15-2014中文第15章 有限元方法在流体力学中的应用
流体力学中的有限元法

流体力学中的有限元法
Finite Element Method: A Powerful Tool for Applying Fluid Mechanics
in Engineering Solutions
有限元法是流体力学中一种重要的分析方法。
本文旨在介绍有限元法的基本原理及应用。
1. 基本原理:有限元法是一种以有限元元素来计算流体力学问题的数
值方法。
它通过将流体中的区域(或结构)划分为较小的部分,用有
限元元素详细地模拟出流体的行为,从而研究复杂流体结构的特性。
2. 应用:有限元法在流体力学中的应用很广泛,可以用于对冲压、输送、旋转、穿透和复杂流体结构的分析。
这种方法可以用来研究风扇、活塞等动力学结构,以及船舶、汽车等交通工具中流体结构的传输性能。
综上所述,有限元法是一种重要的流体力学分析方法,它可以用来分
析复杂流体结构及其传输特性,非常适用于结构分析、流动控制和发
动机计算等应用中。
CAD模型的有限元分析与计算流体力学技术应用

CAD模型的有限元分析与计算流体力学技术应用有限元分析和计算流体力学是工程领域中常用的数值模拟技术,广泛应用于机械、建筑、汽车、航空等行业。
本文将介绍如何在CAD模型上应用有限元分析和计算流体力学技术,以提高产品设计和工程分析的准确性和效率。
一、有限元分析(Finite Element Analysis,简称FEA)有限元分析是一种以有限单元为基础的数值分析方法,广泛应用于物理力学、结构力学、流体力学等领域。
1. 准备CAD模型首先,我们需要准备一个CAD模型。
CAD模型通常由三维建模软件,如SolidWorks、AutoCAD等创建。
确保模型的几何形状和尺寸符合实际设计要求。
2. 网格划分在完成CAD模型后,我们需要对模型进行网格划分。
网格划分是将CAD模型离散化成一系列小单元的过程,这些单元称为网格。
网格的划分直接影响到有限元分析结果的准确性和计算效率。
常见的网格类型包括三角形网格、四边形网格和六面体网格。
网格划分可以通过专业有限元软件(如ANSYS、ABAQUS)完成。
在网格划分过程中,需要根据实际需要合理选择网格密度和单元类型。
3. 材料属性和边界条件设定在进行有限元分析之前,需要为模型设定材料属性和边界条件。
材料属性包括弹性模量、泊松比、密度等,边界条件包括约束条件和加载条件。
在设定材料属性和边界条件时,需要参考实际工程要求和材料性质。
这些参数的准确性将直接影响到有限元分析结果的准确性。
4. 有限元分析求解有限元分析求解是指通过数值计算方法,解决模型在给定边界条件下的力学问题。
这一步需要使用有限元分析软件完成。
常见的有限元分析软件包括ANSYS、ABAQUS、COMSOL等。
求解过程中,软件将自动解算各个网格单元的位移、应力、应变等参数,并生成模型的变形、应力云图等分析结果。
5. 结果分析和优化设计求解完成后,我们可以根据有限元分析结果进行结果分析和优化设计。
可以通过可视化工具查看不同部位的应力分布情况,进而评估设计的合理性。
有限元法在工程力学分析中的应用探索

有限元法在工程力学分析中的应用探索工程力学是一门研究物体受力和变形的学科,它在工程设计和实践中起着重要的作用。
而有限元法作为一种数值计算方法,已经成为工程力学分析中的重要工具。
本文将探索有限元法在工程力学分析中的应用,并讨论其优势和局限性。
有限元法是一种将物体分割成许多小的有限元单元,通过数学模型和计算方法对这些单元进行力学分析的方法。
它的基本原理是将复杂的力学问题简化为有限个小的局部问题,然后通过求解这些局部问题得到整体问题的解。
有限元法不仅适用于静力学分析,还可以用于动力学、热力学和流体力学等问题的分析。
有限元法在工程力学分析中的应用非常广泛。
首先,它可以用于结构力学的分析。
例如,对于一个桥梁结构,可以将其分割为许多小的有限元单元,然后通过有限元法计算每个单元的受力和变形情况,最终得到整个桥梁结构的应力和变形分布。
这样的分析可以帮助工程师评估结构的安全性和稳定性,指导设计和施工过程。
其次,有限元法还可以用于材料力学的分析。
材料的力学性能是工程设计中必须考虑的重要因素。
通过有限元法,可以对材料的应力-应变关系进行建模,并计算材料在受力情况下的应力和变形。
这对于材料的选用和设计具有重要意义,可以帮助工程师选择合适的材料,提高结构的性能和寿命。
此外,有限元法还可以用于流体力学的分析。
在流体力学中,流体的流动和传热是重要的研究内容。
通过有限元法,可以对流体的流动和传热过程进行模拟和计算,从而得到流体的速度、压力和温度分布。
这对于工程师来说,可以帮助他们设计和改进流体系统,提高流体的运输效率和热能利用率。
然而,有限元法也存在一些局限性。
首先,有限元法需要建立合适的数学模型和计算方法。
这对于复杂的力学问题来说,可能是一个挑战。
其次,有限元法的计算结果受到网格划分的影响。
如果网格划分不合理,可能会导致计算结果的误差。
此外,有限元法的计算量通常较大,对计算机的性能要求较高。
总的来说,有限元法在工程力学分析中的应用是非常重要的。
有限元法的工程领域应用

