七年级下册期中模拟考试试卷真题
人教版七年级第二学期下册期中模拟数学试卷及答案

人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。
七下期中模拟试卷(含答案)

七年级下册思想品德期中模拟试卷班级姓名小组一、单项选择题(2×20=40分)1.小强同学最近有点烦——觉得周围同学不尊重他。
请你告诉他受人尊重的奥迷是( )A、尊重他人B、奉承他人C、藐视他人D、迎合他人2.支撑信心最重要的支柱是( )A、长处B、成绩C、实力D、自尊3. 自己的事情自己负责的前提是( )A、自主B、自尊C、自立D、自强4. 自强的航标、关键和捷径分别是( )A、战胜自我理想扬长避短B、理想扬长避短战胜自我C、扬长避短战胜自我理想D、理想战胜自我扬长避短5、所有自强者都有一个共同的特点,这个特点就是:()A、都有不平凡的个人经历B、家庭都不是很幸福C、为了人生的目标执著追求D、每个人的成长都遇到了不可逾越的鸿沟6.“滴自己的汗,吃自己的饭,自己的事,自己干,靠人、靠天、靠祖上,都不算是好汉。
”陶行知的这句话就是要求我们( )A.依赖自己 B.自立自强 C.自尊自信 D.自怜自爱7.小娟因为别人说了一句“你怎么这么胖”,就觉得自己难看,想尽办法节食,以至得了厌食症,身体极度虚弱,不得不休学。
这说明,该同学具有( )A.自强的优良品质 B.自信的优良品质 C.自尊的优良品质 D.虚荣心8.走在大街上,有人用责怪的目光盯着小明,因为小明毫不在乎地学一位残疾人走路。
这说明( )A.街上的人不懂尊重自己 B.不尊重他人的人不可能赢得他人的尊重C.街上的人不会审美 D.自尊与尊重他人没有什么必然联系9.下列行为属于自负的是( )A.课堂上不敢举手,不敢当众表达自己的看法B.对别人说的话过于敏感C.常常过高估计自己,看不起别人,自以为是D.实事求是地看待自己,既能看到自己的优点,也能看到自己的不足10.成功需要自信,自信是成功的基石,我们要唱起自信之歌,必须找到自信的基础。
自信的基础是( )A.发现自己的长处 B.寻找成功的记录C.克服自己的缺点与不足 D.培养勇敢的精神11.有人问居里夫人:“您认为成才的窍门在哪里?”居里夫人肯定地说:“恒心和自信心,尤其是自信心。
【3套试卷】人教版七年级第二学期下册期中模拟数学试卷(含答案)

人教版七年级第二学期下册期中模拟数学试卷(含答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x43.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0 5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣6.(3分)3﹣2可表示为()A.2B.﹣2C.D.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣39.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6 11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.612.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为.15.(3分)若>5是关于x的一元一次不等式,则m=.16.(3分)计算:﹣|﹣2|=.17.(3分)不等式组的最大整数解为.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.20.(6分)解不等式:21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.22.(8分)解不等式组:,并把解集在数轴上表示出来.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.24.(8分)化简求值:,其中x=﹣1,y=1.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.2017-2018学年广西贺州市昭平县七年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请将符合题意的序号填在题号的括号内.)1.(3分)下列实数中,无理数是()A.﹣2B.0C.πD.【分析】根据无理数的定义进行解答即可.【解答】解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3分)下列运算中错误的是()A.x2•x3=x5 B.x3•x3=2x3C.(﹣x)4•(﹣x)4=x8D.x•x3=x4【分析】直接利用同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、x2•x3=x5 ,正确,不合题意;B、x3•x3=x6,原式计算错误,符合题意;C、(﹣x)4•(﹣x)4=x8,正确,不合题意;D、x•x3=x4,正确,不合题意.故选:B.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.(3分)下列说法正确的是()A.1的平方根是1B.﹣49的平方根是±7C.的平方根是﹣2D.4是(﹣4)2的算术平方根【分析】根据平方根、算术平方根的性质和应用,逐项判定即可.【解答】解:∵1的平方根是±1,∴选项A不符合题意;∵﹣49<0,﹣49没有平方根,∴选项B不符合题意;∵的平方根是±2,∴选项C不符合题意;∵4是(﹣4)2的算术平方根,∴选项D符合题意.故选:D.【点评】此题主要考查了平方根、算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.4.