比例的合比等比性质
数学教案合比性质和等比性质例

数学教案合比性质和等比性质例章节一:合比性质介绍1.1 教学目标:了解合比性质的概念。
学会运用合比性质进行比例计算。
1.2 教学内容:合比性质的表示方法:a:b = c:d = e:f 表示a/b = c/d = e/f。
1.3 教学步骤:1. 引入合比性质的概念,引导学生理解合比性质的意义。
2. 通过示例讲解合比性质的应用,让学生学会如何运用合比性质进行比例计算。
3. 练习题:让学生独立完成一些合比性质的练习题,巩固所学知识。
章节二:等比性质介绍2.1 教学目标:了解等比性质的概念。
学会运用等比性质进行比例计算。
2.2 教学内容:等比性质定义:如果有两个比例相等,它们可以组成一个新的比例。
等比性质的表示方法:a:b = c:d 表示a/b = c/d。
2.3 教学步骤:1. 引入等比性质的概念,引导学生理解等比性质的意义。
2. 通过示例讲解等比性质的应用,让学生学会如何运用等比性质进行比例计算。
3. 练习题:让学生独立完成一些等比性质的练习题,巩固所学知识。
章节三:合比性质和等比性质的应用3.1 教学目标:学会运用合比性质和等比性质解决实际问题。
3.2 教学内容:合比性质和等比性质的应用场景:如商业、工程等领域中的比例计算问题。
3.3 教学步骤:1. 引入合比性质和等比性质的应用场景,让学生了解合比性质和等比性质在实际问题中的应用。
2. 通过示例讲解合比性质和等比性质在实际问题中的应用,让学生学会如何运用合比性质和等比性质解决实际问题。
3. 练习题:让学生独立完成一些合比性质和等比性质的应用题,巩固所学知识。
章节四:比例计算练习4.1 教学目标:巩固比例计算的知识。
4.2 教学内容:比例计算的方法和技巧。
4.3 教学步骤:1. 复习比例计算的基本概念和公式。
2. 通过示例讲解比例计算的方法和技巧,让学生学会如何进行比例计算。
3. 练习题:让学生独立完成一些比例计算的练习题,巩固所学知识。
章节五:比例应用题5.1 教学目标:学会解决实际问题中的比例应用题。
线段的比与比例线段的概念

线段的比与比例线段的概念、比例的性质和黄金分割I 梳理知识比与比例、比例的基本性质、合比性质、等比性质、两线段的比、成比例线段、平行线分 线段成比例、截三角形两边或其延长线的直线平行于第三边的判定、黄金分割1. 线段的比的定义 在同一单位长度下,两条线段2. 比例线段的定义在四条线段中,如果其中两条线段的_______________________________________ 等于另外两条线段的 _____ ,那么这四条线段叫做 成比例线段,简称 ____________ .在 a : b = c : d 中,a 、d 叫做比例的 ___ , b 、c 叫做比例 的 _____ ,称d 为a 、b 、c 的 _____________ .3. 比例的性质(1)比例的基本性质:如果a : b = c : d ,那么 则b 叫a , c 的比例中项.⑵合份)比性质:若a⑶等比性质:若一b4.黄金分割(1) 黄金分割的意义:如图,点 那么称线段 AB 被点C 黄金分割.其中点C 叫做线段AB 的 做 .(2) 黄金分割的作法【例题讲解】 例1.(1)已知1,厉,5三个数,如果再添一个数,使之能与已知的三个数成比例,则这个数应该是 ___________ .⑵在比例尺为1: n 的某市地图上,规划出一块长 5cm X 2cm 的矩形工业区,则该工业区的实际面积是平方米.例 2.(1)已知 X : y : z = 3 : 4 : 5,①求-—y的值;②若 x +y + z = 6, za(2)已知a 、b 、c 、d 是非零实数,且 --------b c d的值•的比叫做这两条线段的比•特别地,若a : b = b : C,即 ,则C 把线段AB 分成两条线段 AC 和BC,如果 __________________ , ,AC 与AB 的比叫求 X 、y 、z.C bad一d一k ,求 ka b c求x 的值.黄金分割点吗为什么【同步测试】 一、选择题1. 已知一矩形的长 a = 1.35m , (A)9 : 400(B)9 : 402. 