Shanling,Gao Xican,Liu Liwen,Shu Rui,Yan Jingru,Zhang Ge,Xiao Yao,Ju Yan,Zhao Ni,Song Hongping. Performance and Reading Time of Automated Breast US with or without Computer-aided Detection.[J]. Radiology,2021,292(3).[93]Hung Andrew J,Chen Jian,Ghodoussipour Saum,OhPaul J,Liu Zequn,Nguyen Jessica,Purushotham Sanjay,Gill Inderbir S,Liu Yan. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy.[J]. BJU international,2021,124(3).[94]Kim Ryan S,Kim Gene. Double Descemet Stripping Automated Endothelial Keratoplasty (DSAEK): Secondary DSAEK Without Removal of the Failed Primary DSAEK Graft.[J]. Ophthalmology,2021,126(9).[95]Sargent Alexandra,Theofanous Ioannis,Ferris Sarah. Improving laboratory workflow through automated pre-processing of SurePath specimens for human papillomavirus testing with the Abbott RealTime assay.[J]. Cytopathology : official journal of the British Society for Clinical Cytology,2021,30(5).[96]Saba Tanzila. Automated lung nodule detection and classification based on multiple classifiers voting.[J]. Microscopy research and technique,2021,82(9).[97]Ivan D. Welsh,Jane R. Allison. Automated simultaneous assignment of bond orders and formal charges[J]. Journal of Cheminformatics,2021,11(1).[98]Willem Jespers,MauricioEsguerra,Johan ?qvist,Hugo Gutiérrez-de-Terán. QligFEP: an automated workflow for small molecule free energycalculations in Q[J]. Journal of Cheminformatics,2021,11(1).[99]Manav Raj,Robert Seamans. Primer on artificial intelligence and robotics[J]. Journal of OrganizationDesign,2021,8(1).[100]Yvette Pronk,Peter Pilot,Justus M.Brinkman,Ronald J. Heerwaarden,Walter Weegen. Response rate and costs for automated patient-reported outcomes collection alone compared to combined automated and manual collection[J]. Journal of Patient-Reported Outcomes,2021,3(1).[101]Tristan Martin,Ana?s Moyon,Cyril Fersing,Evan Terrier,Aude Gouillet,Fabienne Giraud,BenjaminGuillet,Philippe Garrigue. Have you looked for “stranger things” in your automated PET dose dispensing system? A process and operators qualification scheme[J]. EJNMMI Radiopharmacy and Chemistry,2021,4(1).[102]Manuel Peuster,Michael Marchetti,Ger ardo García de Blas,Holger Karl. Automated testing of NFV orchestrators against carrier-grade multi-PoP scenarios using emulation-based smoke testing[J]. EURASIP Journal on Wireless ications and Networking,2021,2021(1).[103]R. Ferrús,O. Sallent,J. Pérez-Romero,R. Agustí. On the automation of RAN slicing provisioning: solution framework and applicability examples[J]. EURASIP Journal on Wireless ications and Networking,2021,2021(1).[104]Duo Li,Peter Wagner. Impacts of gradual automated vehicle penetration on motorway operation: a comprehensive evaluation[J]. European Transport Research Review,2021,11(1).[105]Abel Gómez,Ricardo J. Rodríguez,María-Emilia Cambronero,Valentín Valero. Profiling the publish/subscribe paradigm for automated analysis using colored Petri nets[J]. Software & Systems Modeling,2021,18(5).[106]Dipanjan Moitra,Rakesh Kr. Mandal. Automated AJCC (7th edition) staging of non-small cell lung cancer (NSCLC) using deep convolutional neural network (CNN) and recurrent neural network (RNN)[J]. Health Information Science and Systems,2021,7(1).