高三数学基础题每日一练

合集下载

高三数学基础训练题集1-10套(含答案)

高三数学基础训练题集1-10套(含答案)

图2俯视图侧视图正视图4图1乙甲7518736247954368534321高三数学基础训练一一.选择题:1.复数i1i,321-=+=zz,则21zzz⋅=在复平面内的对应点位于A.第一象限B.第二象限C.第三象限D.第四象限2.在等比数列{an}中,已知,11=a84=a,则=5aA.16 B.16或-16 C.32 D.32或-323.已知向量a =(x,1),b =(3,6),a⊥b ,则实数x的值为( )A.12B.2-C.2D.21-4.经过圆:C22(1)(2)4x y++-=的圆心且斜率为1的直线方程为( )A.30x y-+=B.30x y--=C.10x y+-=D.30x y++=5.已知函数()f x是定义在R上的奇函数,当0>x时,()2xf x=,则(2)f-=( )A.14B.4-C.41- D.46.图1是某赛季甲.乙两名篮球运动员每场比赛得分的茎叶图,则甲.乙两人这几场比赛得分的中位数之和是A.62 B.63 C.64 D.657.下列函数中最小正周期不为π的是A.xxxf cossin)(⋅= B.g(x)=tan(2π+x)C.xxxf22cossin)(-=D.xxx cossin)(+=ϕ8.命题“,11a b a b>->-若则”的否命题是A.,11a b a b>-≤-若则B.若ba≥,则11-<-baC.,11a b a b≤-≤-若则D.,11a b a b<-<-若则9.图2为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图,则该几何体的侧面积为A .6B .24C .123D .3210.已知抛物线C 的方程为212x y =,过点A ()1,0-和点()3,t B 的直线与抛物线C 没有公共点,则实数t 的取值范围是 A .()()+∞-∞-,11,B .⎪⎪⎭⎫ ⎝⎛+∞⎪⎪⎭⎫ ⎝⎛-∞-,2222, C .()()+∞-∞-,,2222D .()()+∞-∞-,,22二.填空题:11.函数22()log (1)f x x =-的定义域为 .12.如图所示的算法流程图中,输出S 的值为 .13.已知实数x y ,满足2203x y x y y +⎧⎪-⎨⎪⎩≥,≤,≤≤,则2z x y =-的最大值为_______.14.已知c x x x x f +--=221)(23,若]2,1[-∈x 时,2)(c x f <恒成立,则实数c 的取值范围______ 三.解答题:已知()sin f x x x =+∈x (R ). (1)求函数)(x f 的最小正周期;(2)求函数)(x f 的最大值,并指出此时x 的值.高三数学基础训练二一.选择题:1.在等差数列{}n a 中, 284a a +=,则 其前9项的和S9等于 ( )A .18B .27C .36D .92.函数()()sin cos sin f x x x x =-的最小正周期为 ( )A .4π B .2πC .πD .2π 3.已知命题p: {}4A x x a=-,命题q :()(){}230B x x x =--,且⌝p 是⌝q 的充分条件,则实数 a 的取值范围是: ( )A .(-1,6)B .[-1,6]C .(,1)(6,)-∞-⋃+∞D .(,1][6,)-∞-⋃+∞ 4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,。

