场效应管与晶体三极管的比较

合集下载

3极管和mos管

3极管和mos管

3极管和mos管3极管和MOS管是电子行业里使用最普遍的器件类别,它们都是表示晶体管的一种类型,广泛应用于电子设备及元器件的数字和模拟电路中。

本文将重点介绍3极管和MOS管的概念、功能特性、应用领域以及发展状况。

首先,3极管是一种特殊的晶体管类型,是由三个接口(基、集、放)组成的半导体器件。

三极管可以分为NPN和PNP两种类型,区别在于放电极(放电口)的极性是不一样的。

三极管具有较高的电阻上升、放大和抑制电子信号的作用,可以用于电子电路中的放大、模拟和数字电路中。

MOS管也叫做场效应管,是一种特殊的晶体管,以及其相关的场效应及其器件。

MOS管主要由基极、集极、源极和控制极组成。

它可以更便捷地控制半导体内部的流体,可以有效地控制信号和电流,从而在电路中实现高速放大和控制。

MOS管最常见的应用有电路保护、开关和放大电路等。

三极管和MOS管都有其独特的功能特性和优势,它们的应用领域也不同。

三极管主要用于功率电路,如控制大功率设备的接口和实现电路的放大作用;MOS管主要用于控制小功率的设备,如电子驱动器、通信芯片、显示器等。

随着电子产品的创新和发展,3极管和MOS管在电子行业中的广泛应用也受到了一定程度的改进和发展。

在三极管方面,经过不断改良,它的稳定性、对电压的反应灵敏度、电路控制和抗冲击等性能都得到不断提高;而在MOS管方面,受到半导体发展的推动,它的发展从普通的MOS管向MOSFET、CMOS等方向发展,可以更有效地控制电路,提高放大性能。

