高二化学显色反应的条件-显色反应与颜色反应-显色反应原理

合集下载

显色反应实验报告

显色反应实验报告

一、实验目的1. 理解显色反应的基本原理和实验方法;2. 掌握常见显色反应的实验操作和现象;3. 学习显色反应在分析化学中的应用。

二、实验原理显色反应是指在化学反应过程中,某些物质与特定试剂发生反应,产生具有明显颜色变化的反应。

显色反应广泛应用于分析化学、生物化学、药物分析等领域。

本实验主要介绍几种常见的显色反应及其原理。

1. 双缩脲反应:蛋白质分子中含有肽键,其结构与双缩脲相似,在碱性条件下能与Cu2+结合生成紫红色化合物。

2. 茚三酮反应:氨基酸或含有游离氨基的蛋白质的水解产物与茚三酮水溶液共热,产生蓝紫色化合物。

3. 黄色反应:苯酚与FeCl3反应,生成黄色络合物。

4. 考马斯亮蓝反应:蛋白质与考马斯亮蓝G-250染料结合,形成蓝色络合物。

三、实验仪器与试剂1. 仪器:试管、酒精灯、试管架、烧杯、移液管、滴定管等。

2. 试剂:蛋白质溶液、氨基酸溶液、尿素、10%氢氧化钠溶液、1%硫酸铜溶液、茚三酮试剂、苯酚、FeCl3溶液、考马斯亮蓝G-250染料等。

四、实验步骤1. 双缩脲反应:(1)取少量蛋白质溶液于试管中,加入10%氢氧化钠溶液1ml,再加入1%硫酸铜溶液4滴,观察现象。

(2)取少量尿素结晶,放在干燥试管中,用微火加热使尿素熔化。

熔化的尿素开始硬化时,停止加热,尿素放出氨,形成双缩脲。

2. 茚三酮反应:(1)取少量氨基酸溶液于试管中,加入茚三酮试剂1ml,共热,观察现象。

(2)取少量蛋白质溶液于试管中,加入茚三酮试剂1ml,共热,观察现象。

3. 黄色反应:(1)取少量苯酚溶液于试管中,加入FeCl3溶液1ml,观察现象。

(2)取少量蛋白质溶液于试管中,加入FeCl3溶液1ml,观察现象。

4. 考马斯亮蓝反应:(1)取少量蛋白质溶液于试管中,加入考马斯亮蓝G-250染料1ml,观察现象。

(2)取少量氨基酸溶液于试管中,加入考马斯亮蓝G-250染料1ml,观察现象。

五、实验结果与分析1. 双缩脲反应:蛋白质溶液与硫酸铜溶液反应后,产生紫红色沉淀。

吸光光度法显色反应及显色条件的选择

吸光光度法显色反应及显色条件的选择

吸光光度法 / 显色反应及显色条件的选择
• 干扰的消除 • 共存离子如本身有颜色,或与显色剂作用生成有色化合物, 都将干扰测定。 • 消除共存离子的干扰的方法: • 加人配位掩蔽剂或氧化还原掩蔽剂,使干扰离子生成无色 配合物或无色离子。
吸光光度法 / 显色反应及显色条件的选择
• 选择适当的显色条件以避免干扰 • 利用酸效应,控制显色剂离解平衡,降低[ R ] ,使干扰 离子不与显色剂作用
• 此类化合物在一定的条件下就能与某些金属离子作用,改 变生色团的电子云结构,使颜色发生明显的变化。
吸光光度法 / 显色剂
• • • • • • 偶氮类显色剂特点 性质稳定 显色反应灵敏度高 选择性好 对比度大 是目前应用最广泛的一类显色剂。其中以偶氮胂III 等最为 突出。偶氮胂III的结构式为
吸光光度法 / 吸光光度法的应用
• 吸收光谱重叠 • 找出两个波长,在该波长下,二组分的吸光度差值 △ A 较大
吸光光度法 / 吸光光度法的应用
• 在波长为λ1和λ2时测定吸光度 A1和 A 2 ,由吸光度值的 加和性得联立方程:
吸光光度法 / 吸光光度法的应用
吸光光度法 / 吸光光度法的应用
吸光光度法 / /显色反应及显色条件的选择 •进行光度分析时,首先要把待测组分转变成有色化合物, 然后测定吸光度或吸收曲线 •将待测组分转变成有色化合物的反应叫显色反应 •与待测组分形成有色化合物的试剂称为显色剂
吸光光度法 / 显色反应及显色条件的选择 显色反应的分类 •配位反应----最主要的显色反应 •氧化还原反应 显色反应的选择 •灵敏度高 摩尔吸收系数 K 的大小是显色反应灵敏度高低的重要标志 应当选择生成的有色物质的‘较大的显色反应
吸光光度法 / 显色剂