下列线段能成比例线段的是( b = 60cm ,贝U a : b 的值为((C)9 : 4(D)90 : 4)(A)1cm,2cm,3cm,4cm (B)1cm, 72 cm,V 2 cm,2cm (C b/2 cm,亦cm, J 3 cm,1cm(D)2cm,5cm,3cm,4cm3. 如果线段a = 4, (A)84. 已知- b 3 (A)- 25. 已知 (A)— 2(B)16 2 2,则3 4 (B)4 y : z = 1 (B)2b = 16,c = 8, (C)24 「 的值为b5 (C)5 :2 : 3,且 (C)3 那么a 、b 、c 的第四比例项d 为( (D)32 3 (D)- 5 2x + y — 3z =— 15,贝U x 的值为( (D)— 3 6. 在比例尺为1 : 38000的南京交通游览图上,玄武湖隧道长约为 7cm ,它的实际长度约为()(A)0.226km (B)2.66km (C)26.6km (D)266km 7. 某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是 影长是1米,旗杆的影长是 8米,则旗杆的高度是( ) (A)12 米 8. 已知点 1.5 米, (B)11 米 (C)10 米 C 是AB 的黄金分割点(AC >BC , (B)(6 — 2也)cm (D)9 米 若AB = 4cm ,贝U AC 的长为( (C)詰—1)cm AD AE (A)(2A /5 — 2)cm )(D)(3 —75 )cm 9.若D 、E 分别是△ ABC 的边AB 、AC 上的点,且AB =疋,那么下列各式中正确的是 ((3)若a 、b 、c 是非零实数,并满足ab c ,且 xa(a b)(b c)(c a)abc例3.(1 )已知线段AB = a ,在线段 AB 上有一点C,若则点 C 是线段AB 的(A)AD DEDB = BCAB(B)A DAE=A CDB AB(C)Ec = ACAD AE(D)DB = AC10.若k丄空 b 2c a + b+ CM0,k的值为((A)—1 (B)2 (C)1 (D) —二、填空题11.在(5 +x):2中的x= (5—x) : x 中的x=12.若10 813.若a : 3 = b : 4 = c : 5 ,且a + b —c= 6,贝U a=,b= c=14.已知x : y :z= 4 : 5 ,且x+ y+ z= 12,那么x= ,y=z=15.若b16.已知ace,②(x + y) : (y + z)17.若x 2y18.图纸上画出的某个零件的长是是32 mm,如果比例尺是 1 : 20,这个零件的实际长19.如图,已知AB : DB = AC:EC, AD = 15 cm , AB = 40 cm , AC = 28 cm ,贝U AEA20.已知,线段 2 cm, c (2 73) cm, 则线段a、c的比例中项b是三、解答题21.已知x3 0,求下列各式的值:(1)2x 3y 4z⑵5x 3y za22.已知——x0,求x+y+ z 的值.23.若△ ABC 的三内角之比为 1 : 2 : 3,求^ ABC 的三边之比.24.已知 a 、b 、c 为^ ABC 的三边,且 a + b + c = 60cm , a : b : c = 3 : 4 : 5,求^ ABC 的面 积.25.已知线段AB = 10cm , C 、D 是AB 上的两个黄金分割点,求线段CD 的长.四、挑战中考DE = 12 , BC = 15, GH = 4,求 AH .ABCD,取 AB 的中点 P ,连结 PD ,在BA 的延 长线上取点F ,使PF =PD,以AF 为边作正方形 AMEF ,点M 在AD 上(1)求AM 、MD 的长;1、若一c-a bA . 12B . 1C .— 1则k 的值为()D .-或一12AGABC 中,2、如图,△ 匹,且。
1.比例的基本性质

3.1.1 比例的基本性质
一、回顾过去
对于等式4:5=8:10
1、大家认识吗?这种关系叫做什么?
这种关系叫做比(两个数相除),而“比”是由前项∶ 后项组成的。ຫໍສະໝຸດ 2、这个等式正确吗?为什么?