(3分)已知x<y,则下列不等式一定成立的是()A.﹣x>﹣y B.1+x>1+y C.D.3x﹣3y>0【分析】直接根据不等式的性质判断即可.【解答】解:A、∵x<y,∴﹣x>﹣y,故本选项符合题意;B、∵x<y,∴1+x<1+y,故本选项不符合题意;C、∵x<y,∴,故本选项不符合题意;D、∵x<y,∴﹣3x﹣3y<0,故本选项不符合题意;故选:A.【点评】本题主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)﹣8的立方根是()A.2B.﹣2C.±2D.﹣【分析】直接利用立方根的定义分析求出答案.【解答】解:﹣8的立方根是:=﹣2.故选:B.【点评】此题主要考查了立方根,正确把握立方根的定义是解题关键.6.(3分)3﹣2可表示为()A.2B.﹣2C.D.【分析】直接利用负指数幂的性质计算得出答案.【解答】解:3﹣2==.故选:C.【点评】此题主要考查了负指数幂的性质,正确把握负指数幂的性质是解题关键.7.(3分)下列各组数中,互为相反数的是()A.﹣2与﹣1B.﹣2与C.|﹣3|与3D.﹣3与【分析】利用相反数的定义判断即可.【解答】解:﹣3和=|﹣3|=3,互为相反数,故选:D.【点评】此题考查了实数的性质,相反数,绝对值,以及立方根,熟练掌握相反数的定义是解本题的关键.8.(3分)一个长方形的长、宽分别是2x﹣3、x,则这个长方形的面积为()A.2x﹣3B.2x2﹣3C.2x2﹣3x D.3x﹣3【分析】根据长方形的面积公式即可求出答案.【解答】解:这个长方形的面积为:x(2x﹣3)=2x2﹣3x,故选:C.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算,本题属于基础题型.9.(3分)不等式3x﹣1<x+3的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式3x﹣1<x+3得,x<2,在数轴上表示为:.故选:D.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.10.(3分)﹣27的立方根与的平方根之和为()A.0B.6C.0或﹣6D.﹣12或6【分析】求出﹣27的立方根与的平方根,相加即可得到结果.【解答】解:∵﹣27的立方根为﹣3,的平方根±3,∴﹣27的立方根与的平方根之和为0或﹣6.故选:C.【点评】此题考查了实数的运算,涉及的知识有:平方根、立方根的定义,熟练掌握定义是解本题的关键.11.(3分)已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.6【分析】根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.【解答】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.【点评】本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.12.(3分)若不等式组无解,那么m的取值范围是()A.m≤2B.m≥2C.m<2D.m>2【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.【解答】解:由①得,x<m,由②得,x>2,又因为不等式组无解,所以m≤2.故选:A.【点评】此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.二、填空题:(每小题3分,共18分,请将答案直接写在题中的横线上.)13.(3分)9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)据统计,2017年全国普通高考报考人数约为9400000人,数据9400000用科学记数法表示为9.4×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9400000=9.4×106,故答案为:9.4×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(3分)若>5是关于x的一元一次不等式,则m=0.【分析】运用一元一次不等式的定义直接可得.【解答】解:∵>5是关于x的一元一次不等式,∴2m+1=1∴m=0故答案为:0【点评】本题考查了一元一次不等式的定义,熟练运用不等式的定义解决问题是本题的关键.16.(3分)计算:﹣|﹣2|=0.【分析】直接利用立方根的性质以及绝对值的性质化简得出答案.【解答】解:原式=2﹣2=0.故答案为:0.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(3分)不等式组的最大整数解为x=5.【分析】分别求出两个不等式的解集,可得不等式组的解集,即可求最大整数解.【解答】解:解x+1≥﹣3,解得:x≥﹣8,解x﹣2(x﹣3)>0,解得:x<6,∴不等式的解集为:﹣8<x<6∴最大整数解为:x=5故答案为:x=5,【点评】本题考查了一元一次不等式组的整数解,解答本题的关键是掌握一元一次不等式组的解法.18.(3分)对实数a、b,定义运算☆如下:a☆b.例如2☆3=2﹣3=.计算[2☆(﹣4)]×[(﹣3)☆(﹣2)]=.【分析】根据负整数指数幂a﹣p=计算即可.【解答】解:[2☆(﹣4)]×[(﹣3)☆(﹣2)]=2﹣4×(﹣3)2=×9=【点评】本题考查了实数的运算,熟练运用负指数幂运算是解题的关键.三、解答题:(本大题共8小题,共计66分.)19.(6分)计算:(π﹣3.14)0+++|﹣3|.【分析】直接利用负指数幂的性质以及立方根的性质和绝对值的性质分别化简得出答案.