[107]Marta D’Alonzo,Laura Martincich,Agnese Fenoglio,Valentina Giannini,Lisa Cellini,ViolaLiberale,Nicoletta Biglia. Nipple-sparing mastectomy: external validation of a three-dimensional automated method to predict nipple occult tumour involvement on preoperative breast MRI[J]. European Radiology Experimental,2021,3(1).[108]N. V. Dozmorov,A. S. Bogomolov,A. V. Baklanov. An Automated Apparatus for Measuring Spectral Dependences ofthe Mass Spectra and Velocity Map Images of Photofragments[J]. Instruments and Experimental Techniques,2021,62(4).[109]Zhiqiang Sun,Bingzhao Gao,Jiaqi Jin,Kazushi Sanada. Modelling, Analysis and Simulation of a Novel Automated Manual Transmission with Gearshift Assistant Mechanism[J]. International Journal of Automotive Technology,2021,20(5).[110]Andrés Vega,Mariano Córdoba,Mauricio Castro-Franco,Mónica Balzarini. Protocol for automating errorremoval from yield maps[J]. Precision Agriculture,2021,20(5).[111]Bethany L. Lussier,DaiWai M. Olson,Venkatesh Aiyagari. Automated Pupillometry in Neurocritical Care: Research and Practice[J]. Current Neurology and Neuroscience Reports,2021,19(10).[112] B. Haskali,Peter D. Roselt,David Binns,Amit Hetsron,Stan Poniger,Craig A. Hutton,Rodney J. Hicks. Automated preparation of clinical grade [ 68 Ga]Ga-DOTA-CP04, a cholecystokinin-2 receptor agonist, using iPHASE MultiSyn synthesis platform[J]. EJNMMI Radiopharmacy andChemistry,2021,4(1).[113]Ju Hyun Ahn,Minho Na,Sungkwan Koo,HyunsooChun,Inhwan Kim,Jong Won Hur,Jae Hyuk Lee,Jong G. Ok. Development of a fully automated desktop chemical vapor deposition system for programmable and controlled carbon nanotube growth[J]. Micro and Nano Systems Letters,2021,7(1).[114]Kamellia Shahi,Brenda Y. McCabe,Arash Shahi. Framework for Automated Model-Based e-Permitting System forMunicipal Jurisdictions[J]. Journal of Management in Engineering,2021,35(6).[115]Ahmed Khalafallah,Yasmin Shalaby. Change Orders: Automating Comparative Data Analysis and Controlling Impacts in Public Projects[J]. Journal of Construction Engineering and Management,2021,145(11).[116]José ?. Martínez-Huertas,OlgaJastrzebska,Ricardo Olmos,José A. León. Automated summary evaluation with inbuilt rubric method: An alternative to constructed responses and multiple-choice testsassessments[J]. Assessment & Evaluation in Higher Education,2021,44(7).[117]Samsonov,Koshel,Walther,Jenny. Automated placement of supplementary contour lines[J]. International Journal of Geographical Information Science,2021,33(10).[118]Veronika V. Odintsova,Peter J. Roetman,Hill F. Ip,René Pool,Camiel M. Van der Laan,Klodiana-DaphneTona,Robert R.J.M. Vermeiren,Dorret I. Boomsma. Genomics of human aggression: current state of genome-wide studies and an automated systematic review tool[J]. PsychiatricGenetics,2021,29(5).[119]Sebastian Eggert,Dietmar W Hutmacher. In vitro disease models 4.0 via automation and high-throughput processing[J]. Biofabrication,2021,11(4).[120]Asad Mahmood,Faizan Ahmad,Zubair Shafiq,Padmini Srinivasan,Fareed Zaffar. A Girl Has No Name: Automated Authorship Obfuscation using Mutant-X[J]. Proceedings on Privacy Enhancing Technologies,2021,2021(4).。