正确,因为4:5=0.8,而8:10=0.8,所以4:5=8:10
3、分别求它们的比值
“比值”(两个数相除的商)是前项除以后项所得 的商。4:5=0.8,8:10=0.8
如果两个数的比值与另外两个数的比值相等, 我们就说这四个数成比例。可写成a:b=c:d或
a c b d
,称a,b,c,d成比例,其中b,c称为比例 内项,a,d称为比例外项。
练习 你能说出下面比例的内项和外项各是多少吗?
1、
6 12 2、 7 14 内项为7,12;外项为6,14
3 6 4 8
y
9
y
2 y 5.已知 , x 4, 则下列各式不成立的是 C x 4
A. x2 y4 y2 y 2 x y4 2 y2 B. C. D. x 4 x4 4 2 4 x x4
a c e 1 7.已知 , 且a c e 3, b d f 2 6 则b d f ____
成立,因为a,b,c,d为非零实数的条件,使得该命题是比例 基本性质的逆定理
合比性质
证明:
a c ab cd b d b d
a c a b c d ; 如果 ,那么 b d b d
证明
∵
a c b d
ab cd ∴ b . d
在等式两边同加上1, a c ∴ 1 1 b d
内项为4,6,;外项为3,8
合比等比性质及习题

比例的合比性质:如果d c b a =,那么dd c b b a ±=±; 比例的等比性质:如果d c b a ==…=n m(b +d +…+n ≠0),那么ba n db mc a =++++++ 【基础练习2】1、把mn=pq 写成比例式写错的是()3若3=y x,求yy x +的值。
(你会的方法越多越好啊!快来试一试!) 7、若753z y x ==,则z y x z y x -++-=________.8、若65432+==+c b a ,且2a -b+3c=21.则a ∶b ∶c.= 9、若f ed c b a ===2,则=++++f d b e c a __________;=+-+-f d b e c a 22______________ 10、若z y x y z x x z y +=+=+,求zy x+的值。
平行线分线段成比例平行线分线段成比例定理如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. 2.平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==3.平行的判定定理:如上图,如果有BCDEAC AE AB AD ==,那么DE ∥BC 。
【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。
【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111cab=+. 【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. 专题二、定理及推论与中点有关的问题d kdc b kb a ±=±dc cb a a ±=±【例3】 (2012年北师大附中期末试题)(1)如图(1),在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且14AE AB =, 连接EM 并延长,交BC 的延长线于D ,则BCCD=_______. (2)如图(2),已知ABC ∆中,:1:3AE EB =,:2:1BD DC =,AD 与CE 相交于F ,则EF AFFC FD+的值为()A.52B.1C.32D.2【例4】 (2011年河北省中考试题)如图,在ABC ∆中,D 为BC 边的中点,E 为 AC 边上的任意一点,BE 交AD 于点O .(1)当1A 2AE C =时,求AOAD的值;(2)当11A 34AE C =、时,求AOAD的值; (3)试猜想1A 1AE C n =+时AOAD的值,并证明你的猜想. 【例5】 (2013年湖北恩施中考题)如图,AD 是ABC ∆的中线,点E 在AD 上,F 是BE 延长线与AC 的交点.(1)如果E 是AD 的中点,求证:12AF FC =; (2)由(1)知,当E 是AD 中点时,12AF AEFC ED=⋅成立,若E 是AD 上任意一点(E 与A 、D 不重合),上述结论是否仍然成立,若成立请写出证明,若不成立,请说明理由. 【巩固】(天津市竞赛题)如图,已知ABC ∆中,AD 是BC 边上的中线,E 是AD 上的一点,且BE AC =,延长BE 交AC 于F 。
合比等比性质及习题

比例的合比性质:如果d cba =,那么dd c b b a ±=±; 比例的等比性质:如果d c b a ==…=n m(b +d +…+n ≠0),那么ba n db mc a =++++++ΛΛ4、若753zy x ==,则z y x z y x -++-=________.5、若65432+==+c b a ,且2a -b+3c=21. 则a ∶b ∶c.= 6、若f ed c b a ===2,则=++++f d b e c a __________;=+-+-f d b e c a 22______________ 7、若z y x y z x x z y +=+=+,求zy x+的值。
8、已知c b a ,,是△ABC 的三条边,对应高分别为c b a h h h ,,,且6:5:4::=c b a ,那么c b a h h h ::等于( )A 、4:5:6B 、6:5:4C 、15:12:10D 、10:12:15平行线分线段成比例定理及其推论一. 平行线分线段成比例定理如下图(1),如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=._______,341=+=bb a b a 、则已知______;,9172==+y x y y x 、则若____,3,213=++=++===f d b e c a f e d c b a 、则且已知d kd c b kb a ±=±d c c b a a ±=±l 3l 2l 1FE D CB A ABCDEEDC B A图(1) 图(2)二. 平行线分线段成比例定理的推论:如图(2),在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==三. 平行的判定定理:如上图(2),如果有BCDEAC AE AB AD ==,那么DE ∥ BC 。