高三数学基础练习题

高三数学基础练习题

高三数学基础练习题一一、选择题1.已知集合A =⎭⎬⎫⎩⎨⎧∈=Z ,3πsin|n n x x ,且B ⊆A ,则集合B 的个数为 ( )A .3个B .4个C .8个D .16个2.一工人看管5部机器,在1小时内每部机器需要看管的概率是31,则1小时内至少有4部机器需要看管的概率是 ( ) A .24311 B .24313 C .2431D .243103.在△ABC 中,条件甲:A <B ;条件乙:cos 2A >cos 2B ,则甲是乙的 ( ) A .充分但非必要条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件4.一个年级有12个班,每一个班有50名学生,随机编号为1~50号,为了了解他们的课外兴趣爱好,要求每班的32号学生留下来进行问卷调查,这里运用的方法是 ( ) A .分层抽样B .抽签法C .随机数表法D .系统抽样法5.若直线x + 2y + m = 0按向量a = (-1,-2) 平移后与圆C :x 2 + y 2 + 2x -4y = 0相切,则实数m 的值等于 ( ) A .3或13 B .3或-13C .-3或13D .-3或-136.若偶函数f (x )在[0,2]上单调递减,则 ( ) A .f (-1)>f ⎪⎭⎫⎝⎛41log 5.0>f (lg0.5) B .f (lg0.5)> f (-1)>f ⎪⎭⎫ ⎝⎛41log 5.0C .f ⎪⎭⎫ ⎝⎛41log5.0>f (-1)>f (lg0.5)D .f (lg0.5)>f ⎪⎭⎫⎝⎛41log5.0> f (-1)7.如图,点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD = AD ,则PA 与BD 所成角 的度数为 ( ) A .6π B .4π C .3π D .2π8.抛物线y 2 = 2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦 点,若|AF |、|BF |、|CF |成等差数列,则 ( )A .x 1、x 2、x 3成等差数列B .y 1、y 2、y 3成等差数列C .x 1、x 3、x 2成等差数列D .y 1、y 3、y 2成等差数列9.已知a >0,函数f (x )= x 3-ax 在[1,+∞ 上是单调增函数,则a 的最大值为 ( ) A .0B .1C .2D .310.函数f 1(x )=x -1,f 2(x )=||1x -,f 3(x )=x +1,f 4(x )=||1x +的图像分别是点集C 1,C 2,C 3,C 4,这些图像关于直线x = 0的对称曲线分别是点集D 1,D 2,D 3,D 4,现给出下列四个命题,其中正确命题的序号是 ( ) ①D 1⊂2D ②D 1∪D 3 = D 2∪D 4 ③D 4⊂D 3 ④D 1∩D 3 = D 2∩D 4A .①③B .①②C .②④D .③④)二、填空题11.给出平面区域如图所示,使目标函数z = ax + y (a >0)取最大值的最优 解有无穷多个,则a 的值为_________________. 12.在△ABC 中,A ,B ,C 成等差数列,则 tan=++2tan2tan32tan2C A C A ______________.13.如图,在四棱锥P -ABCD 中,O 为CD 上的动点,四边形ABCD 满足条件___ ___时V P -AOB 恒为定值. (写出你认为正确的一个即可) 14.若记号“*”表示求两个实数a 与b 的算术平均数的运算,即a * b =2b a +,则两边均含有运算符号“*”和“+”,且对于任意三个实数a 、b 、c 都能成立的一个等式是___ ___.15.设n ≥2,若a n 是(1 + x )n 展开式中含x 2项的系数,则⎪⎪⎭⎫⎝⎛++++∞→n n a a a 111lim 32 等于 .16.设函数f (x )= sin x ,g (x )=-9]2 ,0[ ,4392πππ∈-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛x x x ,则使g (x )≥f (x )的x 值的范围是高三数学基础练习题二一、选择题:1.已知集合22{|1},{(,)|1}M y y x N x y x y ==+=+=,则M ⋂N 中元素的个数是( )A .0B .1C .2D .多个2.已知复数212,1z a i z a i =+=+,若21z z 是实数,则实数a 的值等于( )A .1B .一1C .一2D .23.函数()log xa f x a x =+在区间[1,2]上的最大值与最小值之和为14-,最大值与最小值之积为38-,则a 等于( )A .2B . 2或12C .12D .234.若函数()sin x f x e x =,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A .2πB .0C .钝角D .锐角5.已知实数a 、b 满足等式23log log a b =,下列五个关系式:① 0<a <b <1; ② 0<b <a <1; ③ a = b ; ④ l<a <b ; ⑤ 1<b <a 。