机械设计制造及其自动化参考文献英文

机械设计制造及其自动化参考文献英文

机械设计制造及其自动化参考文献英文机械设计制造及其自动化参考文献英文:1. Chen, J., & Mei, X. (2016). A review of intelligent manufacturing in the context of Industry 4.0: From the perspective of quality management. Engineering, 2(4), 431-439.这篇文章回顾了智能制造在工业4.0背景下的发展,并从质量管理的角度进行了分析。

2. Wu, D., & Rosen, D. W. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1-14.该研究探讨了基于云计算的设计和制造,认为这是数字制造和设计创新的新范式。

3. Wang, L., Trngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527.这篇文章综述了制造业中物联网技术的现状和进展,强调了制造业中的网络化和物理化系统。

4. Xie, Y. M., & Shi, Y. (2008). A survey of intelligence-based manufacturing: Origins, concepts, and trends. IEEE Transactions on Industrial Informatics, 4(2), 102-120.该文章综述了智能制造的起源、概念和趋势,并对智能制造的方法和技术进行了详细描述。

自动化的英语作文

自动化的英语作文

自动化的英语作文Title: The Advantages of Automation。

Automation refers to the use of technology to perform tasks with minimal human intervention. This can include anything from robotic assembly lines in manufacturing to automatic bill payments in personal finance. The rise of automation has had a profound impact on various aspects of our lives, and its benefits are numerous.One of the key advantages of automation is increased efficiency. Machines and technology are able to perform tasks at a much faster rate than humans, and they can do so consistently without the need for breaks or rest. This means that businesses and industries can produce more goods and services in a shorter amount of time, leading to increased productivity and profitability. In addition, automation can also reduce the occurrence of errors and mistakes, as machines are programmed to perform tasks with precision and accuracy.Another benefit of automation is cost savings. Whilethe initial investment in automation technology may be high, the long-term savings can be substantial. By replacing human labor with machines, businesses can reduce theirlabor costs, as well as the costs associated with employee benefits and training. In addition, automation can alsolead to savings in terms of energy consumption, as machines are often more energy-efficient than human workers.Automation also has the potential to improve safety in various industries. By taking over dangerous or repetitive tasks, machines can help reduce the risk of workplace accidents and injuries. For example, in the manufacturing sector, robots can handle tasks that involve heavy liftingor exposure to hazardous materials, keeping human workers out of harm's way. This not only protects workers, but it also reduces the financial burden on companies in terms of worker compensation and insurance costs.Furthermore, automation can lead to higher quality products and services. Machines are able to perform taskswith a level of precision and consistency that is difficult to achieve with human labor alone. This can result in products that are more uniform in quality and free from defects. In addition, automation can also lead to improved customer service, as technology can be used to streamline processes and reduce wait times.In addition to these benefits, automation also has the potential to create new job opportunities. While it is true that some jobs may be displaced by automation, the implementation of new technology also creates a demand for workers with the skills to operate and maintain automated systems. This can lead to the creation of new, high-tech jobs in fields such as engineering, programming, and maintenance.Despite these advantages, it is important to acknowledge that automation also presents challenges. The displacement of workers by machines can lead to job loss and economic hardship for some individuals and communities. In addition, there are concerns about the ethical implications of automation, particularly in terms ofprivacy and data security. It is important for society to address these challenges and ensure that the benefits of automation are equitably distributed.In conclusion, automation offers numerous advantages across a wide range of industries and sectors. From increased efficiency and cost savings to improved safety and product quality, the benefits of automation are clear. While it is important to address the challenges that come with automation, the potential for positive impact on society and the economy is significant. As technology continues to advance, the role of automation is likely to become even more prominent in our lives.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动化英文论文参考文献
一、自动化英文论文期刊参考文献
[1].网络办公自动化系统构架设计综述.
《中小企业管理与科技》.2009年12期.韩小强.
[2].试论办公自动化的发展趋势.
《产业与科技论坛》.2011年2期.张娟.
[3].办公自动化系统在实际操作中的利弊之我见.
《科技创新与应用》.2015年24期.吴胜斌.
[4].《自动化学报》第39卷第10期(2013年10月)17篇论文的英文关键词共有6个Ei主题词.
《西北工业大学学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI 收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2013年6期.胡沛泉.
[5].基于OCR与词形状编码的英文扫描文档检索.
《模式识别与人工智能》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2009年3期.夏勇.戴汝为.肖柏华.王春恒.
[8].Word文档中通过CrossRef自动查询与整合英文参考文献DOI的实践. 《中国科技期刊研究》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2013年2期.王玥.毛善锋.刘谦.
[9].《自动化学报》征稿简则.
《自动化学报》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2001年1期.
[10].联机手写英文识别.
《计算机研究与发展》.被中信所《中国科技期刊引证报告》收录ISTIC.被EI 收录EI.被北京大学《中文核心期刊要目总览》收录PKU.2006年1期.邹明福.钮兴昱.刘昌平.白洪亮.
二、自动化英文论文参考文献学位论文类
[1].非母语英文字母识别、汉语数字识别及其应用系统研究.
作者:李腾.模式识别与智能系统中国科学院自动化研究所2004(学位年度)
[2].英文地址图像识别与翻译研究.被引次数:1
作者:屠晓.计算机应用技术华东师范大学2011(学位年度)
[3].基于HMM的脱机自由手写英文单词识别系统.
作者:梁佳玉.模式识别与智能系统中国科学院自动化研究所2004(学位年度)
[4].特征选择方法对英文作文自动评分性能影响的研究.被引次数:4
作者:崔爱国.计算机技术苏州大学2009(学位年度)
[5].翻译项目实践报告——从“核电站竞标项目书”翻译看工程类标书的英汉翻译.
作者:朱奕超.英语笔译东华大学2013(学位年度)
[6].孟加拉信封图像的语言辨别和邮政编码定位.
作者:周丽君.计算机应用技术华东师范大学2006(学位年度)
[7]中英文混合语音合成系统.
作者:张毅.模式识别与智能系统中国科学院自动化研究所2009(学位年度)
[8]借助网络信息的汉英实体翻译技术研究.被引次数:1
作者:杨帆.计算机应用技术中国科学院自动化研究所2009(学位年度)
[9].广播电视地球站自动化监控系统的研究.
作者:张向明.电子与通信工程山东大学2007(学位年度)
[10].基于图像识别和地址翻译的国际信函批译系统.被引次数:2
作者:王霞玲.计算机应用技术华东师范大学2009(学位年度)
三、自动化英文论文专著参考文献
[1]脱机自由手写英文单词的识别.
梁佳玉.黄磊.刘迎建,2003中科院自动化研究所自动化与信息技术发展战略研讨会暨2003年学术年会
[2]联机手写英文单词识别系统.
邹明福.钮兴昱.刘昌平.童剑军,2005中国自动化与信息技术研讨会暨2004年学术年会
[3]英文教材材“电路基础(第2版)”与中文教材材“电路(第5版)”的比较研究.
罗先觉,2010第七届全国高等学校电气工程及其自动化专业教学改革研讨会
[4]词表限制下的非母语连续英文字母串识别系统.
李腾.李成荣.李鹏,2003第七届全国人机语音通讯学术会议
[5]英文教材《电路基础(第2版)》介绍与评述.
罗先觉.王仲奕.王曙鸿.陈斌.闰瑞萍.苏婉莹,2008第五届全国高校电气工程及其自动化专业教学改革研讨会
[6]人工智能课程全英文教学改革.
谢榕.刘琼.卢冰,20132013年全国智能科学与技术教育暨教学学术研讨会
[7]机械工程及自动化专业机械工程导论课程建设.
杨培林.庞宣明.陈晓南.曹秉刚,2006第八届全国机械设计教学研讨会议暨见习机械师设计工程师工作会议
[8]用于英文字母识别的三种人工神经网络的设计.
丛爽.陆婷婷,2006第四届全国信息获取与处理学术会议
[9]《高电压技术》双语教学的探讨.
刘刚.张尧,2007第四届全国高等学校电气工程及其自动化专业教学改革研讨会
[10]一种基于骨架特征和神经网络的手写体字符识别技术.
蔡自兴.成浩,2001中国自动化学会中南六省(区)第十九届自动化学术年会。

相关文档
最新文档