拉格朗日插值法理论及误差分析
拉格朗日插值法理论及误差分析

拉格朗日插值法理论及误差分析拉格朗日插值法理论及误差分析浅析拉格朗日插值法目录:一、引言二、插值及多项式插值的介绍三、拉格朗日插值的理论及实验四、拉格朗日插值多项式的截断误差及实用估计式五、1、截断误差在[a,b]区间上用Ln(x)近似未知或复杂函数f(x),其截断误差是指Rn?x??f?x??Ln?x?通常称Rn?x?为拉格朗日插值余额。
注意到利用公式估计截断误差实际上非常困难。
一是因为它要计算函数f(x)的高阶导数,当f(x)很复杂时,计算量很大,而当f(x)没有可用来计算的表达式时,导数无法准确计算;二是因为即使能得到高阶导数的解析式,但于?的具体位置不知道,所以要估计高阶导数在插值区间上的界一般是非常困难的事情。
因此,公式并不实用。
2、截断误差的实用估计式既然公式估计误差时不实用,那么实际中如何估计截断误差呢?假设插值条件中包含n+2组数据?,n,n?, 1f(xi)?yi , i?0,1那么利用n+1组数据我们可以构造一个n 次拉格朗日插值多项式Ln(x),利用后n+1组数据我们可以构造另一个n次拉格朗日插值多项式L*n(x)。
利用公式知,他们各自的插值余项为f(x)?Ln(x)?1f(n?1)(?)(x?x0)(x?x1)?(x?xn),(n?1)!1f(n?1)(?*)(x?x1)(x?x2)?(x?xn?1), (n?1)!f(x)?L*n(x)?两式相减得L*n(x)?Ln(x)?并可写成1fn?1(?)(x?x1)?(x?xn)(xn?1?x0),(n?1)!L*(x)?Ln(x)1(n?1)f(?)(x?x1)?(x?xn)?n.(n?1)!xn?1?x0注意到上式中利用fn?1(?)?fn?1(?*).该条件在很多情况下是成立的。
利用式可得?Ln(x)?L*n(x)R(x)?f(x)?L(x)?,n? nx0?xn?1? ? *?R*(x)?f(x)?L*(x)?Ln(x)?Ln(x),nn?xn?1x0?式给出了用Ln(x)或L*n(x)作近似计算时的实用误差估计式,它不需要计算高阶导数,也不用估计插值区间上高阶导数的界。
拉格朗日插值法理论及误差分析

浅析拉格朗日插值法目录:一、 引言二、 插值及多项式插值的介绍 三、 拉格朗日插值的理论及实验四、 拉格朗日插值多项式的截断误差及实用估计式 五、 参考文献一、引言插值在数学发展史上是个古老问题。
插值是和拉格朗日(Lagrange )、牛顿(Newton )、高斯(Gauss )等著名数学家的名字连在一起的。
在科学研究和日常生活中,常常会遇到计算函数值等一类问题。
插值法有很丰富的历史渊源,它最初来源人们对天体研究——有若干观测点(我们称为节点)计算任意时刻星球的位置(插值点和插值)。
现在,人们在诸如机械加工等工程技术和数据处理等科研都有很好的应用,最常见的应用就是气象预报。
插值理论和方法能解决在实际中当许多函数表达式未知或形式复杂,如何去构造近似表达式及求得在其他节点处的值的问题。
二、插值及多项式插值1、插值问题的描述设已知某函数关系()y f x =在某些离散点上的函数值:插值问题:根据这些已知数据来构造函数()y f x =的一种简单的近似表达式,以便于计算点,0,1,,i x x i n ≠=的函数值()f x ,或计算函数的一阶、二阶导数值。
xx 0y y1y 1n y -ny 1x 1n x -nx2、插值的几何意义插值的几何意义如图1所示:图1 3、多项式插值 3.1 基本概念假设()y f x =是定义在区间,a b ⎡⎤⎣⎦上的未知或复杂函数,但一直该函数在点01n a x x x b ≤<<<≤处的函数值01,,n y y y 。