仪器分析测试技术:显色反应及显色条件

仪器分析测试技术:显色反应及显色条件

显色反应及显色条件可见分光光度法是利用测量有机物质对某一单色光吸收程度来进行定量的,而许多物质本身无色或颜色很浅,也就是说他们对可见光不产生吸收或吸收不大,这就必须事先通过适当的化学处理,使该物质转变为能对可见光产生较强吸收的有色化合物,然后再进行测量u定义:将试样中的待测组分转变为有色化合物的 反应叫做显色反应。

(无色或浅色物+显色剂=深色物)——显色反应氧化还原反应络合反应Fe3++SCN-=FeSCN2+Mn2+-5e+4H2O= MnO4-+8H+显色反应需满足的要求:u选择性好u灵敏度高u有色化合物的稳定常数要尽可能的大u显色剂的颜色与有色化合物的颜色差别要大 u显色反应要易于操作、控制u有色化合物的组成恒定,化学性质稳定无机显色剂:KSCN:测 Fe、Mo、W、Nb 等钼酸铵:测 P、As 等过氧化氢:测 Ti、V 等有机显色剂:分子结构含有生色团(即含不饱和键的基团)如偶氮基,对醌基和羰基等含有助色团(含孤对电子的基团)如氨基、羟基和卤代基等。

NN OHCOOHSO 3H OO 型:NNN OH OH ON 型:NH NHN SN S 型:NN 型:假如有一天你的手机坏了,你会怎么处理?如果一件事情由多种因素决定,那么我们在探讨条件时就固定其他因素不变,只改变其中之一。

如此尝试,直至全部因素测试完毕。

分析测试条件的选择也采用同样的方法。

1、显色剂用量取6只洁净的50mL容量瓶,各加入10.00μg·mL-1铁标准溶液5.00mL,1mL100g·L-1盐酸羟胺溶液,摇匀。

分别加入0、0.5、1.0、2.0、3.0、4.0mL1.5 g·L-1邻二氮菲,5mL醋酸钠溶液,用蒸馏水稀至标线,摇匀。

用2cm吸收池,以试剂空白溶液为参比溶液,在选定的波长下测定吸光度。

结论:作A-C R曲线,找出曲线平台部分,选择一合适用量即可。

吸光度与显色剂浓度的关系曲线2、溶液pH在6只洁净的50mL容量瓶中各加入10.00μg·mL-1铁标准溶液5.00mL,1mL100 g·L-1盐酸羟胺溶液,摇匀。

颜色反应——精选推荐

颜色反应——精选推荐

颜⾊反应常见的颜⾊反应1.还原糖与斐林试剂(蓝⾊)可溶性还原糖:半乳糖、葡萄糖、果糖、核糖、脱氧核糖、麦芽糖、乳糖,⾮还原糖:蔗糖、纤维素、淀粉先甲液0.1g/mL NaOH和⼄液0.05 g/mLCuSO4混合,后使⽤,现配现⽤,如斐林试剂配制时间过长, Cu(OH)2就沉淀⽽⽆法参与反应反应原理:新制的Cu(OH)2溶液与—CHO(还原糖的醛基)反应。