有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。
以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。
通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。
2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。
通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。
3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。
通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。
4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。
通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。
5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。
通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。
6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。
通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。
以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。
交错网格有限元方法在流体力学中的应用

交错网格有限元方法在流体力学中的应用众所周知,流体力学是研究流体运动规律的学科,它关注的是在各种场景下流体受力和运动状态的改变。
作为这个学科的一个重要分支,数值模拟已成为研究流体力学的重要工具。
近年来,交错网格有限元方法在流体力学中的应用越来越广泛,被广泛认为是最有效的解决非结构网格问题的方法之一。
一、交错网格有限元方法的基础交错网格有限元方法是一种广泛应用于流体力学数值模拟的方法。
它是在有限元的基础上发展起来的。
有限元方法是将连续问题转化为离散问题,通过离散化来求解连续问题的数值解。
然而,用有限元方法解决非结构网格问题就会面临网格自适应性和计算效率的问题,这时候就需要使用交错网格有限元方法来解决这些问题。
交错网格有限元方法可以使用几何反求来实现自适应网格。
这种方法使得网格可以在任何地方进行划分,从而提高了计算效率。
交错网格的每个节点集合中有一个基准网格,它用于计算各项式的各个向量分量和各项式的各个导数。
在交错网格方法中,每个自由度都与流体的物理量相对应,例如,速度和压力。
二、交错网格有限元方法的特点在数值方法中,使用交错网格有限元方法具有以下优势:(1)降低存储和计算的成本交错网格的节点可以根据需要放置在单元的角落上,从而实现对网格形状和密度的控制。
与有限元方法相比,交错网格方法能够更好地适应物理真实的问题,并更具计算效率。
(2)高质量的网格生成交错网格方法可将网格自适应算法与有限元方法结合起来,生成具有高质量的网格,这些网格能够规避元素的当前网格尺寸问题,减少误差,更精确地模拟流体解。
(3)相对简单的实现在交错网格方法中,可以使用标准有限元和有限体积方法来计算交错网格的解。
这意味着,仅需少量的代码更改即可将标准有限元代码转换为交错网格的形式,而无需牺牲计算效率或准确性。
三、交错网格有限元法广泛应用于流体结构相互作用、流体波浪相互作用、颗粒流体相互作用、微观流体学、生物流体学、多相流、激波等领域的数值模拟中。
有限元方法及软件应用

有限元方法及软件应用有限元方法是一种在工程领域广泛应用的数值计算方法,用于求解结构力学、固体力学、流体力学等问题。
它将复杂连续介质问题离散为离散的有限个简单子问题,通过对这些子问题的求解,得到整体问题的近似解。
有限元方法的核心思想是将求解区域划分为有限个小的区域,称为有限元。
每个有限元都是由节点和单元组成的,节点是有限元的顶点,单元是有限元的边或面。
在有限元分析中,首先需要选择合适的有限元模型,然后建立有限元模型的数学模型,进而对其进行计算求解。
1.离散化:将求解区域划分为有限个小的有限元。
2.建立数学模型:利用数学方程建立有限元模型的数学模型。
3.求解:使用数值方法求解有限元模型的数学模型,得到近似解。
4.后处理:对求解结果进行分析和处理,评估模型的准确性。
在结构工程中,有限元方法可以用于分析和设计各种结构的强度、刚度和稳定性。
例如,在建筑设计中,可以通过有限元方法来评估建筑物的受力情况,提高结构的安全性和可靠性。
在机械工程中,有限元方法可以用于分析机械零件的变形和应力分布,优化结构设计,提高机械设备的可靠性和性能。
同时,有限元方法还可以应用于流体力学领域,如分析流体的流动和传热问题,优化流体系统的设计,提高流体设备的效率。
有限元方法的应用还离不开与之相配套的计算软件。
目前市场上存在着多种用于有限元分析的软件,如ANSYS、ABAQUS、Nastran、LS-DYNA等。
这些软件不仅提供了建立、求解和后处理有限元模型的功能,还提供了多种不同的分析类型和求解算法,以满足不同工程问题的需求。
利用这些软件,工程师可以方便地进行参数化设计、灵敏度分析、可靠性分析等工作,加快产品开发和优化的速度。
然而,有限元方法并非完全没有缺点。
首先,有限元方法需要对求解区域进行离散化,划分合适的有限元,这涉及到网格生成和边界条件的处理,对于复杂几何形状的问题可能会比较困难。
其次,由于有限元方法是一种近似解法,所以求解结果可能存在误差,需要通过适当的网格剖分和模型验证来提高结果的准确性。
流体力学的数值模拟及其应用

流体力学的数值模拟及其应用流体力学是研究流体运动规律与性质的科学,广泛应用于物理学、工程学、地球科学等领域。
随着计算机技术的飞速发展,数值模拟成为研究流体力学的重要手段之一。
本文将探讨流体力学的数值模拟方法和其在工程与科学中的应用。
一、数值模拟方法数值模拟是利用数学方法将连续的流体力学问题离散化,通过计算机迭代求解离散的数学模型,从而模拟出流体的运动过程。
在流体力学的数值模拟中,常用的方法包括有限差分法、有限元法和边界元法等。
有限差分法是一种将空间和时间分割成离散网格的方法,通过近似替代偏微分方程中的微分项,以差分代替,进而转化为代数方程组。
有限差分法简单易行,适用于求解一维和二维流体问题。
有限元法是一种将求解域划分成单元的方法,通过逼近流体问题的解函数,将偏微分方程转化为代数方程组。
有限元法适用于复杂的流体力学问题,可以处理非线性和非稳态问题。
边界元法是一种基于边界上的积分表示来求解流体问题的方法,将边界分成多个小区域,并通过计算边界的形状函数和权函数的积分来求解问题。
边界元法适用于求解与边界有关的问题,例如边界层流动和流体-固体相互作用等。
二、数值模拟在工程中的应用1. 污水处理污水处理是一个涉及多相流、化学反应与传质的复杂过程。
利用数值模拟方法,可以优化处理设备的设计,提高处理效率,减少能源消耗和废物排放。
2. 水资源管理水资源是人类生存与发展的基础,合理管理水资源对社会经济的可持续发展至关重要。
数值模拟方法可用于模拟水流、沉积与水质变化,为水资源管理决策提供科学依据。
3. 海洋工程海洋工程涉及到海洋的波浪、流动、沉积等问题。
通过数值模拟,可以预测海洋环境对工程建设的影响,为海洋工程的设计、建设与维护提供指导。
4. 气象预报数值模拟在气象领域也有广泛应用。
基于数值模型的气象预报可预测天气变化趋势,并提供决策依据,如风能资源评估、灾害预警和空气质量预报等。
三、数值模拟在科学研究中的应用1. 宇宙物理学数值模拟在宇宙物理学中扮演着重要角色,可用于研究星系形成、恒星演化、宇宙扩展等问题。
有限元法在工程力学中的应用研究