高考数学每日一练(4)-人教版高三全册数学试题

高考数学每日一练(4)-人教版高三全册数学试题

高三数学每日一练(8)——集合(2)1.已知集合}2{<=x x A ,}012{>+=x xB ,则B A =( ) A .Φ B .}21{<<-x xC .}12{-<<-x xD .12{<<-x x 或}2>x 2.[2014·某某高考]设全集为R ,集合A ={x |x 2-9<0},B ={x |-1<x ≤5},则)(B C A R =( )A .(-3,0)B .(-3,-1)C .(-3,-1]D .(-3,3) 3.设集合2{|21},{|10}x A x B x x -=<=-≥,则A B 等于( )A .{|1}x x ≤B .{|12}x x ≤<C .{|01}x x <≤D .{|01}x x <<4.已知集合{}2,0xM y y x ==>,{})2lg(2x x y x N -==,则N M 为( )A .()2,1B .()+∞,1C .[)+∞,2D .[)+∞,15.(选做)设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值X 围是( )A .⎝ ⎛⎭⎪⎫0,34B .⎣⎢⎡⎭⎪⎫34,43C .⎣⎢⎡⎭⎪⎫34,+∞ D .(1,+∞)高三数学每日一练(9)——导数(4)1.已知曲线1ln 342+-=x x y 的一条切线的斜率为21,则切点的横坐标为( ) A .3B .2C .1D .212.设函数()f x 的导函数为()f x ',如果()f x '是二次函数, 且()f x '的图象开口向上,顶点坐标为 , 那么曲线()y f x =上任一点的切线的倾斜角α的取值X 围是( ) A .π(0,]3 B .π2π(,]23 C .ππ[,)32D .π[,π)3 3.函数x e x f xln )(=在点))1(,1(f 处的切线方程是( ) A .)1(2-=x e y B .1-=ex y C .)1(-=x e y D .e x y -=4.直线(1)y k x =+与曲线()ln f x x ax b =++相切于点(1,2)P ,则2a b +=.5.曲线:12323-+-=x x x y 的切线的斜率的最小值是。

高三数学(文)日日练基础题(含答案)

高三数学(文)日日练基础题(含答案)

高三数学(文) 天天练(一)1.如果复数i a a a a z )23(222+-+-+=为纯虚数,那么实数a 的值为( )。

A .-2B .1C .2D .1或 -22. 已知等差数列{a n }中,a 2+a 8=8,则该数列前9项和S 9等于( )。

A .18B .27C .36D .453.棱长为3的正方体的顶点都在同一球面上,则该球的表面积为______.4.若函数32()22f x x x x =+--的一个正数零点附近的函数值用二分法计算,其参考数据如下: f (1) = -2f (1.5) = 0.625 f (1.25) = -0.984 f (1.375) = -0.260 f (1.4375) = 0.162 f (1.40625) = -0.054那么方程32220x x x +--=的一个近似根(精确到0.1)为( )。

A .1.2B .1.3C .1.4D .1.55.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )。

A .2- B .2 C .4- D .46.已知定义域为(-1,1)的奇函数y =f (x)又是减函数,且f (a -3)+f (9-a 2)<0,则a 的取值范围是( )。

A .(22,3)B .(3,10)C .(22,4)D .(-2,3) 7.已知简谐运动)3sin(2)(ϕ+π=x x f (2||π<ϕ)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为A .6=T ,6π=ϕB .6=T ,3π=ϕC .π=6T ,6π=ϕD .π=6T ,3π=ϕ 8.下图的矩形,长为5,宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为 .9.函数y=3x 2-2lnx 的单调递减区间为_________. 10.设向量a 与b 的夹角为θ,)3,3(=a ,)1,1(2-=-a b ,则cos θ= .11.已知函数x x x x f cos sin sin 3)(2+-=(I )求函数)(x f 的最小正周期; (II )求函数⎥⎦⎤⎢⎣⎡∈2,0)(πx x f 在的值域. 答案:1.C 2.C 3.108π 4.C 5.D 6.A 7.A 8. 4.6 9.(-√6/6,√6/6) 10.3√10/10 11.(1)π (2)[-√3,1-√3/2]。

高中数学练习题基础

高中数学练习题基础

高中数学练习题基础一、集合与函数(1) A = {x | x是小于5的自然数}(2) B = {x | x² 3x + 2 = 0}(1) 若A∩B = ∅,则A∪B = A(2) 对于任意实数集R,有R⊆R(1) f(x) = √(x² 5x + 6)(2) g(x) = 1 / (x² 4)(1) f(x) = x³ 3x(2) g(x) = |x| 2二、三角函数(1) sin 45°(2) cos 60°(3) tan 30°2. 已知sin α = 1/2,α为第二象限角,求cos α的值。

(1) y = sin(2x + π/3)(2) y = cos(3x π/4)三、数列(1) an = n² + 1(2) bn = 2^n 1(1) 2, 4, 8, 16, 32, …(2) 1, 3, 6, 10, 15, …(1) 1, 4, 9, 16, 25, …四、平面向量1. 已知向量a = (2, 3),求向量a的模。

2. 计算向量a = (4, 5)与向量b = (3, 2)的数量积。

(1) a = (2, 1),b = (4, 2)(2) a = (1, 3),b = (2, 1)五、平面解析几何(1) 经过点(2, 3)且斜率为2的直线(2) 经过点(1, 3)且垂直于x轴的直线(1) 圆心在原点,半径为3的圆(2) 圆心在点(2, 1),半径为√5的圆(1) 点(1, 2)到直线y = 3x 1的距离(2) 点(2, 3)到直线2x + 4y + 6 = 0的距离六、立体几何(1) 正方体边长为2(2) 长方体长、宽、高分别为3、4、52. 已知正四面体棱长为a,求其体积。

(1) 正方体A边长为2,正方体B边长为4(2) 长方体A长、宽、高分别为3、4、5,长方体B长、宽、高分别为6、8、10七、概率与统计1. 抛掷一枚硬币10次,求恰好出现5次正面的概率。

数学基础练习题高三

数学基础练习题高三

数学基础练习题高三
数学作为一门重要的学科,对于高三学生来说尤为重要。

为了巩固和提高数学基础,下面给出一些高三数学基础练习题,希望能对同学们的学习有所帮助。

一、选择题
1. 若x是方程x^2-5x+6=0的一个根,则x的值是:
A. -2和-3
B. 2和3
C. 2和-3
D. -2和3
2. 已知直线l过点A(4,-1)和点B(2,3),则直线l的斜率为:
A. 2
B. -2
C. -1/3
D. 3
3. 记点P(x,y)为曲线y=x^2-2x+2上的动点,若点P与x轴相交成直角三角形,求直角三角形的面积。

A. 1/2
B. 2
C. 1
D. 3
4. 若a,b是两个非零实数,且满足ab=1,那么loga 1/2 * logb 4 = ?
A. -2
B. 1/2
C. 0
D. 2
二、解答题
1. 解方程3x+7=2(x+4)。

2. 若函数f(x)=x^2+ax+b与g(x)=2x-k的图象有且只有一个公共点,
则a,b和k的值分别为多少?
三、应用题
1. 曲线y=ax^3+bx^2+cx+d在点P(1,2)处的切线方程为y=2x+1。

求a,b,c和d的值。

2. 在高中三角函数的学习中,我们经常会用到“SIN”,“COS”和“TAN”三个函数,它们分别代表什么意思?请用文字解释其含义。

以上是一些高三数学基础练习题,希望同学们认真思考并尝试解答。

在解答过程中,可以通过探究、思考和演算等方法巩固自己的数学基础,提高数学应用能力。

坚持做题并查缺补漏,相信同学们一定能在
数学学习中取得好成绩!。

高三数学基础练习题

高三数学基础练习题

高三数学基础练习题一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. \( y = x^2 \)B. \( y = \sin(x) \)C. \( y = \cos(x) \)D. \( y = |x| \)2. 已知等差数列的首项为3,公差为2,求第10项的值:A. 23B. 25C. 27D. 293. 计算下列极限:\[ \lim_{x \to 0} \frac{\sin(x)}{x} \]A. 1B. 0C. -1D. 不存在4. 已知函数 \( f(x) = x^3 - 3x \),求 \( f'(x) \):A. \( 3x^2 - 3 \)B. \( 3x^2 + 3 \)C. \( x^2 - 3 \)D. \( x^2 + 3 \)5. 计算下列定积分:\[ \int_{0}^{1} x^2 \, dx \]A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{2}{3} \)D. 16. 已知双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的焦点在x轴上,且 \( a = 2 \),求 \( b \) 的值:A. 2B. 3C. 4D. 57. 计算下列二项式展开式的通项公式:\[ (x + y)^n \]A. \( T_{r+1} = \binom{n}{r} x^{n-r} y^r \)B. \( T_{r+1} = \binom{n}{r} x^r y^{n-r} \)C. \( T_{r+1} = \binom{n}{r} x^{n-r} y^r \)D. \( T_{r+1} = \binom{n}{r} x^r y^{n-r} \)8. 已知向量 \( \vec{a} = (1, 2) \) 和 \( \vec{b} = (3, -1) \),求 \( \vec{a} \cdot \vec{b} \):A. 1B. -1C. 5D. -59. 已知圆的方程为 \( (x - 2)^2 + (y - 3)^2 = 9 \),求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 计算下列三角函数值:\[ \sin(30^\circ) \]A. \( \frac{1}{2} \)B. \( \frac{\sqrt{2}}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. 1二、填空题(每题4分,共20分)1. 已知 \( \tan(\theta) = 2 \),求 \( \sin(\theta) \) 的值。