总之,三极管和MOS管都是电子行业中非常重要的器件,它们的发展极大地推动了电子设备的创新和发展,也提供给其他行业了更多的应用机会。

未来,3极管和MOS管都将继续受到重视,并有望开发出更先进的产品,为电子行业带来更多的创新技术和发展。

三极管及场效应管原理讲解

三极管及场效应管原理讲解

三極管及場效應管原理講解大綱: 一三極管與場效應管的簡介二三極管與場效應管的工作原理三三極管與場效應管的區別四三極管與場效應管的實際應用一三極管與場效應管的簡介1.三機管的簡介半導体三極管又稱晶体三極管,簡稱晶體管.它是由三塊半導体組成,構成兩個PN結,即集電結和發射結,基結3個電極,分別是集電極,基極,發射極,如下圖所示:C CBBE EB為基極,C為集電極,E為發射極半導体三極管TRANSISTOR Test # Description1 h FE Forward-current transfer ratio2 V BE Base emitter voltage(see also Appendix F)3 I EBO Emitter to base cutoff current4 V CESAT Saturation voltage5 I CBO Collector to base cutoff current6 I CEO Collector to emiter cutoff currentI CER, with base to emiter loadI CEX, reverse bias,orI CES short(see also Appendix F)7 BV CEO Breakdown voltage,collector to emitter,BV CER with base to emiter load,BV CEX reverse bias,orBV CES short(see also Appendix F)8 BV CBO Breakdown voltage,collector to base9 BV EBO Breakdown voltage,emitter to base10 V BESAT Base emitter saturation voltage2 .場效應管簡介場效應管又稱金属-氧化物-半導体場效應管,也就是我們通常所說MOS(Metal Oxide Semiconductor )管.場效應管是一種由輸入信號電壓來控制其輸出電流大小的半導体場效應管,是電壓控制器件,輸入電阻非常高.場效應管分為:結型場效應管(JFET)和絕緣栅型場效應管(IGFET)兩大類.結型場效應管JEFT Test # Description1 VGSOFF Gate to source cutoff voltage.2 lDss Zero gate voltage drain current.3 BVDGO Drain to gate breakdown voltage.4 IGSS Gate reverse current.5 IDGO Drain to gate leakage.6 IDOFF Drain cut-off current.7 BVGSS Gate to source breakdown voltage.8 VDSON Drain to source on-state voltage.結型場效應管有N型和P型溝道兩種,電路符號如下d d 結型場效應管有三極:珊極源極N型s P型s 漏極結型場效應管有兩個PN結,在栅源極上加一定電壓,在場效應管內部會形成一個導電溝道,當d,s極間加上一定電壓時,電流就可以從溝道中流過,即通過源電壓來改變導電溝道電阻,實現對漏極電流的控制.結型場效應管的主要參數1.夾斷電壓U DS(off),當U DS等于某一個定值(10v),使Id等于某一個微小電流(如50uA)時,栅源極間所加的U GS即為夾斷電壓.U DS(off)一般為1~10V.2.飽和漏極電流I DS:當U GS=0時,場效應管發生預夾斷時的漏極電流.3.直流輸入電阻R GS.4.低頻跨導GM5.漏源擊穿電壓U(BR)DS6.栅源擊穿電壓U(BR)GS7.最大耗散功率P DM絕緣栅型場效應管是由金屬氧化物和半導体組成,故稱為MOSFET,簡稱MOS管,其工作原理類似於結型場效應管絕緣栅場效應管MOSFET Test # Description1 V GSTH Threshold voltag2 IDss Zero gate voltage drain current.lDSx with gate to Source reverse bias.3 BVDss Drain to Source breakdown voltage.4 VDSON Drain to Source on-state voltage.5 IGSSF Gate to Source leakage current forward.6 IGSSR Gate to Source leakage current reverse.7 VF Diode forward voltage.8 VGSF Gate to Source voltage (forward)required for specified In at specified Vos.(see SISQ Appendix F)9 VGSR Gate to Source voltage (reverse)required for specified ID at specified VDS.(see also Appendix F)10 VDSON On-state drain current11 VGSON On-state gate voltage符號和極性d iDiDg bs s(1)增強型NMOS (2)增強型PMOS gs sgBBg-+-+(3)耗盡型NMOS (4)耗盡型PMOS絕緣栅型場效應管主要參數1.漏源擊穿電壓BV DS2.最大漏極電流I DMSX3.閥值電壓V GS (開啟電壓)4.導通電阻R ON5.跨導(互導) (GM)6.最高工作瀕率7.導通時間TON和關斷時間二三極管與場效應管的工作原理1. 三極管的工作原理(1)NPN (2) PNPi b i Cv be v ce(3)輸入特性曲線 (4) 共發射極輸出特性曲線三極管的三種狀態: (1) 放大放大區發射結正偏,集電結反偏,E1>E2,即NPN型三極管Vc>Vb>Ve,PNP型三極管V c<V b<V e,三極管處于放大狀態.由于Ic=βIb,即Ic受Ib控制,而Ic的電流能量是由電源提供的,此時Ube=0.6~0.7V(NPN硅管)(2)截止Ib≦0的區域稱截止區,UBE<0.5V時,三極開始截止,為了截止可靠,常使UBE≦0,即發射結零偏或反偏(NPN管Vb≦Ve, PNP型三極管Vb≧Ve),截止時,集電結也反向偏置(NPN管Vb<Vc, PNP型三極管Vb>Vc).(3)飽和當VCE<VBE,即集電結正向偏置(Vb<Vc),發射結正向偏置(Vb>Ve)時,三極管處于飽和區.飽和壓降UCE(sat),小功率硅管UCE(sat)≒0.3V,鍺管UCE(sat)≒0.1V.1.主要參數(1)共發射極直流電流放大系數β,即Hfe, β=IC/IB(2)共發射極交流電流放大系數β. β=ΔIC/ΔIB(3)集電極,基極反向飽和電流ICBO(4)集電極,發射極反向飽和電流ICEO,即穿透電流(5)集電極最大允許功耗PCM(6)集電極最大允許電流ICM(7)集電極,基極反向擊穿電壓U(BR)CBO(8)發射極,基極反向擊穿電壓U(BR)CBO(9)集電極,發射極反向擊穿電壓U(BR)CBO2.場效應管的工作原理2.1結型場效應管场效应晶体三极管是由一种载流子导电的、用输入电压控制输出电流的半导体器件。

电子技术习题2

电子技术习题2

第二章习题一、简答题1.放大电路是怎样分类的?放大的实质是什么?放大电路有哪些性能指标?对这些指标有什么要求?答:放大电路的分类:(1)根据用途,分为信号放大和功率放大;(2)根据工作频率,分为直流放大和交流放大;(3)还有分立放大和集成放大;单级放大和多级放大等。

放大的本质是实现能量的控制,由小能量控制大能量。

放大电路的性能指标有增益,输入电阻,输出电阻,最大不失真输出幅度等;R i 越大,对信号源的衰减就越小;R O越小,输出电压越大且越稳定,带负载的能力就越强。

2.要使三极管具有放大作用,发射结和集电结的偏置电压极性如何?对于NPN和PNP两种类型的管子,应怎样连接电源?答:发射结正偏,集电结反偏。

3.如何用万用表判断一个晶体管式NPN型还是PNP型?如何判断管子的三个管脚?又如何判断管子是硅管还是锗管?答:现在常见的三极管大部分是塑封的,如何准确判断三极管的三只引脚哪个是b、c、e?三极管的b极很容易测出来。

通常我们要用R×1kΩ档,不管是NPN管还是PNP管,不管是小功率、中功率、大功率管,测其be结、cb结都应呈现与二极管完全相同的单向导电性,反向电阻无穷大,其正向电阻大约在10K左右。

若要进一步估测管子特性的好坏,还应变换电阻档位进行多次测量,方法是:置R×10Ω档测PN结正向导通电阻都在大约200Ω左右;置R×1Ω档测PN结正向导通电阻都在大约30Ω左右,(以上为47型表测得数据,其它型号表大概略有不同)如果读数偏大太多,可以断定管子的特性不好。

应该说明一点的是,这里所说的“反向”是针对PN结而言,对NPN管和PNP管方向实际上是不同的。

将万用表打在电阻挡R×1kΩ档,黑色表笔放在三极管的一个脚上. 将红色表笔依次放在三极管的另外两个脚上,如果一个阻值大一个阻值小,就将黑色表笔换三极管的另一个脚重复以上动作。

直到两个阻值都大或阻值都小,那么黑色表笔所接为b极,一般两个都小是NPN管,两个都大是PNP管。

数字万用判断表场效应管和三极管

数字万用判断表场效应管和三极管

用万用表定性判断场效应管、三极管的好坏一、定性判断MOS型场效应管的好坏先用万用表R×10kΩ挡(内置有9V或15V电池),把负表笔(黑)接栅极(G),正表笔(红)接源极(S)。

给栅、源极之间充电,此时万用表指针有轻微偏转。

再改用万用表R×1Ω挡,将负表笔接漏极(D),正笔接源极(S),万用表指示值若为几欧姆,则说明场效应管是好的。

二、定性判断结型场效应管的电极将万用表拨至R×100档,红表笔任意接一个脚管,黑表笔则接另一个脚管,使第三脚悬空。

若发现表针有轻微摆动,就证明第三脚为栅极。

欲获得更明显的观察效果,还可利用人体靠近或者用手指触摸悬空脚,只要看到表针作大幅度偏转,即说明悬空脚是栅极,其余二脚分别是源极和漏极。

判断理由:JFET的输入电阻大于100MΩ,并且跨导很高,当栅极开路时空间电磁场很容易在栅极上感应出电压信号,使管子趋于截止,或趋于导通。

若将人体感应电压直接加在栅极上,由于输入干扰信号较强,上述现象会更加明显。

如表针向左侧大幅度偏转,就意味着管子趋于截止,漏-源极间电阻RDS增大,漏-源极间电流减小IDS。

反之,表针向右侧大幅度偏转,说明管子趋向导通,RDS↓,IDS↑。

但表针究竟向哪个方向偏转,应视感应电压的极性(正向电压或反向电压)及管子的工作点而定。

注意事项:(1)试验表明,当两手与D、S极绝缘,只摸栅极时,表针一般向左偏转。

但是,如果两手分别接触D、S极,并且用手指摸住栅极时,有可能观察到表针向右偏转的情形。

其原因是人体几个部位和电阻对场效应管起到偏置作用,使之进入饱和区。

(2)也可以用舌尖舔住栅极,现象同上。

三、晶体三极管管脚判别三极管是由管芯(两个PN结)、三个电极和管壳组成,三个电极分别叫集电极c、发射极e和基极b,目前常见的三极管是硅平面管,又分PNP和NPN型两类。

现在锗合金管已经少见了。

这里向大家介绍如何用万用表测量三极管的三个管脚的简单方法。

场效应管与晶体三极管的比较

场效应管与晶体三极管的比较

场效应管与晶体三极管的比较原理区别:1、三极管是双极型晶体管,场效应管是单极型晶体管;2、三极管是电流控件,场效应管是电压控件;3、三极管输入阻抗低,场效应管输入阻抗高;4、三极管分NPN和PNP两种类型,有硅管和锗管之分。

场效应管分结型和绝缘栅型两大类,每类又可分为N沟道和P沟道两种,都是硅管;5、三极管的集电极和发射机不可互换,场效应管的源极和漏极可以互换;场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。

有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好.场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用.在主板中的区别:第一种方法最有效果,就是查资料。

第二种是看看芯片脚下的铜片,场管一般只有G极是信号线,是细线,其余的都为粗线。

如果是复合管的话就有两根细线,并有一脚接地。

三端稳压器没有接地的脚而且都为粗线,一般电脑上不用三极管走电压线,只走信号线。

场效应管用万用表测第3脚和第2脚单向导通,其他脚不通。

三极管是第1脚和第2脚第3脚两组正向导通的。

在板上测不看图纸,很难区分三极管和场管的,CPU供电都是N沟道的场管。

拿下来测才准。

用万用表的三极管档,测三极管的B极和E极,有0.6V的压降,因为这是一个PN结而MOS管则测不到此压降。

三极管及场效应管原理及参数

三极管及场效应管原理及参数

晶体三极管一、三极管的电流放大原理晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。

而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。

图1、晶体三极管(NPN)的结构图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b 和集电极。

当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。

在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。

由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β= △Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。

三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。

模拟电子技术基础学习指导与习题解答(谢红主编)第一章

模拟电子技术基础学习指导与习题解答(谢红主编)第一章

第一章思考题与习题解答1-1 名词解释半导体、载流子、空穴、自由电子、本征半导体、杂质半导体、N型半导体、P型半导体、PN结。

解半导体——导电能力介乎于导体与绝缘体之间的一种物质。

例如硅(Si)和锗(Ge),这两种半导体材料经常用来做晶体管。

载流子——运载电流的粒子。

在导体中的载流子就是自由电子;半导体中的载流子有两种,就是自由电子与空穴,它们都能参加导电。

空穴——硅和锗均为共价键结构,属于四价元素。

最外层的四个电子与相邻原子最外层电子组成四个共价键,每一个共价键上均有两个价电子运动。

当环境温度升高(加热或光照)时,价电子获得能量摆脱原子核与共价键对它的束缚进入自由空间成为自由电子,在原来的位置上就出现一个空位,称为空穴。

空穴带正电,具有吸引相邻电子的能力,参加导电时只能沿着共价键作依次递补式的运动。

自由电子——位于自由空间,带负电,参加导电时,在自由空间作自由飞翔式的运动,这种载流子称为自由电子。

本征半导体——不掺任何杂质的半导体,也就是指纯净的半导体,称为本征半导体。

杂质半导体——掺入杂质的半导体称为杂质半导体。

N型半导体——在本征硅(或锗)中掺入微量五价元素(如磷P),就形成含有大量电子的N型杂质半导体,又称电子型杂质半导体,简称N型半导体。

P型半导体——在本征硅(或锗)中掺入微量的三价元素(如硼B),就形成含大量空穴的P型杂质半导体,又称空穴型杂质半导体,简称P型半导体。

PN结——将一块P型半导体与一块N型半导体放在一起,通过一定的工艺将它们有机地结合起来,在其交界面上形成一个结,称为PN结。

1-3 选择填空(只填a、b…以下类同)(1)在PN结不加外部电压时,扩散电流漂移电流。

(a.大于,b.小于,c.等于)(2)当PN结外加正向电压时,扩散电流漂移电流。

(a1.大于,b1.小于,c1.等于)此时耗尽层。

(a2.变宽,b2.变窄,c2.不变)(3)当PN结外加反向电压时,扩散电流漂移电流。

场效应管与三极管

场效应管与三极管

场效应管 与 三极管场效应管是在三极管的基础上而开发出来的。

三极管通过电流的大小控制输出,输入要消耗功率。

场效应管是通过输入电压控制输出,不消耗功率。

场效应管和三极管的区别是电压和电流控制,但这都是相对的。

电压控制的也需要电流,电流控制的也需要电压,只是相对要小而已。

就其性能而言,场效应管要明显优于普通三极管,不管是频率还是散热要求,只要电路设计合理,采用场效应管会明显提升整体性能。

1、三极管是双极型管子,即管子工作时内部由空穴和自由电子两种载流子参与。

场效应管是单极型管子,即管子工作时要么只有空穴,要么只有自由电子参与导电,只有一种载流子;2、三极管属于电流控制器件,有输入电流才会有输出电流;场效应管属于电压控制器件,没有输入电流也会有输出电流;3、三极管输入阻抗小,场效应管输入阻抗大;4、有些场效应管源极和漏极可以互换,三极管集电极和发射极不可以互换;5、场效应管的频率特性不如三极管;6、场效应管的噪声系数小,适用于低噪声放大器的前置级;7、如果希望信号源电流小应该选用场效应管,反之则选用三极管更为合适。

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。

它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。

普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。

场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。

在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

场效应管与晶体三极管的比较场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。

场效应管是利用多数载流子导电,所以称之为单极型器件,而晶体管是即有多数载流子,也利用少数载流子导电,被称之为双极型器件.有些场效应管的源极和漏极可以互换使用,栅压也可正可负,灵活性比晶体管好.场效应管能在很小电流和很低电压的条件下工作,而且它的制造工艺可以很方便地把很多场效应管集成在一块硅片上,因此场效应管在大规模集成电路中得到了广泛的应用.一、场效应管的结构原理及特性场效应管有结型和绝缘栅两种结构,每种结构又有N沟道和P沟道两种导电沟道。

1、结型场效应管(JFET)(1)结构原理它的结构及符号见图1。

在N型硅棒两端引出漏极D和源极S两个电极,又在硅棒的两侧各做一个P区,形成两个P N结。

在P区引出电极并连接起来,称为栅极Go这样就构成了N型沟道的场效应管图1、N沟道结构型场效应管的结构及符号由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,从图1中可见,当漏极电源电压ED一定时,如果栅极电压越负,PN结交界面所形成的耗尽区就越厚,则漏、源极之间导电的沟道越窄,漏极电流ID就愈小;反之,如果栅极电压没有那么负,则沟道变宽,ID变大,所以用栅极电压EG可以控制漏极电流ID的变化,就是说,场效应管是电压控制元件。

(2)特性曲线1)转移特性图2(a)给出了N沟道结型场效应管的栅压---漏流特性曲线,称为转移特性曲线,它和电子管的动态特性曲线非常相似,当栅极电压VGS=0时的漏源电流。

用IDSS表示。

VGS变负时,ID逐渐减小。

I D接近于零的栅极电压称为夹断电压,用VP表示,在0≥VGS≥VP的区段内,ID与VGS的关系可近似表示为:ID=IDSS(1-|VGS/VP|)其跨导gm为:gm=(△ID/△VGS)|VDS=常微(微欧)|式中:△ID------漏极电流增量(微安)------△VGS-----栅源电压增量(伏)图2、结型场效应管特性曲线2)漏极特性(输出特性)图2(b)给出了场效应管的漏极特性曲线,它和晶体三极管的输出特性曲线很相似。

①可变电阻区(图中I区)在I区里VDS比较小,沟通电阻随栅压VGS而改变,故称为可变电阻区。

当栅压一定时,沟通电阻为定值,ID随VDS近似线性增大,当VGS<VP时,漏源极间电阻很大(关断)。

IP=0;当VGS=0时,漏源极间电阻很小(导通),ID=IDSS。

这一特性使场效应管具有开关作用。

②恒流区(区中II区)当漏极电压VDS继续增大到VDS>|VP|时,漏极电流,IP达到了饱和值后基本保持不变,这一区称为恒流区或饱和区,在这里,对于不同的VGS漏极特性曲线近似平行线,即ID与VGS成线性关系,故又称线性放大区。

③击穿区(图中Ⅲ区)如果VDS继续增加,以至超过了PN结所能承受的电压而被击穿,漏极电流ID突然增大,若不加限制措施,管子就会烧坏。

2、绝缘栅场效应管它是由金属、氧化物和半导体所组成,所以又称为金属---氧化物---半导体场效应管,简称MOS场效应管。

(1)结构原理它的结构、电极及符号见图3所示,以一块P型薄硅片作为衬底,在它上面扩散两个高杂质的N型区,作为源极S和漏极D。

在硅片表覆盖一层绝缘物,然后再用金属铝引出一个电极G(栅极)由于栅极与其它电极绝缘,所以称为绝缘栅场面效应管。

图3、N沟道(耗尽型)绝缘栅场效应管结构及符号在制造管子时,通过工艺使绝缘层中出现大量正离子,故在交界面的另一侧能感应出较多的负电荷,这些负电荷把高渗杂质的N区接通,形成了导电沟道,即使在VGS=0时也有较大的漏极电流ID。

当栅极电压改变时,沟道内被感应的电荷量也改变,导电沟道的宽窄也随之而变,因而漏极电流ID随着栅极电压的变化而变化。

场效应管的式作方式有两种:当栅压为零时有较大漏极电流的称为耗散型,当栅压为零,漏极电流也为零,必须再加一定的栅压之后才有漏极电流的称为增强型。

(2)特性曲线1)转移特性(栅压----漏流特性)图4(a)给出了N沟道耗尽型绝缘栅场效应管的转移行性曲线,图中Vp为夹断电压(栅源截止电压);IDSS为饱和漏电流。

图4(b)给出了N沟道增强型绝缘栅场效管的转移特性曲线,图中Vr为开启电压,当栅极电压超过VT时,漏极电流才开始显著增加。

2)漏极特性(输出特性)图5(a)给出了N沟道耗尽型绝缘栅场效应管的输出特性曲线。

图5(b)为N沟道增强型绝缘栅场效应管的输出特性曲线。

图4、N沟道MOS场效管的转移特性曲线图5、N沟道MOS场效应管的输出特性曲线此外还有N衬底P沟道(见图1)的场效应管,亦分为耗尽型号增强型两种,各种场效应器件的分类,电压符号和主要伏安特性(转移特性、输出特性)二、场效应管的主要参数1、夹断电压VP当VDS为某一固定数值,使IDS等于某一微小电流时,栅极上所加的偏压VGS就是夹断电压VP。

2、饱和漏电流IDSS在源、栅极短路条件下,漏源间所加的电压大于VP时的漏极电流称为IDSS。

3、击穿电压BVDS表示漏、源极间所能承受的最大电压,即漏极饱和电流开始上升进入击穿区时对应的VDS。

4、直流输入电阻RGS在一定的栅源电压下,栅、源之间的直流电阻,这一特性有以流过栅极的电流来表示,结型场效应管的RGS可达1000000000欧而绝缘栅场效应管的RGS可超过10000000000000欧。

5、低频跨导gm漏极电流的微变量与引起这个变化的栅源电压微数变量之比,称为跨导,即gm= △ID/△VGS它是衡量场效应管栅源电压对漏极电流控制能力的一个参数,也是衡量放大作用的重要参数,此参灵敏常以栅源电压变化1伏时,漏极相应变化多少微安(μA/V)或毫安(mA/V)来表示-------------------------------------------------------------------------------------------金属氧化物半导体场效应三极管的基本工作原理是靠半导体表面的电场效应,在半导体中感生出导电沟道来进行工作的。

当栅 g 电压vg 增大时, p 型半导体表面的多数载流子枣空穴减少、耗尽,而电子积累到反型。

当表面达到反型时,电子积累层将在 n+ 源区s 和 n+ 漏区 d 形成导电沟道。

当 vds ≠ 0 时,源漏电极有较大的电流ids流过。

使半导体表面达到强反型时所需加的栅源电压称为阈值电压vt。

当 vgs>vt并取不同数值时,反型层的导电能力将改变,在的vds下也将产生不同的ids, 实现栅源电压vgs对源漏电流ids的控制。

场效应管(fet)是电场效应控制电流大小的单极型半导体器件。

在其输入端基本不取电流或电流极小,具有输入阻抗高、噪声低、热稳定性好、制造工艺简单等特点,在大规模和超大规模集成电路中被应用。

fet和双极型三极管相类似,电极对应关系是b&reg;g、e&reg; s、c&reg;d;由fet组成的放大电路也和三极管放大电路相类似,三极管放大电路基极回路一个偏置电流(偏流),而fet放大电路的场效应管栅极没有电流,fet放大电路的栅极回路一个合适的偏置电压(偏压)。

fet组成的放大电路和三极管放大电路的主要区别:场效应管是电压控制型器件,靠栅源的电压变化来控制漏极电流的变化,放大作用以跨导来;三极管是电流控制型器件,靠基极电流的变化来控制集电极电流的变化,放大作用由电流放大倍数来。

场效应管放大电路分为共源、共漏、共栅极三种组态。

在分析三种组态时,可与双极型三极管的共射、共集、共基对照,体会二者间的相似与区别之处。

场效应管是场效应晶体管(Field Effect Transistor,FET)的简称。

它属于电压控制型半导体器件,具有输入电阻高、噪声小、功耗低、没有二次击穿现象、安全工作区域宽、受温度和辐射影响小等优点,特别适用于高灵敏度和低噪声的电路,现已成为普通晶体管的强大竞争者。

普通晶体管(三极管)是一种电流控制元件,工作时,多数载流子和少数载流子都参与运行,所以被称为双极型晶体管;而场效应管(FET)是一种电压控制器件(改变其栅源电压就可以改变其漏极电流),工作时,只有一种载流子参与导电,因此它是单极型晶体管。

场效应管和三极管一样都能实现信号的控制和放大,但由于他们构造和工作原理截然不同,所以二者的差异很大。

在某些特殊应用方面,场效应管优于三极管,是三极管无法替代的,三极管与场效应管区别见下表。

场效应管是电压控制元件,而三极管是电流控制元件。

在只允许从信号源取较少电流的情况下,应选用场效应管。

而在信号源电压较低,又允许从信号源取较多电流的条件下,应用三极管。

场效应管靠多子导电,管中运动的只是一种极性的载流子;三极管既用多子,又利用少子。

由于多子浓度不易受外因的影响,因此在环境变化较强烈的场合,采用场效应管比较合适。

场效应管的输入电阻高,适用于高输入电阻的场合。

场效应管的噪声系数小,适用于低噪声放大器的前置级。

相关文档
最新文档