合比性质和等比性质合比性质课件

通过这个课程,学习者可以掌握合比 性质和等比性质的基本概念、性质和 应用。
此外,该课程还注重培养学习者的逻 辑思维和数学素养,为进一步学习其 他数学课程打下坚实的基础。
展望
随着数学理论和应用的不断发 展,合比性质和等比性质的相 关知识也将不断更新和完善。
THANKS FOR WATCHING
感谢您的观看
定义
合比性质和等比性质的定义不同,合 比性质是指两个比值的和或差与另一 个比值之间存在一定的关系,而等比 性质则是两个比值相等。
性质
应用
合比性质在数学、物理等领域有广泛 应用,如几何、代数等,而等比性质 则主要应用于比例、百分数等问题。
合比性质涉及到两个比值的和或差与 另一个比值之间的关系,而等比性质 则是两个比值相等。
应用场景
等比性质在几何学中有着广泛的应用,如相似三角形、相似多边形的判定和性质等 。
等比性质在函数和数列中也经常出现,如等差数列和等比数列的判定和性质等。
等比性质在解决实际问题中也有应用,如测量、工程设计等领域中经常需要用到等 比性质来计算比例和比例关系。
03 合比性质和等比性质的比 较和联系
比较
练习题
设计一系列与合比性质和等比性 质相关的练习题,难度适中,覆
盖面广。
练习题应包括选择题、填空题、 计算题等多种题型,以便全面考 查学生对合比性质和等比性质的
理解和掌握程度。
对于难度较大的题目,可以给出 提示或解题思路,帮助学生更好 地理解和掌握合比性质和等比性
质。
06 总结和展望
总结
合比性质和等比性质合比性质课件是 一个全面、深入的课程,涵盖了合比 性质和等比性质的相关知识。
比例性质及比例线段

比例性质及比例线段(初二4.16)一、知识点与方法概述:1、比例的性质:基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d.合比性质:等比性质:如果,那么.2、(成)比例线段:比例线段:在四条线段中,如果其中两条线段的比等于另外两条线段的比. 那么,这四条线段叫做成比例线段,简称比例线段.设a、b、c、d为线段,如果a:b=c:d,b、c叫比例内项,a、d叫比例外项,d叫做a、b、c的第四比例项;如果a:b=b:c,或b2=ac,那么b叫a、c的比例中项.3、黄金分割:如图,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割, 点C叫做线段AB的黄金分割点.注意:1、AC 0.618AB;2、0.618叫做黄金比;3、一条线段有两个黄金分割点.4、平行线分线段成比例定理:三条平行线截两条直线,所得的线段对应成比例.推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例. 推论的扩展:平行于三角形一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.(三角形一边平行线的性质)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.(三角形一边平行线的判定定理)5、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.根据被截的两条直线的位置关系,可以分五种图形情况(如图1-图5):推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.已知:在梯形ACFD 中,CF AD //,AB=BC求证:DE=EF推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.已知:在△ACF 中,CF BE //,AB=BC 求证:AE=EF6、三角形的中位线定理:三角形的中位线:连结三角形两边中点的线段叫做三角形的中位线。
比例的性质及其应用

x x 3、若3 x = 2 y , 则 = _____ 4、若mx = ny , 则 = _____ y y
5、若2 x = 5 y , 则下列比例式成立的是 (
x y A) = 2 5 x y B) = 5 2
x 2 应用举例
x− y 2 6、若 = , 则 x : y = ________ x+ y 3 x −1 y −1 7、若 , 则 x : y = ________ = x y
a+b a+c b+c 5、若a + b + c ≠ 0, 设 = = = k , 则k = _______ c b a a b c 6、若 = = = k , 则k = _______ b+c a+c a+b
(其中 b + d + f ≠ 0, b + 2d + 3 f ≠ 0)
等比性质的应用举例
a c e 2 3、若 = = = , 且a + c + e = 4,则 b + d + f = ____ b d f 3 (其中 b + d + f ≠ 0)
a b c 4、已知△ ABC的三边分别为 a、b、c,且满足 = = 已知△ b c a 则△ ABC的形状是 _______
x + 2y + z 5、已知 x : y : z = 1 : 2 : 3, 则 = ______ z− x
x y z 6、已知 = = , 且2 x + y − z = 4, 则 x + y + z = ______ 2 3 5
x+z 7、若2 x = 3 y = 4 z , 则 x : y : z = ______; = ____ x− y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x y
8 9
.