高三数学基础知识练习题

高三数学基础知识练习题

高三数学基础知识练习题1. 计算下列方程的解:a) 2x + 5 = 17b) 3(x + 4) = 27c) 4(x - 2) - 3(x + 1) = 10解析:a) 2x + 5 = 17首先将方程中移项,得到 2x = 17 - 5然后进行运算,得到 2x = 12最后除以2,得到 x = 6所以方程的解为 x = 6b) 3(x + 4) = 27首先将方程中移项,得到 3x + 12 = 27然后进行运算,得到 3x = 27 - 12继续运算,得到 3x = 15最后除以3,得到 x = 5所以方程的解为 x = 5c) 4(x - 2) - 3(x + 1) = 10首先进行分配律,得到 4x - 8 - 3x - 3 = 10再次移项,得到 x - 11 = 10继续运算,得到 x = 10 + 11最后得到 x = 21所以方程的解为 x = 212. 求下列多项式的和与差:a) (3x² - 2x + 5) + (5x² + 7x - 3)b) (4x³ - 2x² + 5x - 1) - (2x³ + 3x² - 2x + 3)解析:a) (3x² - 2x + 5) + (5x² + 7x - 3)首先将同类项合并,得到 3x² + 5x² - 2x + 7x + 5 - 3继续合并同类项,得到 8x² + 5x + 2所以多项式的和为 8x² + 5x + 2b) (4x³ - 2x² + 5x - 1) - (2x³ + 3x² - 2x + 3)同样,先合并同类项,得到 4x³ - 2x³ - 2x² - 3x² + 5x + 2x - 1 - 3继续合并同类项,得到 2x³ - 5x² + 7x - 4所以多项式的差为 2x³ - 5x² + 7x - 43. 解下列不等式,并表示出解集:a) 2x + 5 > 15b) 3(x - 2) ≤ 9c) 4 - 2x ≥ 10 - 5x解析:a) 2x + 5 > 15首先移项,得到 2x > 15 - 5然后进行运算,得到 2x > 10最后除以2,记得将不等号方向改变,得到 x > 5所以不等式的解集为 x > 5b) 3(x - 2) ≤ 9首先进行分配律,得到 3x - 6 ≤ 9再次移项,得到3x ≤ 9 + 6继续运算,得到3x ≤ 15最后除以3,得到x ≤ 5所以不等式的解集为x ≤ 5c) 4 - 2x ≥ 10 - 5x首先进行移项,得到 -2x + 5x ≥ 10 - 4继续运算,得到3x ≥ 6最后除以3,得到x ≥ 2所以不等式的解集为x ≥ 24. 求下列函数的定义域和值域:a) f(x) = √(2x + 3)b) g(x) = 1 / (x - 2)解析:a) f(x) = √(2x + 3)在这个函数中,根号内部的值必须大于等于0,所以2x + 3 ≥ 0解得x ≥ -3/2所以函数的定义域为x ≥ -3/2而对于值域来说,根号内部的值最小为0,所以函数的值域为y ≥ 0b) g(x) = 1 / (x - 2)在这个函数中,分母不能为0,所以x - 2 ≠ 0解得x ≠ 2所以函数的定义域为x ≠ 2值域方面,分母无限接近0时,函数值趋于正无穷或负无穷,所以函数的值域为y ≠ 0通过以上练习题的讲解,希望能够帮助高三学生复习数学基础知识,提升解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.330cos =( ) A .23-B .21-C .21D .23 2.“p 或q 是假命题”是“非p 为真命题”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数2)21(2-==x xy y 与函数的图象关于( )A.直线x = 1对称B.直线x = 2对称C.点(1,0)对称D.点(2,0)对称4.已知向量x b b a x x b x a 则若其中,//)2(,1),1,(),21,8(+>==的值为( )A .0B .2C .4D .85.已知等比数列8050202991,01610,,0,}{a a a x x a a a a n n 则的两根为方程中=+->的值为A .32B .64C .128D .2566.若ααπααsin cos ,22)4sin(2cos +-=-则的值为( ) A.27- B.21- C.21D.277.函数x e x f x1)(-=的零点个数为 。

8.若βαβαβαtan tan ,53)cos(,51)cos(⋅=-=+则= 。

9.等差数列1815183,18,6,}{S S S S S n a n n 则若项和为的前=--== 。

10.如图,某地一天从6时到14时的温度变化曲线近似满足函数)20()sin(πϕϕω<≤++=B x A y ,则温度变化曲线的函数解析式为 。

11.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,.21,53cos -=⋅=BC AB B 且(I )求△ABC 的面积; (II )若a = 7,求角C.1.设集合{2,1,0,1,2},{|12},()S T x R x ST =--=∈+≤=S 则C ( )A .∅B .{2}C .{1,2}D .{0,1,2}2.已知向量(1)(12)n n ==--,,,a b ,若a 与b 共线,则n 等于( )A .1BC .2D .43.函数221y x x =++在x =1处的导数等于( )A .2B .3C .4D .54.设p :0m ≤,q :关于x 的方程20x x m +-=有实数根,则p ⌝是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.一个四边形的四个内角成等差数列,最小角为40,则最大角为( )A .140B .120C .100D .806已知函数f (x )在区间 [a ,b ]上单调,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根 C .没有实根 D .必有惟一实根7.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定 8.函数3()31f x x x =-+的单调减区间是 ;9.定义在R 上的奇函数f (x )满足(1)()f x f x +=-,若(0.5)1,f =则(7.5)f =________; 10.已知0>a ,函数ax x x f -=3)(在[)∞+,1上是单调增函数,则a 的最大值是11.已知函数⎩⎨⎧<+≥-=10)]5([103)(n n f f n n n f ,其中*∈N n ,则)8(f 的值为 12.已知,圆C :012822=+-+y y x ,直线l :02=++a y ax .(1) 当a 为何值时,直线l 与圆C 相切;(2) 当直线l 与圆C 相交于A 、B 两点,且22 AB 时,求直线l 的方程.高三数学基础训练31、已知集合{}12S x x=∈+≥R,{}21012T=--,,,,,则S T =()A.{}2B.{}12,C.{}012,,D.{}1012-,,,2.函数2log2-=xy的定义域是() A.),3(+∞ B.),3[+∞ C.),4(+∞ D.),4[+∞3.在等比数列}{na中,123401,9na a a a a>+=+=且,则54aa+的值为()A.16 B.27 C.36 D.814.若直线021)1(22=-+=+++xyxyxa与圆相切,则a的值为()A.1,-1 B.2,-2 C.1 D.-15a b=3ba-=7,则向量a与向量b的夹角是()A.6πB.4πC.3πD.2π6.1-=a是直线0331)12(=++=+-+ayxyaax和直线垂直的()A.充分而不必要的条件 B.必要而不充分的条件C.充要条件 D.既不充分又不必要的条件7、函数2()1logf x x=+与1()2xg x-+=在同一直角坐标系下的图象大致是()8.已知53)4cos(=+xπ,则x2sin的值为() A.2524- B.257- C.2524D.2579、已知函数()y f x=为奇函数,若(3)(2)1f f-=,则(2)(3)f f---=.10、已知236,-0,3x yx y z x yy+≤⎧⎪≥=-⎨⎪≥⎩则.的最大值为。

11.等差数列}{na的第3、7、10项成等比数列,那么这个等比数列的公比q=12.设函数.coscossin3)(2mxxxxf++=,求函数f(x)的最小正周期及单调递增区间.A B 1BC俯视图1.M={}4|2<x x ,N={}032|2<--x x x ,则集合M N=( ). A.{2|-<x x } B.{3|>x x } C.{21|<<-x x } D. {32|<<x x }2. 复数2(2)(1)12i i i+--的值是( ). A .2 B. 2- C. 2i D. 2i -3. 已知||3a =,||5b =,12a b =,则向量a 在向量b 上的投影为( ).A B C D4.若椭圆2215x y m+=的离心率e =则m的值为( ).A.13或2535. 函数()212log 2y x x =-的单调递减区间是 .6.甲、乙两人独立的解决一个问题,甲能解决这个问题的概率为0.6,乙能解决这个问题的概率为0.7,那么甲乙两人中至少有一人解决这个问题的概率是 .7.设x 、y 满足条件310x y y x y +≤⎧⎪≤-⎨⎪≥⎩,则22(1)z x y =++的最小值 .8.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,则其体积是____.9.已知:)1,3(-=a ,)cos ,(sin x x b =,x ∈R .求b a ⋅的最大值,并求使b a ⋅取得最大值时a 和b的夹角.10.如图,在直三棱柱111ABC A B C -中, 3AC =, 4BC =, 5AB =, 14AA =, 点D 是AB 的中点.(1)求证:1AC BC ⊥;(2)求证:1AC ∥平面1CDB .1.已知:()i i bi a -=+1其中a 、R b ∈, i 为虚数单位,则a 、b 的值分别是( )A .i ,i -B .1,1C .1,1-D .i ,1-2.已知集合{}42<=x x M ,{}0322<--=x x x N ,则集合N M =( ) A .{}2-<x x B .{}3>x x C .{}21<<-x x D .{}32<<x x 3.已知与均为单位向量,它们的夹角为︒60-等于( ) A .7B .10C .13D .44.下列说法错误..的是( ) A.命题“若0232=+-x x ,则1=x ”的逆否命题为:“若1≠x ,则0232≠+-x x ” B.“1x >”是“||1x >”的充分不必要条件 C.若p 且q 为假命题,则p ,q 均为假命题 D.命题p :“R x ∈∃,使得012<++x x ”,则p ⌝:“R x ∈∀,均有012≥++x x ” 5.用单位立方块搭一个几何体,使它的 主视图和俯视图如右图所示,则它的体积 的最小值与最大值分别为( )A .9与13B .7与10C .10与16D .10与156.抛物线)0(42<=a ax y 的焦点坐标是( ).A .(a , 0)B .(-a , 0)C .(0, a )D .(0, - a )7.在等差数列}{n a 中,有12876=++a a a ,则此数列的前13项之和为( ) A .24 B .39 C .52D .1048.已知高为3的直三棱柱ABC —A¢B¢C¢的底面边长为1的 正三角形(如图所示),则三棱锥B¢—ABC 的体积为 .9.已知平面向量=-==x x 则且,//),2,(),1,3( 。

10.已知函数c bx ax x x f +++=23)(在点x 0处取得极小值-5,其导函数)(x f y '=的图象经过点(0,0),(2,0)。

(1)求a ,b 的值; (2)求x 0及函数)(x f 的表达式。

主视图 俯视图C ABC 'A 'B '高三数学基础训练61.已知命题p :1sin ,≤∈∀x R x ,则( ) A .1sin ,:≥∈∃⌝x R x p B .1sin ,:≥∈∀⌝x R x pC .1sin ,:>∈∃⌝x R x pD .1sin ,:>∈∀⌝x R x p2.函数xx x f 1ln )(-=的零点个数为( ) A .0 B .1 C .2 D .33.若xxb x g a x f b a b a ==≠≠=+)()()1,1(0lg lg 与,则函数其中的图象关于 ( )A .直线y=x 对称B . x 轴对称C .y 轴对称D .原点对称4.下列四个函数中,以π为最小正周期,且在区间),2(ππ上为减函数的是( )A .x y 2cos =B .x y sin 2=C .xy cos )31(=D .x y tan -=5.不等式02||2<--x x 的解集是( ) A .}22|{<<-x x B .}22|{>-<x x x 或C .}11|{<<-x xD .}11|{>-<x x x 或6.若复数z 满足方程1-=⋅i i z ,则z=7.已知xy y x R y x ,则,且14,=+∈+的最大值为 8.))31((0,3ln 0,2)(f f x x x x f x 则⎩⎨⎧>≤== 9.已知等差数列2431,,,,2}{a a a a a n 则成等比若的公差为=10.已知抛物线的顶点在原点,抛物线的焦点和双曲线2213x y -=的右焦点重合,则抛物线的方程为_________________。

相关文档
最新文档