有限元法在工程力学中的应用研究工程力学是一门研究物体运动和力学性质的学科,广泛应用于工程设计、结构分析和材料力学等领域。
而有限元法则是一种数值计算方法,通过将连续问题离散化为有限个小单元,再对每个小单元进行数值计算,最终得到整个问题的近似解。
有限元法的应用在工程力学中具有重要的意义。
有限元法最早是由美国工程师Richard Courant于1943年提出的,其基本思想是将一个复杂的连续问题分割成许多简单的小单元,通过对每个小单元进行计算,再将结果组合起来得到整个问题的解。
这种方法的优点是能够处理各种复杂的几何形状和边界条件,而且计算效率较高。
因此,有限元法被广泛应用于工程力学中的结构分析、流体力学、热传导等问题的求解。
在工程力学中,有限元法的应用非常广泛。
例如,在结构分析中,有限元法可以用于计算结构的应力、应变分布,以及结构的振动特性。
通过建立结构的有限元模型,可以对结构进行静力分析、动力分析和稳定性分析,从而评估结构的安全性和可靠性。
在工程设计中,有限元法可以用于优化结构形状和尺寸,以满足特定的强度和刚度要求。
此外,有限元法还可以用于预测结构在不同工况下的响应,对结构进行疲劳和断裂分析。
在流体力学中,有限元法可以用于求解流体的速度、压力和温度分布。
通过建立流体的有限元模型,可以模拟流体在管道、河流和湖泊等复杂几何形状中的流动行为。
有限元法可以考虑流体的非线性、不可压缩性和湍流等特性,从而得到更准确的结果。
在热传导中,有限元法可以用于计算材料的温度分布和热传导速率。
通过建立材料的有限元模型,可以研究材料的热响应和热应力,对材料的热稳定性进行评估。
除了结构分析、流体力学和热传导外,有限元法在工程力学中还有其他许多应用。
例如,在电磁场分析中,有限元法可以用于计算电磁场的分布和电磁力的作用。
在声学分析中,有限元法可以用于计算声场的传播和声压级的分布。
在地震工程中,有限元法可以用于模拟地震波的传播和结构的动力响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u v 0 y x
如果引入 ψ(x , y) (流函数),则连续性条件自动 满足:
u y , v x
无旋条件变为
u v 2 ( ) ( ) 2 2 0 y x yy x x x y
积没有纯转动。
如果下列三式不能同时满足,则为有旋流动:
v u w u w v 0 , 0 , 0 x y x z y z
我们目前仅考虑无旋流动。
二维流的流函数(steam function) 对于2D,稳态,不可压缩,无旋流动 连续性方程为 无旋条件退化为
du τ dy
μ为绝对粘度(absolute viscosity). 是流体的基本材料参数, 与其抗剪应力性能直接相关。
如果流体的粘度很小,则可忽略其剪应力,理想 化为无粘性流体。
2 不可压缩流体的控制方程
质量守恒
连续性方程
u, v, w, 是速度在 x,y,z方向的分量
质量守恒要求一个体积里面的质量变化率等于 该体积的质量净流入速度。 体积dV里的总质量为ρdV, 注意到 dV 为常数, 所以有:
( e ) S
二维流动的流速势函数(Velocity Potential Function)
假定存在流速势函数φ(x , y) 使得
uxy ( , ) , vxy ( , ) x y
or
应用Green-Gauss定理,上式变为
[N ] [N ] nd d x d y x S x x x (e) (e) S A
T T T [ N ] T [N ] nd d x d y0 y S y y y (e) (e) S A
Chapter 15
有限元方法在流体力学中的应用
Applications of FEM in Fluid Mechanics
(Fundamentals of finite element analysis by David V. Hutton)
1 引言
•不可压缩流体(incompressible flow): 密度不变 •可压缩流体(compressible flow) Newton’s law of viscosity
2 2
(Laplace’s equation)
2 i j k , x y z
•流函数的物理意义 流线(streamlines) : x-y平面内的曲线,其上的
流函数为常数。
d d x d y 0 d v d x u d y 0 x y
d V ( m a s s f l o w i n m a s s f l o w o u t ) t
从x,y,z三个方向流入质量造成的控制体积中的 质量变化率分别表示为: (u) m x udydz [ u dx ]dydz x ( v) m y vdxdz [ v dy ]dxdz y ( w) m z wdydz [ w dz ]dxdy z 所以质量的变化率为:
对于稳态的不可压缩流体(steady flow of an incompressible fluid),密度与时间和空间坐标无 关,于是
u v w 0 x y z
有旋流和无旋流(Rotational and Irrotational Flow) 把流体流动分为: •有旋流动(rotational) ---平动和转动混合 •无旋流动(irrotational) ---仅有平动。流体微元体
流线上的任一点的切向量可以表示为 nt = dx i + dyj, 该点处的流体速度为 V = ui + vj.
则 V × nt = (−v dx + u dy)k=0
因为:两个非零向量的叉积为零意味着 这两个向量平行,所以:
在流线上任一点,流体速度正切于流线。
有限元列式
具有M个节点的有限单元内的流函数可以表示为:
写为矩阵形式
( e ) [ K ] [ ] [f(e)]
T T [ N ] [ N ] [ N ] [ N ] () e [ K ] ( ) d x d y x x y y () e A
e ) T [ f( ] [ N ]( n v nd )S y x u
其中 S 为单元边界 (nx , ny ) 为边界单位外 法线向量。代入流函数表达式,有:
T T [] NN [] [] NN [] T ( ) d x d y [ ] [] N ( u n v n ) d S y x x x y y ( e ) ( e ) A S
() u () v ( w ) d V m m m [ ] d x d y d z x y z t x y z
注意到 dV = dx dy dz, 于是得到连续性方程为:
u v w u v w [ ]0 t x y z x y z
( xy , ) Nxy [ N ] [ ] i( , ) i
i 1
M
利用Galerkin方法, 单元的残差方程为:
2 2 N (, x y ) ( 2 2 ) d x d y 0 ,i 1 , M i () e A x y
2 2 [ N ] ( 2 2) d x d y 0 (e ) A x y