反应条件:⽔浴50~60℃加热反应现象:蓝⾊→砖红⾊2. 淀粉与碘(浓度不同,颜⾊不同,棕红⾊、黄⾊等)直链淀粉及其初步⽔解产物得到的糊精分⼦仍较⼤,蓝⾊,继续⽔解较⼩的糊精分⼦,红⾊,更⼩的遇碘不显⾊;⽽⽀链淀粉遇碘产⽣紫红⾊。

反应原理:淀粉呈螺旋状,与碘结合形成淀粉——碘络合物;反应现象:⽩⾊→蓝⾊先加碘液还是后加⼊?后加⼊较好,⼀般不强调。

碘液呈酸性,H+能分别催化蔗糖、蛋⽩质、脂肪和淀粉的⽔解,其常见检测试剂为碘液(检测淀粉是否消耗)、斐林试剂(检测还原性糖是否⽣成),检测蛋⽩质是否存在⽤双缩脲试剂。

课本建议:探究pH对酶活性的影响实验⽤过氧化氢酶催化过氧化氢,或者⽤唾液淀粉酶探究。

探究温度对酶活性的影响实验⽤淀粉酶催化淀粉。

唾液淀粉酶催化淀粉由于最适温度为37℃,时间短,淀粉在HCI的作⽤下⽔解的很少,NaOH与碘反应的很慢,并不会影响实验效果。

淀粉酶活性的最适宜温度是60℃,需要⽔浴加热,⽽较⾼的温度使得淀粉在HCI的作⽤下⽔解的很快,NaOH与碘反应的很快,如果⽤淀粉酶探究PH对酶活性的实验中1号(加酸)、3号(加碱)试管内便出现了如上述实验现象:1号试管内溶液为棕红⾊,3号试管内溶液在加⼊I—KI溶液瞬间变蓝,然后⼜呈现⽆⾊。

验证酶的专⼀性实验:可⽤斐林试剂,却不能⽤碘液,因为底物为淀粉的反应体系中淀粉被⽔解,底物为蔗糖的反应体系中蔗糖不被⽔解,⽤碘液检测均不呈蓝⾊反应,实验结果⽆法判定;验证酶的⾼效性:斐林试剂和碘液均可应⽤,可从氧化亚铜砖红⾊沉淀的多少和碘⼀淀粉蓝⾊复合物颜⾊的深浅加以判定。

显色反应的知识点总结

显色反应的知识点总结

显色反应的知识点总结1. 酸碱指示剂反应酸碱指示剂是一类化学物质,能够根据反应环境的酸碱程度发生颜色变化,常用于酸碱中和点的测定。

常见的酸碱指示剂包括酚酞、溴甲酚绿、酸碱紫等,它们在不同的酸碱环境下呈现不同的颜色。

例如,当环境偏酸性时,酚酞会呈现出粉红色;当环境偏碱性时,酚酞会呈现出紫色。

通过观察酸碱指示剂的颜色变化,可以判断出反应环境的酸碱性质,从而推断反应发生的情况。

2.络合物形成反应络合物形成反应是指在溶液中,由于化学物质的加入或者改变条件,使得金属离子与配体形成络合物,从而引起颜色变化。

络合物形成反应在分析化学中有着重要的应用,常用于金属离子的检测和分离。

例如,当铁离子和硫氰化钾反应时,会生成血红色的亚铁氰化钾络合物,这种性质可以用于分离和检测铁离子。

3. 氧化还原反应氧化还原反应是指化学物质在反应中发生氧化和还原过程,常常伴随着电子的转移和能量的释放。

在氧化还原反应中,部分物质的颜色会发生显著变化。

例如,在硫酸铁铵和硫代硫酸钠反应中,硫酸铁铵的铁离子从亚铁(II)氧化为三价铁(III),产生深红色的硫酸铁络合物,这种反应是常用的还原剂氧化指示法。

4. 其他显色反应除了上述几种常见的显色反应外,还有许多其他类型的显色反应。

例如,各种有机物的反应常常伴随着颜色的变化,例如酚酞的水解反应、溴酚蓝与蔗糖的反应等。

此外,还有一些特殊的显色反应,例如芳香族化合物的发色反应、酶催化反应的显色等,这些反应都在化学实验和分析中有着重要的应用。

总之,显色反应是化学实验中常见的反应类型,通过观察反应前后的颜色变化,可以推断反应发生与否或者反应结果。

显色反应包括酸碱指示剂反应、络合物形成反应、氧化还原反应等多种类型,这些反应不仅在实验和分析中有着广泛的应用,也在生活、医学、环境监测等领域发挥着重要作用。

对显色反应的理解和掌握,有助于我们更好地理解化学反应的本质,提高化学实验和分析的准确性和可靠性。

高中生物:显色反应汇总

高中生物:显色反应汇总

生物高中:显色反应汇总大千世界,五彩缤纷。

无论生物和化学,一旦说到物质鉴定,总免不了涉及四个大字——显色反应。

然而正因为教科书所涉及的实验众多,哪种物质该用哪种显色试剂?而所对应的又是哪种反应结果?很多学生一旦面对此类题目,立即就一头雾水了。

那下面就让我们一起走进高中新课改生物教材,从深处探究显色反应本质,从而去领会这斑斓的世界。

1.物质鉴定出现的显色反应(1)淀粉的鉴定淀粉是最常见的多糖,由许多葡萄糖分子缩合而成,是植物体内的储能物质,有直链和支链两种。

直链淀粉由a-1,4-糖苷键连接的葡萄糖分子组成,呈线状链;支链淀粉在分支处有a-1,6-糖苷键连接,其直链部分也有a-1,4-糖苷键连接。

一般的淀粉为直链及支链淀粉的混合物。

通常我们说的淀粉遇碘变蓝指的是可溶性直链淀粉的特性,而支链淀粉遇碘呈紫或红紫色。

(2)还原糖的鉴定还原性糖:指分子结构中含有还原性基团(游离醛基或a-碳原子上连有羟基的酮基)的糖,如葡萄糖、果糖、麦芽糖、乳糖、半乳糖等。

蔗糖、淀粉、纤维素等则不是。

生物学中,常用能与醛基发生特定颜色的指示剂如斐林试剂、班氏试剂进行鉴定。

实验时,应选择含糖量较高,颜色为白色或近白色的植物组织,以苹果、梨为最好。

①利用斐林试剂:斐林试剂是由甲液——质量浓度为0.1g/mL的NaOH溶液,乙液——质量浓度为0.05g/mL的CuSO4溶液配制而成,二者混合后,立即生成淡蓝色的Cu(OH)2沉淀。

Cu(OH)2:在加热条件下与醛基反应,被还原成砖红色的Cu20沉淀,醛基则被氧化为羧基。

此过程溶液的颜色变化为:浅蓝色一棕色一砖红色(沉淀)。

②利用班氏试剂:班氏试剂由A液(硫酸铜溶液),B液(柠檬酸钠和碳酸溶液)配制而成。

将A溶液倾注入B液中,边加边搅拌,如有沉淀可过滤。

实验原理与斐林试剂相似,所不同的是班氏试剂可长期使用。

实际上,用班氏试剂鉴定可溶性还原糖,比用斐林试剂更简便。

这是因为斐林试剂中的Cu(OH)2是一种沉淀物质,并且为弱氧化剂,如果放置过久,或沉淀过多都不利于反应,因此要现配现用。

显色反应及显色条件的选择

显色反应及显色条件的选择

第三节显色反应及显色条件的选择将待测组分变成有色络合物的反应-显色反应。

与待测组分形成有色络合物的试剂-显色剂一、显色反应的选择:( 1 )灵敏度高:ε大是显色反应灵敏度的重要标志。

图6-5 吸光度与显色剂浓度的关系曲线4 .显色温度:升温加快显色,但温度偏高,有色物质分解,由实验来确定。

总之:通过实验,分别作出A ~[R],pH ,t ,T 曲线,找出合适的[R] ,pH,t,T ,即找出平坦区。

5 .副反应的影响6 .溶剂的影响7 .共存离子的影响。

消除共存离子干扰的方法:((5) 选用适当的分离方法。

三、显色剂(R)1 .无机显色剂:无机显色剂在光度分析中应用不多,这主要是因为生成的络合物不够稳定,其灵敏度与选择度也不够高,目前,有价值的仅有硫氰酸盐、钼酸铵、H2O2等。

2 .有机显色剂:R大多数有机显色剂R 与金属离子生成稳定的螯合物,显色反应的选择性和灵敏度都较高。

在吸光光度法中应用广泛。

①生色团:可吸收光子而产生跃迁的原子基因。

它一般是分子中含有一个或多个某些不饱和基因( 共轭体系) 的有机化合物。

②助色团:含有孤对电子的基因,显然本身没有颜色,当它与某生色团相联时,( 与其不饱和键相互作用) ,能使该生色团的吸收波长位置向长波方向移动( 即红移) ,且光谱强度有所增大。

如:胺基:—NH2 R—NH—R2N—羟基:—OH—OR—SH—CL 等。

③常用的有机显色剂:有机显色剂的类型、品种都非常多。

A :偶氮类显色剂:含有偶氮基—N=N —凡含有偶氮结构的有机化合物,都是带色的。

偶氮类显色剂:性质稳定,显色反应灵敏度高,选择性好,对比度较大。

如:偶氮胂Ⅲ:③选择性高( 比二元体系)一种配体常可与多种金属离子产生类似的络合反应,而当形成三元络合物时,就减少了形成类似络合物的可能性。

如:铌、钽都可与邻苯三酚生成二元络合物,但在草酸介质中只有钽-邻苯三酚-草酸。

一、显色反应和显色剂1、显色反应在无机分析中,很少利用金属水合离子本身的颜色进行光度分析,因为它们的吸光系数值都很小。

显色反应方程式

显色反应方程式

显色反应方程式一、引言显色反应是指一种物质在特定条件下发生颜色的变化反应。

这种反应通常是由于物质的结构发生变化,导致其吸收或散射光的性质发生改变所致。

显色反应在化学实验室中得到广泛应用,不仅可以用于分析和检测,还可以用于合成和制备各种化合物。

二、显色反应的原理显色反应的原理可以归结为两个方面:吸收光的性质和散射光的性质。

吸收光的性质是指物质能够吸收特定波长的光,从而使其它波长的光被反射或透过。

散射光的性质是指物质能够将入射光散射成各个方向的光线,从而产生颜色。

三、显色反应的分类根据显色反应的机理和条件,可以将显色反应分为以下几类:1. 氧化还原反应氧化还原反应是显色反应中最常见的一种类型。

在这种反应中,物质的氧化态和还原态之间发生转变,导致颜色的变化。

例如,硫酸铁(II)溶液在氧化为硫酸铁(III)的过程中从淡绿色变为黄棕色。

2. 酸碱反应酸碱反应也是一种常见的显色反应。

在这种反应中,酸性或碱性物质与指示剂发生反应,导致颜色的变化。

例如,苯酚红指示剂在酸性条件下呈现红色,而在碱性条件下呈现黄色。

3. 配位反应配位反应是指配位化合物中的配体与中心金属离子发生配位作用,导致颜色的变化。

这种反应在分析化学中得到广泛应用。

例如,氯化钴(II)溶液中加入氨水后,溶液从红色变为蓝色。

4. 光化学反应光化学反应是指物质在光照条件下发生化学反应,导致颜色的变化。

这种反应在有机合成和光敏材料的研究中得到广泛应用。

例如,芳香族化合物在紫外光照射下发生光解反应,从而产生颜色。

四、显色反应方程式的编写显色反应方程式是指将显色反应的化学反应过程用化学方程式表示出来。

编写显色反应方程式需要考虑反应物和生成物的化学式、反应条件和反应机理等因素。

下面以几种常见的显色反应为例进行说明:1. 氧化还原反应方程式以硫酸铁(II)溶液氧化为硫酸铁(III)的反应为例,其方程式可以表示为:FeSO4 + [O] → Fe2(SO4)32. 酸碱反应方程式以苯酚红指示剂在酸性条件下与碱发生反应为例,其方程式可以表示为:HIn + OH- → In- + H2O3. 配位反应方程式以氯化钴(II)溶液加入氨水后发生配位反应为例,其方程式可以表示为:CoCl2 + 4NH3 → [Co(NH3)4]Cl24. 光化学反应方程式以芳香族化合物在紫外光照射下发生光解反应为例,其方程式可以表示为:C6H6 + hν → C6H5• + H•五、显色反应方程式的应用显色反应方程式在化学实验室中有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

显色反应的条件
颜色反应指浓硝酸可使含有苯环的蛋白质白质分子显黄色。

焰色反应指一些金属及其化合物在灼烧时呈现特殊颜色的性质.如K的焰色反应为紫色(隔着蓝色钴玻璃观察),钠为黄色,铜为绿色,钡为黄绿色,钙为砖红色等,这是由于该元素的原子中的电子在受热得到能量后由基态变为激发态,再回到基态时放出能量,这些能量以光能的形式放出。

而不同的原子放出的量不同,因此它们的焰色反应现象不同.
显色反应指一些物质在反应时呈现特殊的颜色,属于化学变化,如碘遇淀粉显蓝色;三价铁离子与硫氰根离子反应,使溶液显红色,三价铁离子遇苯酚显紫色等.
显色反应:
苯酚遇到三氯化铁显紫色;淀粉遇碘变蓝色;蛋白质(分子中含苯环)与浓硝酸反应显黄色。

醌类的颜色反应主要取决于其氧化还原性质以及分子中的酚羟基性质。

Feigl反应:醌类衍生物在碱性条件下经加热能迅速与醛类及邻二硝基苯反应,生成紫色化合物。

反应机制如下:
无色亚甲蓝显色实验:无色亚甲蓝溶液是检出苯醌类及萘醌类的专用显色剂。

试样在白色背景上作为蓝色斑点出现,可借此与蒽醌类化合物相区别。

碱性条件下的呈色反应:羟基醌类在碱性溶液中发生颜色改变,会使颜色改变,会使颜色加深,多显橙、红、紫红色及蓝色。


反应与形成共轭体系的酚羟基和羰基有关。

因此羟基蒽醌以及具有游离酚羟基的蒽醌苷均可呈色,但蒽醌、蒽酮、二蒽酮类化合物则需氧化形成羟基蒽醌类化合物后才能显色。

与活性次甲基试剂的反应(Kesting-Craven法):苯醌及萘醌类化合物当其醌环上未被取代的位置时,可在氨碱性条件下与一些含有活性次甲基试剂(如乙酰乙酸酯、丙二酸酯、丙二腈等)的醇溶液反应,生成蓝绿色或蓝紫色。

与金属离子的反应:在蒽醌类化合物中,如果有α-酚羟基或邻位二酚羟基结构时,则可与Pb2+、Mg
2+等金属离子形成络合物。

与Pb2+形成的配合物在一定pH下还能沉淀析出,故借此精制该类化合物。

当蒽醌化合物具有不同的结构,与乙酸镁形成的配合物也具有不同的颜色,可用于鉴别。

如果母核上有一个α-OH或两个OH不同环时,显橙黄色至橙色;如已有一个α-OH,并另有一个-OH在邻位上时,显蓝色至蓝紫色,若在间位时显橙红色至红色,在对位时显紫红色至紫色。

相关文档
最新文档