比例合比性质:
如果
ac bd
,那么 a b c d ; bd
例:已知在下图中的
ABC
中,DADB
AE EC
求证: (1) AB AC
DB EC
(2)
AD AE AB AC
问题1
已知
AD DB
AE EC
AB ,求证:(1)DB
AC EC
;
AB
(2)AD
AC AE
证明:(1)
bn
0)
?
a1
a2
an
a1
b1 b2 bn b1
注:用“设k法”解决
1. 已知
a b
c d
e f
3
,b+d+f=4,
求a+c+e。
解:∵
a+c+e b+d+f 3
b d f 4
∴ a c e 3
4
即 a+c+e = 4×3 = 12
2.已知 a c e 3 ,且2b-d+5f=18, bd f
4. 若a+b+c≠0,
b c a c a b k ,则k= 2 。
a
b
c
5.若 b c a c a b k 则k=__2_或__-_1__
ab c
22.1比例的合比、等比性质
用”设k法”计算新比例
(1)
已知a b
c d
3,
求
ab b
和
cd d
;
(2)
如果ba
c d
k(k为
常 数),
那么
,a
b
b
c
d
d
成立吗 ?
法二证明∵ a c bd
在等式两边同加上1,
∴ a 1 c 1 bd
∴ ab cd
b
d
(b, d 0)
(3)
如果
a b
c d
.
AD
AE
,
AD
DB
AE
EC
DB EC
DB
EC
A
(合比性质),即
AB DB
AC EC
.
D
E
(2) AD AE , DB EC ,
DB EC AD AE
B
C
DB AD EC AE(合比
AD
AE
性质),即 AB AC .
AD AE
比例的等比性质
a1 b1
a2 b2
an bn
(b1 b2
2a c 5e 3(分式的基本性质) 2b d 5 f
2a c 5e (3 等比的性质) 2b d 5 f
2a c 5e 3 18
2a c 5e 54
3.比例尺就是图上长度与实际长度的比。
现有一张比例尺为1:5000的图纸上,量得 一个△ABC的三边:AC=3cm,BC=4cm, AB=5cm,问这个图纸所反映的实际 △A’B’C’的周长是多少?
,
那么a b b
Байду номын сангаас
c
d
d
成立吗?
为什么?
比例的合比性质
(1)
a b
c d
a
b
b
cd d
;
比例的分比性质
(2)
a b
c d
a
b
b
c
d
d
.
特点:分母不变,分子加(或减)分母
比例的合比性质
如果
a c ,那么 bd
ab cd
b
d
1、已知 a 2 ,则 a b
b3
b
5 3
.
2、若 x y 17 ,则
求2a - c + 5e。
解法一:∵ a c e 3 bd f
a 3b, c 3d, e 3 f
2a c 5e 2 3b 3d 5 3 f
3(2b d 5 f )
318 54
2.已知 a c e 3,且2b-d+5f=18, bd f
求解2法a二-:c由+已5知e得。: