几何图形的翻折图形题
中考数学点对点-几何折叠翻折类问题(解析版)

专题33 中考几何折叠翻折类问题专题知识点概述1.轴对称(折痕)的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.2.折叠或者翻折试题解决哪些问题(1)求角度大小;(2)求线段长度;(3)求面积;(4)其他综合问题。
3.解决折叠问题的思维方法(1)折叠后能够重合的线段相等,能够重合的角相等,能够重合的三角形全等,折叠前后的图形关于折痕对称,对应点到折痕的距离相等。
(2)折叠类问题中,如果翻折的直角,那么可以构造三垂直模型,利用三角形相似解决问题。
(3)折叠类问题中,如果有平行线,那么翻折后就可能有等腰三角形,或者角平分线。
这对解决问题有很大帮助。
(4)折叠类问题中,如果有新的直角三角形出现,可以设未知数,利用勾股定理构造方程解决。
(5)折叠类问题中,如果折痕经过某一个定点,往往用辅助圆解决问题。
一般试题考查点圆最值问题。
(6)折叠后的图形不明确,要分析可能出现的情况,一次分析验证可以利用纸片模型分析。
例题解析与对点练习【例题1】(2020•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°【答案】A【解析】由余角的性质可求∠C=40°,由轴对称的性质可得∠AB'B=∠B=50°,由外角性质可求解.∵∠BAC=90°,∠B=50°,∴∠C=40°,∵△ADB与△ADB'关于直线AD对称,点B的对称点是点B',∴∠AB'B=∠B=50°,∴∠CAB'=∠AB'B﹣∠C=10°。
中考数学几何图形折叠试题典题及解答

中考数学几何图形折叠试题典题及解答一、选择题1.德州市如图,四边形ABCD为矩形纸片.把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF.若CD=6,则AF等于A.4B.3C.4D.82.江西省如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,若∠DBC=°,则在不添加任何辅助线的情况下,图中45°的角虚线也视为角的边有A.6个B.5个C.4个D.3个3.乐山市如图,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH=90°,PF=8, PH=6,则矩形ABCD的边BC长为A.20 B.22C.24 D.304.绵阳市当身边没有量角器时,怎样得到一些特定度数的角呢动手操作有时可以解“燃眉之急”.如图,已知矩形ABCD,我们按如下步骤操作可以得到一个特定的角:1以点A所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;2将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE =A.60° B.° C.72° D.75°5. 绍兴市学习了平行线后,小敏想出了过己知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的如图1~4 .从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④6.贵阳市如图6-1所示,将长为20cm,宽为2cm的长方形白纸条,折成图6-2所示的图形并在其一面着色,则着色部分的面积为A.34cm2 B.36cm2C.38cm2 D.40cm2二、填空题7.成都市如图,把一张矩形纸片ABCD沿EF折叠后,点C,D分别落在C′,D′的位置上,EC′交AD于点G.已知∠EFG=58°,那么∠BEG °.8. 苏州市如图,将纸片△ABC沿DE折叠,点A落在点A′处,已知∠1+∠2=100°,则∠A的大小等于______ ______度.三、解答题9.荆门市如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O0,0,A4,0,C0,3,点P是OA边上的动点与点O、A不重合.现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.设Px,0,E0,y,求y关于x的函数关系式,并求y的最大值;如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;在2的情况下,在该抛物线上是否存在点Q,使△PEQ是以P E为直角边的直角三角形若不存在,说明理由;若存在,求出点Q的坐标.10. 济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如不相似请说明理由;如果沿直线EB折叠纸片,点A是否能叠在直线EC上为什么11.威海市如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片AB CD,使点A与点C重合,折痕为EF.已知CE⊥AB.1求证:EF∥BD;2若AB=7,CD=3,求线段EF的长.12. 烟台市生活中,有人喜欢把传送的便条折成形状,折叠过程是这样的阴影部分表示纸条的反面:如果由信纸折成的长方形纸条图①长为2 6 cm,宽为xcm,分别回答下列问题:为了保证能折成图④的形状即纸条两端均超出点P,试求x 的取值范围.2如果不但要折成图④的形状,而且为了美观,希望纸条两端超出点P的长度相等,即最终图形是轴对称图形,试求在开始折叠时起点M与点A的距离用x表示.13. 将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.1求证:△ABE≌△AD′F;2连接CF,判断四边形AECF是什么特殊四边形证明你的结论.14.孝感市在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开如图1;第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN如图2.请解答以下问题:1如图2,若延长MN交BC于P,△BMP是什么三角形请证明你的结论.2在图2中,若AB=a,BC=b,a、b满足什么关系,才能在矩形纸片ABCD上剪出符合1中结论的三角形纸片BM P3设矩形ABCD的边AB=2,BC=4,并建立如图3所示的直角坐标系. 设直线BM′为y=kx,当∠M′BC=60°时,求k的值.此时,将△ABM′沿BM′折叠,点A是否落在EF上E、F分别为AB、CD中点为什么15.邵阳市如图①,△ABC中,∠ACB=90°,将△ABC沿着一条直线折叠后,使点A与点C重合图②.1在图①中画出折痕所在的直线l.设直线l与AB,AC分别相交于点D,E,连结CD.画图工具不限,不要求写画法2请你找出完成问题1后所得到的图形中的等腰三角形.不要求证明16.济宁市如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.求证:△PBE∽△QAB;你认为△PBE和△BAE相似吗如果相似给出证明,如补相似请说明理由;3如果直线EB折叠纸片,点A是否能叠在直线EC上为什么17.临安市如图,△OAB 是边长为的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB 折叠,使点A落在边OB上,记为A′,折痕为EF.1当A′E18.南宁市如图,在锐角△ABC中,BC=9,AH⊥BC于点H,且AH=6,点D为AB 边上的任意一点,过点D作DE∥BC,交AC于点E.设△ADE的高AF为x0<x<6,以DE为折线将△ADE翻折,所得的△A′DE与梯形DBCE重叠部分的面积记为y点A关于DE的对称点A′落在AH所在的直线上.1分别求出当0<x≤3与3<x<6时,y与x的函数关系式;2当x取何值时,y的值最大最大值是多少19.宁夏回族自治区如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.证明:1BF=DF;2AE∥BD.参考答案一、二、°三、9. 解:1由已知PB平分∠APD,PE平分∠OPF,且PD、PF重合,则∠OPE+∠APB=90°.又∠APB+∠ABP=90°,∴∠OPE=∠PBA.∴Rt△POE∽Rt△BPA.∴.即.∴.且当x=2时,y 有最大值.由已知,△PAB、△POE均为等腰直角三角形,可得P1,0,E0, 1,B4,3.……6分设过此三点的抛物线为y=ax2+bx+c,则∴y=.由2知∠EPB=90°,即点Q与点B重合时满足条件.直线PB为y=x-1,与y轴交于点0,-1.将PB向上平移2个单位则过点E0,1,∴该直线为y=x+1.由得∴Q5,6.故该抛物线上存在两点Q4,3、5,6满足条件.10. 证明:1∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90°,∴△PBE~△QAB.2∵△PBE~△QAB,∴∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能叠在直线EC上.由2得,∠AEB=∠CEB,∴EC 和折痕AE重合.11. 解:1证明:过C点作CH∥BD,交AB的延长线于点H;连结AC,交EF于点K,则AK=CK.∵AB∥CD,∴BH=CD,BD=CH.∵AD=BC,∴AC=BD=CH.∵CE⊥AB,∴AE=EH.∴EK是△AHC的中位线.∴EK∥CH.∴EF∥BD.2解:由1得BH∥CD,EF∥BD,∴∠AEF=∠ABD.∵AB=7,CD=3,∴AH=10.∵AE=CE,AE=EH,∴AE=CE=EH=5.∵CE⊥AB,∴CH=5=BD.∵∠EAF=∠BAD,∠AEF=∠ABD,∴△AFE∽△ADB.∴.∴.12. 解:1由折纸过程知0<5x<26,,0<x <. 2图④为轴对称图形,∴AM =.即点M与点A的距离是1 3-xcm.13. 证明:⑴由折叠可知:∠D=∠D′,CD=AD′,∠C=∠D′AE.∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,∠C=∠BAD.∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD,即∠1+∠2=∠2+∠3.∴∠1=∠3.∴△ABE ≌△AD′F.⑵四边形AECF是菱形.由折叠可知AE=EC,∠4=∠5.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠5=∠6.∴∠4=∠6.∴AF=AE.∵AE=EC, ∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.∵AF=AE,∴四边形AECF是菱形.14. 解:1△BMP是等边三角形.证明:连结AN.∵EF垂直平分AB,∴AN = BN.由折叠知 AB = BN ,∴AN = AB = BN, ∴△ABN为等边三角形.∴∠ABN =60°. ∴∠PBN =30°.又∵∠ABM =∠NBM =30°,∠BNM =∠A =90°.∴∠BPN =60°.∠MBP =∠MBN +∠PBN =60°.∴∠BMP =60°∴∠MBP =∠BMP =∠BPM =60°.∴△BMP为等边三角形 .2要在矩形纸片ABCD上剪出等边△BMP,则BC ≥BP.在Rt△BNP中, BN = BA =a,∠PBN =30°,∴BP =. ∴b≥. ∴a≤b .∴当a≤b时,在矩形上能剪出这样的等边△BM P.3∵∠M′BC =60°, ∴∠ABM′=90°-60°=30°.在Rt△ABM′中,tan ∠ABM′ =. ∴tan30°= . ∴AM′ =.∴M′,2. 代入y=kx中 ,得k==.设△ABM′沿BM′折叠后,点A落在矩形ABCD内的点为A′.过A′作AH ⊥BC交BC于H.∵△A′BM′ ≌△ABM′, ∴∠A′BM′=∠ABM′=3 0°, A′B = AB =2.∴∠A′BH=∠M′BH-∠A′BM′=30°.在Rt△A′BH 中,A′H =A′B =1 ,BH=,∴.∴A'落在EF上.图2图315.解:1如图.等腰三角形DAC.16.1证明:∵∠PBE+∠ABQ=180°-90°=90°,∠PBE+∠PEB=90°,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB,∴△PBE∽△QAB.2∵△PBE∽△QAB,∴.∵BQ=PB,∴.又∵∠ABE=∠BPE=90°,∴△PBE~△BAE.3点A能折叠在直线EC上.由2得,∠AEB=∠CEB,∴EC和折痕AE重合.17. 解:1由已知可得∠A'OE=60o , A'E=AE.由A′E设A′的坐标为0,b,则AE=A'E=b,OE=2b.∵b+2b=2+,∴b=1.∴A'、E的坐标分别是0,1与,1.2因为A'、E在抛物线上,所以所以函数关系式为y=.由=0得,.与x轴的两个交点坐标分别是-,0与,0. 3不可能使△A'EF成为直角三角形.∵∠FA'E=∠FAE=60o,若△A'EF成为直角三角形,只能是∠A'EF=90o或∠A'FE=90o.若∠A'EF=90o,利用对称性,则∠AEF=90o, A'、E、A 三点共线,O与A重合,与已知矛盾.同理若∠A'FE=90o也不可能.所以不能使△A′EF成为直角三角形.18. 解:1①当0<x≤3时,由折叠得到的△A'ED落在△ABC内部如图101,重叠部分为△A'ED.∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC.∴. ∴,即.又∵FA'=FA=x,∴y=DE·A'F=·x·x.∴0<x≤3.②当3<x<6时,由折叠得到的△A'ED有一部分落在△ABC外,如图102,重叠部分为梯形EDPQ.∵FH=6-AF=6-x,A'H=A'F-FH=x-6-x=2x-6,又∵DE∥PQ,∴△A'PQ∽△A'DE.∴.∴∴.2当0<x≤3时,y 的最大值;当3<x<6时,由,可知当x=4时,y的最大值y2=9.∵y1<y2,∴当x=4时,y有最大值y最大=9.19. 证明:1能正确说明∠ADB=∠EBD或△ABF≌△ED F,∴BF=DF.2能得出∠AEB=∠DBE或∠EAD=∠BDA,∴AE∥BD.。
2023年中考数学【选择题】讲练必考重点03 几何变换之翻折问题

【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。
几何的翻折问题,本质上考查的是轴对称的性质,常和矩形相结合。
在解题时,首先要明确折叠前后的图形全等,折叠前后的对应边、对应角相等,对称轴垂直平分对应点之间的连线,在结合矩形、菱形、三角形等的性质,运用勾股定理,列出方程,求出相应的线段长度。
【2022·江苏连云港·中考母题】如图,将矩形ABCD 沿着GE 、EC 、GF 翻折,使得点A 、B 、D 恰好都落在点O 处,且点G 、O 、C 在同一条直线上,同时点E 、O 、F 在另一条直线上.小炜同学得出以下结论:①GF ∥EC ;②AB ;③GE DF ;④OC ;⑤△COF ∽△CEG .其中正确的是( )A .①②③B .①③④C .①④⑤D .②③④【考点分析】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案. 【思路分析】由折叠的性质知∠FGE =90°,∠GEC =90°,点G 为AD 的中点,点E 为AB 的中点,设AD =BC =2a ,AB =CD =2b ,在Rt △CDG 中,由勾股定理求得b ,然后利用勾股定理再求得DF =FO =【2021·江苏苏州·中考母题】如图,在平行四边形ABCD 中,将ABC 沿着AC 所在的直线翻折得到AB C ',B C '交AD 于点E ,连接B D ',若60B ∠=︒,45ACB ∠=︒,AC =B D '的长是( )A.1BC D 【考点分析】本题考查翻折变换、等腰三角形的性质、勾股定理、平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【思路分析】利用平行四边形的性质、翻折不变性可得△AEC 为等腰直角三角形,根据已知条件可得CE 得长,进而得出ED 的长,再根据勾股定理可得出B D ';1.(2022·江苏苏州·二模)如图把一张矩形纸片ABCD 沿对角线AC 翻折,点B 的对应点为B ′,AB ′与DC 相交于点E ,则下列结论一定正确的是( )A .BC =12ACB .AE =CEC .AD =DE D .∠DAE =∠CAB2.(2022·江苏南京·二模)如图,矩形ABCO ,点A 、C 在坐标轴上,点B 的坐标为()2,4-.将△ABC 沿AC 翻折,得到△ADC ,则点D 的坐标是( )A.612,55⎛⎫⎪⎝⎭B.65,52⎛⎫⎪⎝⎭C.312,25⎛⎫⎪⎝⎭D.35,22⎛⎫⎪⎝⎭3.(2022·江苏泰州·一模)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平后再次折叠,使点A落在EF上的点A′处,得到折痕BM,BM与EF相交于点N.若直线BA′交直线CD于点O,BC=11,EN=2,则FO的长为()A B C D4.(2022·江苏宿迁·三模)已知长方形纸条ABCD,点E、G在AD边上,点F、H在BC边上.将纸条分别沿着EF、GH折叠,如图,当DC恰好落在EA'上时,1∠与2∠的数量关系是()A.12135∠+∠=︒B.2115∠-∠=︒C.1290∠+∠=︒D.22190∠-∠=︒5.(2022·江苏苏州·二模)如图①,②,③,④,两次折叠等腰三角形纸片ABC,先使AB与AC重合,折痕为AD,展平纸片:再使点A与点C重合,折痕为EF,展平纸片,AD、EF交于点G.若5cmAB AC==,6cmBC,则DG的长为()A.3cm4B.7cm8C.1cm D.7cm66.(2022·江苏·苏州中学二模)如图,菱形ABCD中,点E在AD上,将△ABE沿着BE翻折,点A恰好落在CD上的点F处.若∠A=65°,则∠DFE的度数为()A.85︒B.82.5︒C.65︒D.50︒7.(2022·江苏扬州·二模)如图,在矩形ABCD中,2AB=,BC=E是BC的中点,将ABE△沿直线AE翻折,点B落在点F处,连结CF,则tan ECF∠的值为()A B C.23D8.(2022·江苏苏州·模拟)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处,若3AB=,5BC=,则tan FEC∠的值为().A.12B.35C.34D.459.(2022·江苏苏州·一模)如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,点C在第一象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C.且S△BEF=1,则k的值为()A.18B.20C.24D.2810.(2022·江苏·江阴市第一初级中学一模)如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,则∠A与∠1、∠2之间的数量关系是()A.2∠A=∠1-∠2B.3∠A=2(∠1-∠2)C.3∠A=2∠1-∠2D.∠A=∠1-∠211.(2022·江苏·无锡市天一实验学校二模)已知:如图,在Rt△ABC中,∠A=90°,AB=8,tan∠ABC=32,点N是边AC的中点,点M是射线BC上的一动点(不与B,C重合),连接MN,将△CMN沿MN 翻折得△EMN,连接BE,CE,当线段BE的长取最大值时,sin∠NCE的值为()A B C D12.(2022·江苏省南菁高级中学实验学校九年级)如图,在ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将BDE 沿DE 翻折,得到B DE ',若点C 恰好在线段B D '上,若90BCD ∠=︒,DC :3CB '=:2,AB =CE 的长度为( )A.B C .D 13.(2022·江苏·九年级专题练习)如图,在△ABC 中,90ACB ∠=,点D 是AB 的中点,将△ACD 沿CD 对折得△A ′CD .连接BA ',连接AA ′交CD 于点E ,若14cm AB =,4cm BA '=,则CE 的长为( )A .4cmB .5cmC .6cmD .7cm14.(2022·江苏·宜兴市树人中学九年级)如图,在△ABC 中,点D 是线段AB 上的一点,过点D 作DE ∥AC 交BC 于点E ,将△BDE 沿翻折,得到△B 'DE ,若点C 恰好在线段B 'D 上,若∠BCD =90°,DC :CB '=3:2,AB =CE 的长度为( )A.B .4C .D .615.(2022·江苏·九年级专题练习)如图①,AB =5,射线AM ∥BN ,点C 在射线BN 上,将△ABC 沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,PQ ∥AB .设AP =x ,QD =y .若y 关于x 的函数图象(如图②)经过点E (9,2),则cos B 的值等于( )A.25B.12C.35D.71016.(2022·江苏·苏州市吴江区铜罗中学九年级期中)如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC′,DC'与AB交于点E,连接AC′,若AD=AC′=2,BD=3,则点D到BC的距离为()A B C D17.(2022·江苏南通·九年级)如图,AB为⊙O的一条弦,C为⊙O上一点,OC∥AB.将劣弧AB沿弦AB 翻折,交翻折后的弧AB交AC于点D.若D为翻折后弧AB的中点,则∠ABC=()A.110°B.112.5°C.115°D.117.5°18.(2022·江苏南京·九年级专题练习)如图,在矩形纸片ABCD中,点E、F分别在矩形的边AB、AD 上,将矩形纸片沿CE、CF折叠,点B落在H处,点D落在G处,点C、H、G恰好在同一直线上,若AB=6,AD=4,BE=2,则DF的长是()A .2B .74C D .319.(2022·江苏·宿迁青华中学九年级期末)如图,四边形ABCD 内接于O ,AB AD =,3BC =.劣弧BC 沿弦BC 翻折,刚好经过圆心O .当对角线BD 最大时,则弦AB 的长为( )A B .C .32D .【选择题】必考重点03 几何变换之翻折问题几何变换中的折叠问题,是江苏各地中考中常考的题型,难度多为一般或者较难。
期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。
专题35 几何图形翻折与旋转【热点专题】(含答案解析)

专题35几何图形翻折与旋转【热点专题】几何图形的翻折与旋转问题是历年中考的热点问题,题型问题立意新颖,变幻巧妙,对培养识图能力及灵活运用数学知识解决问题的能力非常有效.同样的翻折与旋转类题目,条件不一样,用到的知识和方法也不尽相同.(1)旋转后的图形与原图形是全等;(2)旋转前后两个图形对应点到旋转中心的距离相等;(3)对应点与旋转中心所连线段的夹角都等于旋转角;题型一:点、线旋转(2021·黑龙江牡丹江·中考真题)【例1】1.如图,△AOB中,OA=4,OB=6,AB=,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.(4)或(﹣4)C .(﹣2)或(2)D .(2,﹣2,(2021·江苏扬州市·中考真题)【例2】2.如图,一次函数y x =的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30︒交x 轴于点C ,则线段AC 长为()AB .C .2D题型二:面的旋转(2021·辽宁大连·中考真题)【例3】3.如图,在ABC 中,90ACB ∠=︒,BAC α∠=,将ABC 绕点C 顺时针旋转90°得到A B C ''△,点B 的对应点B '在边AC 上(不与点A ,C 重合),则AA B ''∠的度数为()A .αB .45α-︒C .45α︒-D .90α︒-(2021·四川巴中·中考真题)【例4】4.如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.题型三:三角形翻折问题(2021·四川凉山彝族自治州·中考真题)【例5】5.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .74(2021·重庆中考真题)【例6】6.如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.题型四:四边形翻折问题【例7】7.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则ADDF的值为()A .1113B .1315C .1517D .1719(2021·四川自贡市·中考真题)【例8】8.如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN ,连接DN ,则DN 的长是()A .52B .958C .3D .655(2021·湖北黄石·中考真题)9.如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-(2021·湖南益阳·中考真题)10.如图,Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB ' 的面积之比等于_______.(2021·江苏苏州·中考真题)11.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.(2021·四川成都市·中考真题)12.如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为B',则线段BF 的长为_______;第二步,分别在,'EF A B ¢上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.(2021·新疆·中考真题)13.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE 按逆时针方向旋转得DCF ,连接EF ,分别交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.(2021·四川绵阳·中考真题)14.如图,点M 是ABC ∠的边BA 上的动点,6BC =,连接MC ,并将线段MC 绕点M 逆时针旋转90︒得到线段MN .(1)如图1,作MH BC ⊥,垂足H 在线段BC 上,当CMH B ∠=∠时,判断点N 是否在直线AB 上,并说明理由;(2)如图2,若30ABC ∠=︒,//NC AB ,求以MC 、MN 为邻边的正方形的面积S .(2021·山西·中考真题)15.综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.(2021·山东日照·中考真题)16.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF △绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF=_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将BEF △绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF △旋转至D 、E 、F 三点共线时,则ADE V 的面积为______.(2021·辽宁阜新·中考真题)17.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .18.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(Ⅰ)如图①,当∠BOP=300时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).参考答案:1.C【分析】先求出点A 的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A ′的坐标.【详解】过点A 作AC OB ⊥于点C .在Rt △AOC 中,222AC OA OC =-.在Rt △ABC 中,()22222AC AB CB AB OB OC =-=--.∴()2222OA OC AB OB OC -=--.∵OA =4,OB =6,AB =,∴2OC =.∴AC =∴点A 的坐标是(2,.根据题意画出图形旋转后的位置,如图,∴将△AOB 绕原点O 顺时针旋转90°时,点A 的对应点A ′的坐标为()2-;将△AOB 绕原点O 逆时针旋转90°时,点A 的对应点A ′′的坐标为()2-.故选:C .【点睛】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质.(a ,b )绕原点顺时针旋转90°得到的坐标为(b ,-a ),绕原点逆时针旋转90°得到的坐标为(-b ,a ).2.A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB 的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】解:∵一次函数y x=的图像与x轴、y轴分别交于点A、B,令x=0,则y y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴AB,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD,又BD=AB+AD=2+x,∴2+x,解得:x∴AC x)+故选A.【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.C【分析】由旋转的性质可得CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,进而可得45AA C '∠=︒,然后问题可求解.【详解】解:由旋转的性质可得:CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,∴ACA ' 等腰直角三角形,∴45AA C '∠=︒,∴45AA B α''∠=︒-;故选C .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.4.25【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ ≌Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM ∽△BQP 可求解.【详解】解:连接OQ ,OP ,∵将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,∴OA =OD ,∠OAQ =∠ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD =⎧⎨=⎩,∴Rt △OAQ ≌Rt △ODQ (HL ),∴QA =DQ ,同理可证:CP =DP ,∵BQ:AQ=3:1,AB=3,∴BQ=94,AQ=34,设CP=x,则BP=3-x,PQ=x+3 4,在Rt△BPQ中,由勾股定理得:(3-x)2+(94)2=(x+34)2,解得x=9 5,∴BP=6 5,∵∠AQM=∠BQP,∠BAM=∠B,∴△AQM∽△BQP,∴13 AM AQBP BQ==,∴1 63 5AM=,∴AM=2 5.故答案为:2 5.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA=DQ,CP=DP是解题的关键.5.D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴AB,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D .【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.6.【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==,∵AF =EF ,∴AEF △是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=,故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.7.C【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP=OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=4-x 、BF=PC=3-x ,进而可得出AF=1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x ,求出AF 的长度是解题的关键.8.D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∴2AM =,4DM =,∵将BMA △沿BM 对折至BMN ,四边形ABCD 是正方形,∴90BNE C ∠=∠=︒,AB AN BC ==,∴Rt BNE Rt BCE ≌(HL),∴NE CE =,∴2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∴3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∴MDE NFE ∽,∴25EF NF NE DE MD ME ===,∴125NF =,95EF =,∴65DF =,∴DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.9.B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.10.9:4【分析】先根据正切三角函数的定义可得32AC AB =,再根据旋转的性质可得,,AB AB AC AC BAB CAC α''''==∠=∠=,从而可得1AC AB AC AB =='',然后根据相似三角形的判定可得CAC BAB ''~ ,最后根据相似三角形的性质即可得.【详解】解: 在Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,32AC AB ∴=,由旋转的性质得:,,AB AB AC AC BAB CAC α''''==∠=∠=,1AC AB AC AB ∴=='',在CAC '△和BAB ' 中,AC AB AC AB CAC BAB ''''⎧=⎪⎨⎪∠=∠⎩,CAC BAB ''~∴ ,294CAC BAB AC S AB S ''⎛⎫== ⎪⎝⎭∴ ,即CAC '△与BAB ' 的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.11.245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P.∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==3BC ===∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB ∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.12.1【分析】第一步:设EF 与AA’交于点O ,连接AF ,易证明△AOE △ADC ,利用对应边成比例可得到OA =2OE ,由勾股定理可求出OE =5,从而求得OA 及OC ;由AD ∥BC ,易得△AOE ∽△COF ,由对应边成比例可得AE 、FC 的关系式,设BF =x ,则FC =8-x ,由关系式可求得x 的值;第二步:连接NE ,NF ,根据折叠的性质,得到NF =NE ,设B’N =m ,分别在Rt △NB F '和Rt △EA N '中,利用勾股定理及NF =NE 建立方程,可求得m ,最后得出结果.【详解】如图所示,连接AF ,设EF 与AA’交于点O ,由折叠的性质得到AA’⊥EF ,3A E AE '==∵四边形ABCD 是矩形∴∠ADC =90°,CD =AB =4,AD ∥BC∵∠AOE =∠ADC ,∠OAE =∠DAC∴△AOE △ADC ,∴12OE CD OA AD ==,∴OA =2OE ,在直角△AOE 中,由勾股定理得:2249OE OE +=,∴OE =5,∴OA在Rt △ADC 中,由勾股定理得到:AC =,∴OC =令BF =x ,则FC =8-x ,∵AD ∥BC ,∴△AOE ∽△COF ,∴37OA AE OC FC ==,即7AE =3FC∴3(8-x )=7×3解得:1x =,∴BF 的长为1.连接NE ,NF ,如图,根据折叠性质得:BF =B’F =1,MN ⊥EF ,NF =NE ,设B’N =m ,则22222213(4)NF m NE m =+==+-,解得:m =3,则NF ,∵EF =∴MF∴MN故答案为:1【点睛】本题主要考查了折叠的性质、勾股定理、三角形相似的判定与性质,矩形的性质等知识,熟练运用这些知识是解决本题的关键,本题还涉及到方程的运用.13【分析】过点E 作EP ⊥BD 于P ,将∠EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∴AB ∥DC ,∠A =∠BCD =∠ADC =90°,AB =BC =CD =DA =1,BD =.∵△DAE 绕点D 逆时针旋转得到△DCF ,∴CF =AE ,DF =DE ,∠EDF =∠ADC =90°.设AE =CF =2x ,DN =5x ,则BE =1-2x ,CN =1-5x ,BF=1+2x .∵AB ∥DC ,∴~FNC FEB ∆∆.∴NC FC EB FB =.∴1521212x x x x-=-+.整理得,26510x x +-=.解得,116x =,21x =-(不合题意,舍去).∴1221233AE x EB x ===-=,.∴DE ===过点E 作EP ⊥BD 于点P ,如图所示,设DP =y,则BP y =.∵22222EB BP EP DE DP -==-,∴)2222233y y ⎛⎛⎫-=- ⎪ ⎝⎭⎝⎭.解得,y =∴3EP ===.∴在Rt △DEP中,sin 3EP EDP ED∠==sin 5EDM ∠=.【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.14.(1)点N 在直线AB 上,见解析;(2)18【分析】(1)根据CMH B ∠=∠,90CMH C ∠+∠=︒,得到90B C ∠+∠=︒,可得线段CM 逆时针旋转90︒落在直线BA 上,即可得解;(2)作CD AB ⊥于D ,得出45MCN ∠=︒,再根据平行线的性质得到45BMC ∠=︒,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点N 在直线AB 上;∵CMH B ∠=∠,90CMH C ∠+∠=︒,∴90B C ∠+∠=︒,∴90BMC ∠=︒,即CM AB ⊥.∴线段CM 逆时针旋转90︒落在直线BA 上,即点N 在直线AB 上.(2)作CD AB ⊥于D ,∵MC MN =,90CMN ∠=︒,∴45MCN ∠=︒,∵//NC AB ,∴45BMC ∠=︒,∵6BC =,30B ∠=︒,∴3CD =,MC =∴218S MC ==,即以MC 、MN 为邻边的正方形面积18S =.【点睛】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键.15.(1)EF BF =;见解析;(2)AG BG =,见解析;(3)223.【分析】(1)如图,分别延长AD ,BF 相交于点P ,根据平行四边形的性质可得//AD BC ,根据平行线的性质可得PDF C ∠=∠,P FBC ∠=∠,利用AAS 可证明△PDF ≌△BCF ,根据全等三角形的性质可得FP FB =,根据直角三角形斜边中线的性质可得12EF BP =,即可得EF BF =;(2)根据折叠性质可得∠CFB =∠C′FB =12∠CFC′,FC =FC′,可得FD =FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D ,根据三角形外角性质可得∠CF C′=∠FDC′+∠FC′D ,即可得出∠C′FB =∠FC′D ,可得DG//FB ,即可证明四边形DGBF 是平行四边形,可得DF =BG =12AB ,可得AG =BG ;(3)如图,过点M 作MQ ⊥A ′B 于Q ,根据平行四边形的面积可求出BH 的长,根据折叠的性质可得A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,根据'A B CD ⊥可得A ′B ⊥AB ,即可证明△MBQ 是等腰直角三角形,可得MQ =BQ ,根据平行四边形的性质可得∠A =∠C ,即可得∠A ′=∠C ,进而可证明△A ′NH ∽△CBH ,根据相似三角形的性质可得A ′H 、N H 的长,根据NH //MQ 可得△A ′NH ∽△A ′MQ ,根据相似三角形的性质可求出MQ 的长,根据S 阴=S △A′MB-S △A′NH 即可得答案.【详解】(1)EF BF =.如图,分别延长AD ,BF 相交于点P ,∵四边形ABCD 是平行四边形,∴//AD BC ,∴PDF C ∠=∠,P FBC ∠=∠,∵F 为CD 的中点,∴DF CF =,在△PDF 和△BCF 中,P FBC PDF C DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PDF ≌△BCF ,∴FP FB =,即F 为BP 的中点,∴12BF BP =,∵BE AD ⊥,∴90BEP ∠=︒,∴12EF BP =,∴EF BF =.(2)AG BG =.∵将ABCD Y 沿着BF 所在直线折叠,点C 的对应点为'C ,∴∠CFB =∠C′FB =12∠CFC′,'FC FC =,∵F 为CD 的中点,∴12FC FD CD ==,∴'FC FD =,∴∠FDC′=∠FC′D ,∵'CFC ∠=∠FDC′+∠FC′D ,∴'1'2FC D CFC ∠=∠,∴∠FC′D =∠C′FB ,∴//DG FB ,∵四边形ABCD 为平行四边形,∴//DC AB ,DC =AB ,∴四边形DGBF 为平行四边形,∴BG DF =,∴12BG AB =,∴AG BG =.(3)如图,过点M 作MQ ⊥A ′B 于Q ,∵ABCD Y 的面积为20,边长5AB =,'A B CD ⊥于点H ,∴BH =50÷5=4,∴CH 2=,A ′H =A ′B -BH =1,∵将ABCD Y 沿过点B 的直线折叠,点A 的对应点为'A ,∴A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,∵'A B CD ⊥于点H ,AB //CD ,∴'A B AB ⊥,∴∠MBH =45°,∴△MBQ 是等腰直角三角形,∴MQ =BQ ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,∴∠A ′=∠C ,∵∠A ′HN =∠CHB ,∴△A ′NH ∽△CBH ,∴'CH BH A H NH =,即241NH=,解得:NH =2,∵'A B CD ⊥,MQ ⊥A ′B ,∴NH //MQ ,∴△A ′NH ∽△A ′MQ ,∴''A H NH AQ MQ=,即125MQ MQ =-,解得:MQ =103,∴S 阴=S △A′MB-S △A′NH =12A ′B ·MQ -12A ′H ·NH =12×5×103-12×1×2=223.【点睛】本题考查折叠的性质、平行四边形的判定与性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.16.(1)2,30°;(2【分析】(1)通过证明FBD EBA ∆∆∽,可得AE BE DF BF ==BDF BAE ∠=∠,即可求解;(2)通过证明ABE DBF ∆∆∽,可得AE BE DF BF ==,BDF BAE ∠=∠,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒ ,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠==如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆ 绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOB AOF ∠=∠ ,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒,故答案为:2,30︒;(2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又 BE AB BF DB ==ABE DBF ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOH AOB ∠=∠ ,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,AB = 30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,BE ∴=2AD =,4DB =,30EBF ∠=︒ ,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,DE ∴30DEA ∠=︒ ,12DG DE ∴==由(2)可得:AE BE DF BF ==,AE ∴=ADE ∴∆的面积1122AE DG =⨯⨯=⨯;如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积1122228AE DG =⨯⨯=⨯⨯=;【点睛】本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.17.(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【详解】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.18.(Ⅰ)点P 的坐标为(6).(Ⅱ)2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP ,△QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案.(Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值:【详解】(Ⅰ)根据题意,∠OBP=90°,OB=6.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=62+t 2,解得:t 1=t 2=-.∴点P 的坐标为(6).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,∴△OB′P ≌△OBP ,△QC′P ≌△QCP .∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ .又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BP PC CQ =.由题意设BP=t ,AQ=m ,BC=11,AC=6,则PC=11-t ,CQ=6-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q.∵PC′=PC=11-t ,PE=OB=6,AQ=m ,C′Q=CQ=6-m ,∴AC '==.∴.∵6116=--t t m ,即6116-=-t t m 6=t ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:12t t ==∴点P ,6)或(113+,6).。
立体几何中的翻折问题

A
B
练习:如图所示,在直角梯形 ABCP 中, AB=BC=3,AP=7,CD⊥AP,现将△PCD 沿折 线 CD 折成直二面角 P-CD-A,设 E,F,G 分 别是 PD,PC,BC 的中点。 (1)求证:PA∥平面 EFG; (2)求 AF 与平面 PAD 所成角的正弦值。
练习:如图,在平行四边形 ABCD 中,AB=2BC, ∠ABC=120° 。E 为线段 AB 的中点,将△ ADE 沿 直线 DE翻折成△ A’DE, 使平面 A’DE⊥平面 BCD, F 为线段 A’C 的中点。 (1)求证:BF∥平面 A’DE; (2)设 M 为线段 DE 的中点,求直线 FM 与平面 A’DE 所成角的余弦值。
立体几何中的 翻折问题
2012.9.17
例 1:已 知 :E,F是 正 方 形 ABCD的 边 BC和
CD的 中 点 ,分 别 沿 AE,EF,AF将 ABE,ECF, AFD折 起 使 B,C,D三 点 重 合 于 P点 ,如 图 ,
(1)求 证 :AP EF;
(2)求 二 面 角 A-EF-P的 大 小 .
P(B,C,D) A D F C E A E F
B
小结:求解翻折问题的基本方法:
(1)先比较翻折前后的图形,弄 清哪些量和位置关系在翻折过程中 不变,哪些已发生变化。 (2)将不变的条件集中到立体图 形中,将问题归结为一个条件与结 论明朗化的立几问题。
2.如图,ABCD是正方形,E是AB的中点,
D
A
B
G
CAΒιβλιοθήκη B4.将正方形 ABCD 沿对角线 AC 折成二 面角 D-AC-B, 使点 B、D 的距离等于 AB 的长,此时直线 AB 与 CD 所成的 角为 ;
2023年高考数学----立体几何折叠问题规律方法与典型例题讲解

2023年高考数学----立体几何折叠问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例1.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)当2x =时①求证:BD EG ⊥;②求二面角D BF C −−的余弦值;(2)三棱锥D FBC −的体积是否可能等于几何体ABE FDC −体积的一半?并说明理由. 【解析】(1)证明:过D 点作EF 的垂线交EF 于H ,连接BH .如图.2AE AD == 且//AE DH ,//AD EF ,π2EAD ∠=. ∴四边形ADHE 是正方形.2EH =,∴四边形EHGB 是正方形.所以BH EG ⊥(正方形对角线互相垂直).因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =,,AE EF AE ⊥⊂平面AEFD , 所以⊥AE 平面EBCF , 所以DH ⊥平面EBCF , 又因为EG ⊂平面EBCF ,所以EG DH ⊥. 又,,BHDH H BH DH =⊂平面BDH ,所以EG ⊥平面BDH ,又BD ⊂平面BDH , 所以EG BD ⊥.②以E 为原点,EB 为x 轴,EF 为y 轴,EA 为z 轴,建立空间直角坐标系,(2B ,0,0),(0F ,3,0),(0D ,2,2),(2C ,4,0),(2BF =−,3,0),(2BD =−,2,2),设平面BDF 的法向量(n x =,y ,)z ,则·2220·230n BD x y z n BF x y ⎧=−++=⎪⎨=−+=⎪⎩,取3x =,得(3n =,2,1),又平面BCF 的法向量(0m =,0,1),1cos ,||||14m n m n m n <>==∴钝二面角D BF C −−的余弦值为.(2)AE EF ⊥Q ,平面AEFD ⊥平面EBCF , 平面AEFD ⋂平面EBCF EF =,AE ⊂平面AEFD . AE ∴⊥平面EBCF .结合DH ⊥平面EBCF ,得//AE DH ,∴四边形AEHD 是矩形,得DH AE =,故以F 、B 、C 、D 为顶点的三棱锥D BCF −的高DH AE x ==, 又114(4)8222BCFSBC BE x x ==⨯⨯−=−. ∴三棱锥D BCF −的体积为()2=11822(82)433333BFCV SDH x x x x x x ==−=−−,ABE FDC ABE DGH D HGCF V V V −−−=+13ABEHGCF SAD S DH =+111111(4)2(2)(4)=(4)1+(2)232262x x x x x x x x ⎡⎤=−⨯+⨯+−−+⎢⎥⎣⎦, 令()112(4)1+(2)=24623x x x x x ⎡⎤−+⨯−⎢⎥⎣⎦,解得0x =或4x =,不合题意;∴棱锥D FBC −的体积不可能等于几何体ABE FDC −体积的一半.例2.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值. 【解析】(1)如图取CE 的中点F ,连接PF ,DF ,由题易知△PCE ,△DCE 都是等边三角形, ⸫DF ⊥CE ,PF ⊥CE , ⸫DFPF F =,DF ⊂平面DPF ,PF ⊂平面DPF⸫CE ⊥平面DPF . ⸫DP ⊂平面DPF ⸫DP ⊥CE . (2)解法一:由题易知四边形AECD 是平行四边形, 所以AD ∥CE ,又AD ⊂平面P AD ,所以CE ⊂平面P AD , 所以点E 与点F 到平面P AD 的距离相等. 由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 又AD ⊂平面P AD , 所以平面P AD ⊥平面DPF .过F 作FH ⊥PD 交PD 于H ,则FH ⊥平面P AD .DF PF ==2DP =,故点F 到平面P AD 的距离FH =设直线DE 与平面P AD 所成的角为θ,则sin FH DE θ==, 所以直线DE 与平面P AD 所成角的正弦值为4. 解法二:由题易知四边形AECD 是平行四边形,所以AD ∥CE ,由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 如图,以D 为坐标原点,DA ,DF 所在直线分别为x ,y 轴,过D 且垂直于平面AECD 的直线为z 轴建立空间直角坐标系, 则()0,0,0D ,()4,0,0A ,()E , 设()0,,P a b ,0a >,0b >. 易知DF PF ==2DP =,故(2222124a b a b ⎧−+=⎪⎨⎪+=⎩,P ⎛ ⎝⎭, 所以()4,0,0DA =,DP ⎛= ⎝⎭,()DE =,设平面P AD 的法向量为(),,n x y z =, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,得00x y =⎧⎪⎨+=⎪⎩,令y =1z =−,所以()0,11,1n =−.设直线DE 与平面P AD 所成的角为θ,则11sin |cos ,|4DE nDE n DE nθ⋅=〈〉==, 故直线DE 与平面P AD 例3.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面PAD 夹角的余弦值. 【解析】(1)设O 是AD 的中点,连接,OP OC , 三角形PAD 是等边三角形,所以OP AD ⊥,OP =四边形ABCD 是直角梯形,//,OA BC OA BC =,所以四边形ABCO 是平行四边形,也即是矩形,所以OC AD ⊥,2==OC AB .折叠后,PC =222OP OC PC +=,所以OP OC ⊥, 由于,,AD OC O AD OC ⋂=⊂平面ABCD , 所以OP ⊥平面ABCD ,则,,OC OD OP 两两相互垂直,由此建立如图所示的空间直角坐标系, ()2,0,0,AB OC ==()1,1,0F −,设)()0,1,01E t t t −<<,()2,0,0C,所以)11,,22t t M ⎛⎫− ⎪ ⎪⎝⎭,则)120,,22t t FM ⎛⎫−+= ⎪ ⎪⎝⎭,所以0AB FM ⋅=, 所以AB FM ⊥.(2)由于OP ⊥平面ABCD ,AB ⊂平面ABCD ,所以OP AB ⊥, 由于,,,AB AD AD OP O AD OP ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,由于AE ⊂平面PAD ,所以AB AE ⊥, 所以FEA ∠是直线EF 与平面PAD 所成角, 在直角三角形AEF 中,tan AFFEA AE∠=, 由于1AF =,所以当AE 最小时,tan FEA ∠最大,也即FEA ∠最大,由于三角形PAD 是等边三角形,所以当E 为PD 的中点时,AE PD ⊥,AE 取得最小值.由于(P ,()0,1,0D,故此时10,2E ⎛ ⎝⎭,平面PAD 的法向量为()1,0,0m =,()()()30,1,0,2,0,0,2,1,0,0,2A C AC AE ⎛−== ⎝⎭,设平面ACE 的法向量为(),,n x y z =,则20302n ACx y n AE y ⎧⋅=+=⎪⎨⋅==⎪⎩,故可设(1,n =−, 设平面ACE 与平面PAD 的夹角为θ, 则1cos 17m n m nθ⋅===⋅例4.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C −−的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由.(2)求直线PC 与平面PBE 所成角的正弦值.【解析】(1)满足条件的点H 存在,且为PC 上靠近P 的三等分点.在PC 上取靠近P 的三等分点H ,连接AP ,FH ,如图,则AP 是平面P AB 与平面P AC 的交线,依题意,12PH AF HC FC ==,则有//FH AP ,又AP ⊂平面PBE ,FH ⊄平面PBE ,因此直线//FH平面PBE ,所以在PC 上是存在点H ,为PC 上靠近P 的三等分点,使得直线//FH 平面PBE . (2)取BC 中点G ,连接AG ,交EF 于点D ,连接PD ,因//EF BC ,依题意,EF DG ⊥,EF PD ⊥,则PDG ∠为二面角P EF C −−的平面角,即120PDG ∠=︒,且EF ⊥平面PAD , 而EF ⊂平面BCFE ,则平面PAD ⊥平面BCFE ,在平面PAD 内过P 作PO AD ⊥于O , 又平面PAD ⋂平面BCFE AD =,因此PO ⊥平面BCFE ,在平面BCFE 内过O 作Ox AD ⊥, 显然Ox ,AD ,OP 两两垂直,分别以向量Ox ,OD ,OP 的方向为x ,y ,z 轴正方向,建立空间直角坐标系O xyz −,如图,则B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛⎫− ⎪ ⎪⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,所以,32PC ⎛⎫=−− ⎪ ⎪⎝⎭,()EB =,31,2EP ⎛⎫=− ⎪ ⎪⎝⎭, 设平面PBE 的一个法向量为(),,n x y z =r,由20302n EB x n EP x y z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令y =()3,3,1n =−,设直线PC 与平面PBE 所成角为α,则||18sin |cos ,|||||30PC n PC n PC n α⋅=〈〉===⋅所以直线PC 与平面PBE .。
立体几何平面图形的翻折问题

立体几何平面图形的翻折问题例3 (2015·陕西)如图1,在直角梯形 ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,连接EC ,因为AB =BC =1,AD =2,∠BAD =π2, AD ∥BC ,E 为AD 中点,所以BC 綊ED ,BC 綊AE ,所以四边形BCDE 为平行四边形,故有CD ∥BE ,所以四边形ABCE 为正方形,所以BE ⊥AC ,即在题图2中,BE ⊥OA 1,BE ⊥OC ,且A 1O ∩OC =O ,从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC .(2)解 由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1BEC 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,以OB ,OC ,OA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝⎛⎭⎫22,0,0,E ⎝⎛⎭⎫-22,0,0,A 1⎝⎛⎭⎫0,0,22,C ⎝⎛⎭⎫0,22,0, 得BC →=⎝⎛⎭⎫-22,22,0,A 1C →=⎝⎛⎭⎫0,22,-22, CD →=BE →=(-2,0,0),设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); ⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=n 1,n 2=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63. 思维升华 平面图形的翻折问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况.一般地,翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.(2017·深圳月考)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2,作如图(2)折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后,点P 叠在线段AD 上的点记为M ,并且MF ⊥CF .(1)证明:CF ⊥平面MDF ;(2)求三棱锥M -CDE 的体积.(1)证明 因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD ⊥AD .又因为ABCD 是矩形,CD ⊥AD ,PD 与CD 交于点D , 所以AD ⊥平面PCD .又CF ⊂平面PCD ,所以AD ⊥CF ,即MD ⊥CF .又MF ⊥CF ,MD ∩MF =M ,所以CF ⊥平面MDF .(2)解 因为PD ⊥DC ,PC =2,CD =1,∠PCD =60°, 所以PD =3,由(1)知FD ⊥CF ,在直角三角形DCF 中,CF =12CD =12. 如图,过点F 作FG ⊥CD 交CD 于点G ,得FG =FC sin 60°=12×32=34, 所以DE =FG =34,故ME =PE =3-34=334, 所以MD =ME 2-DE 2= (334)2-(34)2=62. S △CDE =12DE ·DC =12×34×1=38. 故V M -CDE =13MD ·S △CDE =13×62×38=216.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何图形的翻折图形题一.填空题:1.已知:如下图1,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段_________ (不包括AB=CD和AD=BC).2.如上图2,有一张面积为1的正方形纸片ABCD,M、N分别是AD、BC边的中点,将C点折叠至MN 上,落在P点的位置,折痕为BQ,连接PQ,则PQ=_________.3.如上图3,有一张矩形纸片ABCD,AB=5,AD=3,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则CF的长为,_________.4.如下图1,一张长方形纸片ABCD,其长AD为a,宽AB为b(a>b),在BC边上选取一点M,将△ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则的值为_________.5、如上图2所示,把一张矩形纸片ABCD沿对角线BD折叠,已知AB=6、BC=8,则BF=_________.6、如上图3,取一张长方形纸片,它的长AB=10cm,宽BC=cm,然后以虚线CE(E点在AD上)为折痕,使D点落在AB边上,则AE=_______cm,∠DCE=________.7、如下图1,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=_________度.8、一张长方形的纸片如下图2所示折了一角,测得AD=30cm,BE=20cm,∠BEG=60°,则折痕EF的长为______.二.选择题:1、如下图1,明明折叠一张长方形纸片,翻折AD,使点D落在BC边的点F处,量得AB=8cm,BC=10cm,则EC=()A.3 B.4 C.5 D.62、如上图2,把一张矩形纸片ABCD沿对角线BD折叠,BC交AD于O.给出下列结论:①BC平分∠ABD;②△ABO≌△CDO;③∠AOC=120°;④△BOD是等腰三角形.其中正确的结论有()A.①③B.②④C.①②D.③④3、如上图3,一张四边形纸片ABCD,AD∥BC,将∠ABC对折使BC落在AB上,点C落在AB上点F 处,此时我们可得到△BCE≌△BFE,再将纸片沿AE对折,D点刚好也落在点F上,由此我们又可得到一些结论,下述结论你认为正确的有()①AD=AF;②DE=EF=EC;③AD+BC=AB;④EF∥BC∥AD;⑤∠AEB=90°;⑥S=AE•BE四边形ABCDA.3个B.4个 C.5个D.6个4、如下图1,一张平行四边形纸片,AB>BC,点E是AB上一点,且EF∥BC,若沿EF剪开,能得到两张菱形纸片,则AB与BC间的数量关系为()A.AB=2BC B.AB=3BC C.AB=4BC D.不能确定5、如上图2,把一张长方形纸片ABCD沿BD对折,使点C落在E处,BE与AD相交于点F,有下列几个说法:①∠BED=∠BCD;②∠DBF=∠BDF;③BE=BC;④AB=DE.其中正确的个数为()A.1个B.2个C.3个D.4个6、如下图1,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,AD=BC.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平行四边形,则得到的四边形是()A.只能是平行四边形B.只能为菱形C.只能为梯形D.可能是矩形7、如下图2,直角梯形纸片ABCD中,∠DCB=90°,AD∥BC,将纸片折叠,使顶点B与顶点D重合,折痕为CF.若AD=2,BC=5,则AF:FB的值为()A.B.C.D.三.解答题:1.如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C′,且BC′与AD交于E点,试判断重叠部分的三角形BED的形状,并证明你的结论.2、有一张矩形纸片ABCD中,其中AD=4cm,上面有一个以AD为直径的半圆,正好与对边BC相切,如图(1),将它沿DE折叠,使A点落在BC上,如图(2)所示,这时,半圆露在外面的面积是多少?3、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE,AE=10.在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.4、矩形折叠问题:如图所示,把一张矩形纸片沿对角线折叠,重合部分是什么图形,试说明理由.(1)若AB=4,BC=8,求AF.(2)若对折使C在AD上,AB=6,BC=10,求AE,DF的长.5、如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.6、在如图所示的一张矩形纸片ABCD(AD>AB)中,将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)过E作EP⊥AD交AC于P,求证:2AE2=AC•AP;(3)若AE=8cm,△ABF的面积为9cm2,求△ABF的周长.7、一张长方形纸片宽AB=8 cm,长BC=10 cm,现将纸片折叠,使顶点D落在BC边上的点F处(折痕为AE),求EC的长.8、有一张矩形纸片ABCD,E、F分别是BC、AD上的点(但不与顶点重合),若EF将矩形ABCD分成面积相等的两部分,设AB=m,AD=n,BE=x.(1)求证:AF=EC;(2)用剪刀将该纸片沿直线EF剪开后,再将梯形纸片ABEF沿AB对称翻折,平移拼接在梯形ECDF 的下方,使一底边重合,一腰落在DC的延长线上,拼接后,下方梯形记作EE′B′C.当x:n为何值时,直线E′E经过原矩形的顶点D.答案与评分标准一.填空题1:解:由折叠的性质知,ED=CD=AB,BE=BC=AD,∴△ABD≌△EDB,∠EBD=∠ADB,由等角对等边知,OB=OD.2:解:∵∠CBQ=∠PBQ=∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°∴cos∠PBN=BN:PB=1:2∴∠PBN=60°,∠PBQ=30 ∴PQ=PBtan30°=.3.:解:由折叠的性质可知∠EAD=∠DAB=45°,∠ADE=90°,∴∠DEA=45°,∠FEC=45°,∴FC=CE=DB=AB﹣AD=5﹣3=2.故本题答案为:2.4:解:连接CB′.由于B'为长方形纸片ABCD的对称中心,∴AB′C是矩形的对角线.由折叠的性质知,AC=2AB′=2AB=2b,∴sin∠ACB=AB:AC=1:2,∴∠ACB=30°.cot∠ACB=cot30°=a:b=.5:解:根据题意可得:AB=DE,∠A=∠E=90°,又∵∠AFB=∠EFD,∴△ABF≌△EDF(AAS).∴AF=EF,设BF=x,则AF=FE=8﹣x,在Rt△AFB中,可得:BF2=AB2+AF2,即x2=62+(8﹣x)2,解得:x=.故答案为:.6:解:∵△D′CE是△DCE沿直线CE翻折而成,∴CD′=AB=CD=10,DE=ED′,∴在Rt△BCD′中,BD′===5,∴AD′=AB﹣BD′=10﹣5=5,设AE=x,则ED′=5﹣x,在Rt△AED′中,AE2+AD′2=ED′2,即x2+52=(5﹣x)2,解得x=.∴DE=AD﹣AE=5﹣=,∵tan∠DCE===,∵△CDE是直角三角形,∴∠DCE=30°.故答案为:、30°.7:解:由折叠的性质知,A′D=AD=2CD,∴sin∠CA′D=CD:A′D=1:2,∴∠CA′D=30°,∴∠EA′B=180°﹣∠EA′D﹣∠CA′D=180°﹣90°﹣30°=60°.故答案为:60.8.解:依题意得∠GEF=∠CEF,而∠BEG=60°,∴∠GEF=∠CEF=60°,∵AD=30cm,BE=20cm,∴CE=BC﹣BE=AD﹣BE=10cm,而在Rt△CEF中,∠CFE=30°,∴EF=2CE=20cm.故答案为:20cm.二.选择题1.解:∵△AFE是Rt△ADE翻折而成,∴△ADE≌△AFE,∴AD=AF=BC=10cm,DE=EF,在Rt△ABF中,BF===6cm,∴CF=BC﹣BF=10﹣6=4cm,设CE=x,则EF=8﹣x,在Rt△CEF中,EF2=CE2+CF2,即(8﹣x)2=x2+42,解得x=3cm.故选A.2、解:设CD等于xcm,则:BD=(8﹣x)cm;∴AD=8﹣x;在直角三角形ACD中,已知AC=6,则由勾股定理可得:AD2=AC2+CD2 ∴(8﹣x)2=62+x2 ∴x=故选C.12.解:如图2,根据题意得:BD=AB﹣AD=2.5﹣1.5=1,如图3,AB=AD﹣BD=1.5﹣1=0.5,∵BC∥DE,∴△ABF∽△ADE,∴,即,∴BF=0.5,∴CF=BC﹣BF=1.5﹣0.5=1.故选B. 3.解:①由于将纸片沿AE对折,D点刚好也落在点F上,∴AD=AF,故正确;②由于将∠ABC对折使BC落在AB上,点C落在AB上点F处,∴DE=EF;由于将纸片沿AE对折,D 点刚好也落在点F上,∴DE=EF,∴DE=EF=EC,故正确;③由于将∠ABC对折使BC落在AB上,点C落在AB上点F处,∴BC=BF;∵AD=AF,∴AD+BC=AF+BF=AB,故正确;④无法证明EF∥BC∥AD,故错误;⑤∵∠DEF=2∠FEA,∠CEF=2∠FEB,∠DEC是平角,∴∠AEB=∠FEA+∠FEB=(∠DEF+∠CEF)=90°,∴∠AEB=90°,故正确;⑥∵S三角形ADE =S三角形AFE,S三角形BCE=S三角形BFE,∴S四边形ABCD=2S三角形AFB=2×(AE•BE)=AE•BE,故正确.故选C.4.解:∵把一张矩形纸片ABCD沿对角线BD折叠,∴∠C=∠A=90°,AB=CD;∵∠AOB=∠COD,∴△ABO≌△CDO(第二个正确);∴OB=OD;∴△BOD是等腰三角形(第四个正确).其它无法证明.故选B.5.解:∵菱形的四边相等,∴AE=AD=BC=EB,即可得出AB=AE+EB=2BC.故选A.6.解:如图:①∠BED和∠BCD为同一个角,故∠BED=∠BCD;②∵∠DBF=∠CBD(反折不变性),∠DBC=∠BDA,∴∠DBF=∠BDF;③根据翻折不变性,BE=BC;④∵AB=DC,ED=DC,∴AB=DE.故正确答案有4个.故选D.7解:①将三角形ADC和三角形ABC的斜边重合,其中A与C重合,可拼成矩形;②将三角形ADC和三角形ABC的斜边重合,其中A与A重合,可拼成一个四边形;③将DB重合,其中D与B重合,可拼成一个平行四边形;④将AD重合,其中A与D重合,可拼成一个平行四边形.8.解:延长CF交DA于E,将纸片折叠,使顶点B与顶点D重合,则DC=BC,CF是∠BCD的平分线,∠DCE=45°,∴△EDC是等腰直角三角形,DE=DC=5,AE=5﹣2=3,BC=5,∵AD∥BC,∴∠E=∠FCB,∠EAF=∠B,∴△AEF∽△BCF,∴AF:FB=AE:BC=,故选D.三.解答题1:解:△BED是等腰三角形.理由如下:∵AD∥BC,∴∠ADB=∠CBD.又由BC′是沿BD折叠而成,故∠EBD=∠CBD.∴∠ADB=∠EBD.∴△BED是等腰三角形.2.解:根据原题的图(2)可知∵DE是折痕,∴AD=A′D=4,CD=2,∠C=90°.∴∠DA′C=30°.∵AD∥BC,∠DA′C=30°,∴∠ODA′=30°,又∵OD=OF,∴∠OFD=30°.即∠FOD=180°﹣60°=120°.∴S阴影=S扇形﹣S△OFD.过O作OM⊥DF,因为OF=2,OM=1,DF=2MF=2,∴S△OFD =×DF×OM=×2×1=.∴S扇形OFAD==.∴S阴=﹣.3:证明:过E作EP⊥AD交AC于P,则P就是所求的点.当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°,∵在平行四边形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF,∴OE=OF∴四边形AFCE是菱形.∴∠AOE=90°,又∠EAO=∠EAP,由作法得∠AEP=90°,∴△AOE∽△AEP,∴,则AE2=A0•AP,∵四边形AFCE是菱形,∴,∴AE2=AC•AP,∴2AE2=AC•AP.4:解:(1)如图1,由折叠的性质可知AB=CD=C′D,又∠A=∠C′=90°,∠AFB=∠C′FD,∴△ABF≌△C′DF,∴BF=DF,∴重合部分△BDF为等腰三角形;设AF=x,则BF=DF=8﹣x,在Rt△ABF中,由勾股定理得AB2+AF2=BF2,即42+x2=(8﹣x)2,解得AF=x=3;(2)如图2,由折叠的性质可知BE=BC=10,又AB=6,在Rt△ABE中,由勾股定理,得AE==8;设DF=x,由折叠的性质得EF=FC=6﹣x,DE=AD﹣AE=2,在Rt△DEF中,由勾股定理得DE2+DF2=EF2,即22+x2=(6﹣x)2,解得DF=x=.5:(1)证明:∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D∴在△GAB与△GC′D中,∴△GAB≌△GC′D∴AG=C′G;(2)解:∵点D与点A重合,得折痕EN,∴DM=4cm,ND=5cm,∵AD=8cm,AB=6cm,∴BD=10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴DN=BD=5cm,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDC=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=.6、解答:(1)证明:由题意可知OA=OC,EF⊥AO,∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,∴AF=AE=10cm,设AB=a,BF=b,∵△ABF的面积为24cm2,∴a2+b2=100,ab=48,∴(a+b)2=196,∴a+b=14或a+b=﹣14(不合题意,舍去),∴△ABF的周长为14+10=24cm;(3)解:存在,过点E作AD的垂线,交AC于点P,点P就是符合条件的点;证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAO,∴△AOE∽△AEP,∴=,∴AE2=AO•AP,∵四边形AECF是菱形,∴AO=AC,∴AE2=AC•AP,∴2AE2=AC•AP.7:解:设EC=x,由AB=CD=8,AD=BC=10,及折叠性质可知,EF=ED=8﹣x,AF=AD=10,在Rt△ABF中,BF==6,则CF=BC﹣BF=10﹣6=4,在Rt△CEF中,CF2+CE2=EF2,即42+x2=(8﹣x)2,解得x=3;即EC=3cm.7、(1)证明:∵EF将矩形ABCD分成面积相等的两部分,∴(x+AF)•m=(n﹣x+n﹣AF)•m,(2分)∴2AF=2n﹣2x,∴AF=n﹣x,又∵EC=BC﹣BE=n﹣x,∴AF=EC;∴DE=E′E.∴2EC=E′B′.即2(n﹣x)=x,∴2n=3x.∴x:n=2:3.菁优网版权所有仅限于学习使用,不得用于任何商业用途11。