找一个简单的函数,例如函数()P x ,使之满足条件(),0,1,2,,,i P x y i n == (3.1)通常把上述01n x x x <<< 称为插值节点,把()P x 称为()f x 的插值多项式,条件(3.1)称为插值条件,并把求()P x 的过程称为插值法。
3.2 插值多项式的存在性和唯一性 如果插值函数是如下m 次的多项式:1011()m m m m m P x a x a x a x a --=+++那么插值函数的构造就是要确定()m P x 表达式中的m+1个系数011,,,m ma a a a -。
拉格朗日 插值 区间误差限

拉格朗日插值区间误差限拉格朗日插值方法是一种常用的数值插值方法,用于在给定一组已知数据点的情况下,通过构造一个多项式函数来拟合这些数据点,并在插值区间内求得未知值。
然而,由于插值方法的近似性质,插值结果与真实值之间总会存在一定的误差。
本文将介绍拉格朗日插值法以及其误差限的计算方法。
一、拉格朗日插值法简介拉格朗日插值法是一种基于多项式的插值方法,其基本思想是通过构造一个满足给定数据点的插值多项式来逼近真实的函数曲线。
具体而言,对于给定的n个数据点(xi, yi),拉格朗日插值法的插值多项式可以表示为:P(x) = Σ[ yi * Li(x) ],i=0 to n其中,Li(x)是拉格朗日基函数,定义为:Li(x) = Π[ (x - xj) / (xi - xj) ],j=0 to n,i ≠ j这样,通过求解插值多项式P(x),我们可以在插值区间内求得未知值。
二、插值误差限的计算尽管拉格朗日插值法可以通过构造插值多项式来逼近真实函数曲线,但由于插值方法本质上是一种近似方法,插值结果与真实值之间总会存在一定的误差。
我们可以通过计算插值误差限来评估插值的可靠性。
在拉格朗日插值法中,插值误差限可通过以下等式进行估计:| f(x) - P(x) | ≤ M / (n + 1)! * | x - x0 | * | x - x1 | * ... * | x - xn |其中,f(x)是真实函数的值,P(x)是插值多项式的值,M是插值区间上函数f(x)的最大导数的上界,n是插值多项式的次数。
三、拉格朗日插值法的应用示例为了更好地理解拉格朗日插值法及其误差限的计算方法,我们来看一个具体的示例。
假设我们要通过拉格朗日插值法来估计函数f(x) = sin(x)在区间[0, π]内的某个未知值。
已知在该区间内取了n+1个等间距的数据点(xi, yi),其中i=0, 1, 2, ..., n。
首先,我们可以根据已知数据点构造拉格朗日插值多项式P(x),并计算出未知值的近似值。
拉格朗日插值法总结

拉格朗日插值法总结拉格朗日插值法2008-05-12 16:44一、问题的背景在实际问题中常遇到这样的函数y=f(x),其在某个区间[a,b]上是存在的。
但是,通过观察或测量或试验只能得到在区间[a,b]上有限个离散点x0,x1,…,xn上的函数值yi=f(xi),(i=0,1,…,n)。
或者f(x)的函数f(x)表达式是已知的,但却很复杂而不便于计算;希望用一个既能反映函数f(x)的特性,又便于计算的简单函数来描述它。
二、插值问题的数学提法:已知函数在n+1个点x0,x1,…,xn上的函数值yi=f(xi),(i=0,1,…,n)求一个简单函数y=P(x),使其满足:P(xi)=yi,(i=0,1,…,n)。
即要求该简单函数的曲线要经过y=f(x)上已知的这个n+1个点:(x0,y0),(x1,y1),…,(xn,yn),同时在其它x∈[a,b]上要估计误差:R(x)=f(x)-P(x)其中P(x)为f(x)的插值函数,x0,x1,…,xn称为插值节点,包含插值节点的区间[a,b]称为插值区间,求插值函数P(x)的方法称为插值法。
若P(x)是次数不超过n的代数多项式,就称P(x)为插值多项式,相应的插值法称为多项式插值。
若P(x)是分段的多项式,就是分段插值。
若P(x)是三角多项式,就称三角插值。
三、插值方法面临的几个问题第一个问题:根据实际问题选择恰当的函数类。
本章我们选择代数多项式类,其原因有两个:(1)代数多项式类简单;微分、积分运算易于实行;(2)根据著名的Weierstrass逼近定理,任何连续的函数都可以用代数多项式作任意精确的逼近。
第二个问题:构造插值函数P(x),使其满足:P(xi)=yi,(i=0,1,…,n)与此相关的问题是:插值问题是否可解(存在性的问题),如果有解,是否唯一?(唯一性的问题)第三个问题:插值误差R(x)=f(x)-P(x)的估计问题。
与此相关的问题是插值过程的收敛性的问题。
拉格朗日插值多项式与泰勒多项式的误差研究详全文

拉格朗日插值多項i. 式與泰勒多項式的誤差分析朱亮儒★ 曾政清☆ 陳昭地★★國立臺灣師範大學數學系教授☆臺北市立建國高級中學數學教師摘要:本文旨於提供拉格朗日插值多項式與泰勒多項式誤差項估計值的初等簡易證明,並探討其應用價值。
關鍵字:拉格朗日插值多項式、泰勒多項式、誤差項一引言有鑑於教育部99普通高級中學數學課綱在第一冊多項式的運算為迴避解三元一次方程組,首次出現插值多項式及其應用(以不超過三次插值多項式為限><[1][2][3]),99數學課綱包含插值多項式部分如下:求中的.除以的餘式為通過的插值多項式。
若有兩實根,則可寫成的型式。
透過因式定理證明插值多項式的唯一性。
設通過的多項式為,求及.插值多項式:通過的多項式可表示為,求的值。
此處暫不處理下面的題型:「設通過的多項式為,求。
」此類題型將在數學的IV的聯立方程組章節中處理。
此處自然而然讓人想到拉格朗日(Lagrange, J. L.,1736-1816>其人奇事,羅列如下:他出生於義大利西北部的杜林(Turin>,從小就極有數學天分,於18歲開始撰寫數學論文,在數論上曾提出一個著名的定理:「任意正整數都可以表成四個平方數的和」。
他是第一位證明均值定理(The Mean Value Theorem>的大數學家。
(均值定理在高三選修甲微分的單元中會學到<[4]),它是僅次於微積分基本定理的極重要的存在定理>他在30歲時,應腓特烈二世的邀請到柏林作為其宮廷數學大師長達20年之久。
之後接受法國的邀請,到巴黎擔任法國科學院院士,拿破崙<1769-1821, 1804-1815擔任法皇)讚譽他為「數學科學的巍峨金字塔」泰勒定理有拉格朗日誤差的公式<存在性)。
拉格朗日恆等式:,,.具有附加條件的多變數實函數極值拉格朗日乘子定理。
最得意的巨著《分析力學》。
拉格朗日差值誤差公式<[5]):若為區間中相異實數,且,則對每一個,存在,使得,其中為函數在的階拉格朗日插值多項式,而為其插值誤差式。
插值数值实验报告(3篇)

第1篇一、实验目的1. 理解并掌握插值法的基本原理和常用方法。
2. 学习使用拉格朗日插值法、牛顿插值法等数值插值方法进行函数逼近。
3. 分析不同插值方法的优缺点,并比较其精度和效率。
4. 通过实验加深对数值分析理论的理解和应用。
二、实验原理插值法是一种通过已知数据点来构造近似函数的方法。
它广泛应用于科学计算、工程设计和数据分析等领域。
常用的插值方法包括拉格朗日插值法、牛顿插值法、样条插值法等。
1. 拉格朗日插值法拉格朗日插值法是一种基于多项式的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等。
2. 牛顿插值法牛顿插值法是一种基于插值多项式的差商的插值方法。
其基本思想是:给定一组数据点,构造一个次数不超过n的多项式,使得该多项式在这些数据点上的函数值与已知数据点的函数值相等,并且满足一定的差商条件。
三、实验内容1. 拉格朗日插值法(1)给定一组数据点,如:$$\begin{align}x_0 &= 0, & y_0 &= 1, \\x_1 &= 1, & y_1 &= 4, \\x_2 &= 2, & y_2 &= 9, \\x_3 &= 3, & y_3 &= 16.\end{align}$$(2)根据拉格朗日插值公式,构造插值多项式:$$P(x) = \frac{(x-x_1)(x-x_2)(x-x_3)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)}y_0 + \frac{(x-x_0)(x-x_2)(x-x_3)}{(x_1-x_0)(x_1-x_2)(x_1-x_3)}y_1 + \frac{(x-x_0)(x-x_1)(x-x_3)}{(x_2-x_0)(x_2-x_1)(x_2-x_3)}y_2 + \frac{(x-x_0)(x-x_1)(x-x_2)}{(x_3-x_0)(x_3-x_1)(x_3-x_2)}y_3.$$(3)计算插值多项式在不同点的函数值,并与实际值进行比较。
拉格朗日插值实验报告

引言概述:
拉格朗日插值是一种常用的数值分析方法,旨在通过已知的离散数据点来近似拟合出一个多项式函数,从而实现对未知数据点的预测和估计。
该方法在信号处理、图像处理、金融模型和机器学习等领域具有广泛的应用。
本实验报告将详细介绍拉格朗日插值的原理、算法和实验结果。
正文内容:
1.拉格朗日插值的原理
1.1多项式插值的概念
1.2拉格朗日插值多项式的形式
1.3拉格朗日插值多项式的唯一性证明
2.拉格朗日插值的算法
2.1插值多项式的计算方法
2.2插值多项式的复杂度分析
2.3多点插值方法的优缺点
3.拉格朗日插值的实验设计
3.1实验目的和步骤
3.2数据采集和预处理
3.3插值多项式的建模
3.4实验环境和工具选择
3.5实验结果分析和评估
4.拉格朗日插值的应用案例
4.1信号处理领域中的插值应用
4.2图像处理中的插值算法
4.3金融模型中的拉格朗日插值
4.4机器学习中的插值方法
5.拉格朗日插值的改进和发展
5.1经典拉格朗日插值的局限性
5.2最小二乘拉格朗日插值的改进
5.3多项式插值的其他方法
5.4拉格朗日插值在新领域的应用前景
总结:
拉格朗日插值作为一种经典的数值分析方法,在实际应用中具有广泛的用途。
本文通过介绍拉格朗日插值的原理和算法,以及实验设计和应用案例,全面展示了该方法的特点和优势。
同时,本文还指出了经典拉格朗日插值的局限性,并介绍了一些改进和发展的方向。
可以预见,拉格朗日插值在信号处理、图像处理、金融模型和机器学习等领域将继续发挥重要作用。
拉格朗日插值法知识讲解

拉格朗日插值法5.2 拉格朗日(Lagrange)插值可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,例如,多项式是无穷光滑的,容易计算它的导数和积分,故常选用代数多项式作为插值函数。
5.2.1 线性插值问题5.1给定两个插值点其中,怎样做通过这两点的一次插值函数?过两点作一条直线,这条直线就是通过这两点的一次多项式插值函数,简称线性插值。
如图5.1所示。
图5.1 线性插值函数在初等数学中,可用两点式、点斜式或截距式构造通过两点的一条直线。
下面先用待定系数法构造插值直线。
设直线方程为,将分别代入直线方程得:当时,因,所以方程组有解,而且解是唯一的。
这也表明,平面上两个点,有且仅有一条直线通过。
用待定系数法构造插值多项式的方法简单直观,容易看到解的存在性和惟一性,但要解一个方程组才能得到插值函数的系数,因工作量较大和不便向高阶推广,故这种构造方法通常不宜采用。
当时,若用两点式表示这条直线,则有:(5.1)这种形式称为拉格朗日插值多项式。
,,称为插值基函数,计算,的值,易见(5.2)在拉格朗日插值多项式中可将看做两条直线,的叠加,并可看到两个插值点的作用和地位都是平等的。
拉格朗日插值多项式型式免除了解方程组的计算,易于向高次插值多项式型式推广。
线性插值误差定理5.1记为以为插值点的插值函数,。
这里,设一阶连续可导,在上存在,则对任意给定的,至少存在一点,使(5.3)证明令,因是的根,所以可设对任何一个固定的点,引进辅助函数:则。
由定义可得,这样至少有3个零点,不失一般性,假定,分别在和上应用洛尔定理,可知在每个区间至少存在一个零点,不妨记为和,即和,对在上应用洛尔定理,得到在上至少有一个零点,。
现在对求二次导数,其中的线性函数),故有代入,得所以即5.2.2 二次插值问题5.2给定三个插值点,,其中互不相等,怎样构造函数的二次的(抛物线)插值多项式?平面上的三个点能确定一条次曲线,如图5.2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉格朗日插值法理论及误差分析
浅析拉格朗日插值法目录:一、引言二、插值及多项式插值的介绍三、拉格朗日插值的理论及实验四、拉格朗日插值多项式的截断误差及实用估计式五、
1、截断误差在[a,b]区间上用Ln(x)近似未知或复杂函数f(x),其截断误差是指Rn?x??f?x??Ln?x?通常称Rn?x?为拉格朗日插值余额。
注意到利用公式估计截断误差实际上非常困难。
一是因为它要计算函数f(x)的高阶导数,当f(x)很复杂时,计算量很大,而当f(x)没有可用来计算的表达式时,导数无法准确计算;二是因为即使能得到高阶导数的解析式,但于?的具体位置不知道,所以要估计高阶导数在插值区间上的界一般是非常困难的事情。
因此,公式并不实用。
2、截断误差的实用
估计式既然公式估计误差时不实用,那么实际中如何估计截断误差呢?假设插值条件中包含n+2组数据?,n,n?, 1f(xi)?yi , i?0,1那么利用n+1组数据我们可以构造一个n 次拉格朗日插值多项式Ln(x),利用后n+1组数据我们可以构造另一个n次拉格朗日插值多项式L*n(x)。
利用公式知,他们各自的插值余项为f(x)?Ln(x)?1f(n?1)(?)(x?x0)(x?x1)?(x?xn), (n?1)!1f(n?1)(?*)(x?x1)(x?x2)?(x?xn?1), (n?1)!f(x)?L*n(x)?两式相减得L*n(x)?Ln(x)?并可写成1fn?1(?)(x?x1)?(x?xn)(xn?1?x0),
(n?1)!L*(x)?Ln(x)1(n?1)
f(?)(x?x1)?(x?xn)?n.
(n?1)!xn?1?x0注意到上式中利用fn?1(?)?fn?1(?*).该条件在很多情况下是成立的。
利用式可得?Ln(x)?L*n(x)R(x)?f(x)?L(x)?,n? nx0?xn?1? ? *?R*(x)?f(x)?L*(x)?Ln(x)?Ln(x),nn?xn?1
?x0?式给出了用Ln(x)或L*n(x)作近似计算时的实用误差估计式,它不需要计算高阶导数,也不用估计插值区间上高阶导数的界。
总之,拉格朗日插值法的公式结构紧凑,在理论分析中十分方便,然而在计算中,但插值点增加或减少时,所对应的基本多项式就得重新计算而且图像发生很大变化。
像逐次线性插值法、牛顿插值法等都是在拉格朗日插值多项式的基础上延伸出来的。
我们根据实际中的具体问题,为减少插值误差来选取相应的插值法来快速的解决问题。
五、。