【解答】解:原式=1﹣3+4+3=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)解不等式:【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:2x﹣3≥3x+15,2x﹣3x≥15+3,﹣x≥18,x≤﹣18.【点评】本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.21.(8分)先化简,再求值:a2•a4﹣a8÷a2+(﹣a3)2÷(a6﹣2)0,其中a=﹣1.【分析】原式利用同底数幂的乘除法则,以及积的乘方与幂的乘方运算法则计算,合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=a6﹣a6+a6=a6,当a=﹣1时,原式=1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(8分)解不等式组:,并把解集在数轴上表示出来.【分析】分别解两个不等式,然后根据公共部分找确定不等式组的解集,再利用数轴表示解集;【解答】解:解不等式①,得x<﹣3;解不等式②,得x≥﹣4;原不等式组的解集为﹣4≤x<﹣3,不等式组的解集在数轴上表示出来为:.【点评】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.(8分)先阅读下面的内容,再解决问题:例题:若a2﹣2ab+2b2+6b+9=0,求a、b的值.解:因为a2﹣2ab+2b2+6b+9=0所以a2﹣2ab+b2+b2+6b+9=0所以(a﹣b2)+(b+3)2=0所以a﹣b=0,b+3=0所以a=﹣3.b=﹣3根据以上例题解决以下问题,若x2+2y2+2xy﹣4y+4=0,求x y的值.【分析】已知等式变形后,利用完全平方公式变形,利用非负数的性质求出x与y的值,即可求出x y的值.【解答】解:∵x2+2y2+2xy﹣4y+4=0,∴(x+2)2+(y﹣2)2=0∴x=﹣2,y=2,∴x y=(﹣2)2=4.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.24.(8分)化简求值:,其中x=﹣1,y=1.【分析】根据积的乘方、同底数幂的乘除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:=[(﹣)+]=(﹣+)=x6y6﹣,当x=﹣1,y=1时,原式=(﹣1)6×16﹣=1﹣=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.25.(10分)已知a、b为实数,且满足关系式|a﹣2b|+(3a﹣b﹣10)2=0.求:(1)a、b的值;(2)求+12的值.【分析】(1)利用非负数的性质列出方程组,求出方程组的解即可得到a,b的值;(2)把a与b的值代入原式计算即可求出值.【解答】解:(1)∵|a﹣2b|+(3a﹣b﹣10)2=0,∴,解得:,则a,b的值分别为4,2;(2)当a=4,b=2时,原式=6﹣2+12=16.【点评】此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.26.(12分)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【分析】(1)设每本文学名著x元,动漫书y元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【解答】解:(1)设每本文学名著x元,动漫书y元,可得:,解得:,答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著a本,动漫书为(a+20)本,根据题意可得:,解得:,因为取整数,所以x取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【点评】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.人教版七年级第二学期下册期中模拟数学试卷【含答案】一.选择题(满分30分,每小题3分)1.的相反数是()A.﹣2B.2C.﹣4D.42.如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0)D.(0,1)3.下列等式正确的是()A.±=2B.=﹣2C.=﹣2D.=0.1 4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.下列各点中位于第四象限的点是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(﹣3,﹣4)6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.7.在同一平面内,a、b、c是直线,下列说法正确的是()A.若a∥b,b∥c则a∥c B.若a⊥b,b⊥c,则a⊥cC.若a∥b,b⊥c,则a∥c D.若a∥b,b∥c,则a⊥c8.在平面直角坐标系中,点A'(2,﹣3)可以由点A(﹣2,3)通过两次平移得到,正确的是()A.先向左平移4个单位长度,再向上平移6个单位长度B.先向右平移4个单位长度,再向上平移6个单位长度C.先向左平移4个单位长度,再向下平移6个单位长度D.先向右平移4个单位长度,再向下平移6个单位长度10.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣5二.填空题(满分18分,每小题3分)11.1﹣的绝对值是,的平方根是.12.若点A的坐标(x,y)满足条件(x﹣3)2+|y+2|=0,则点A在第象限.13.a、b分别表示5﹣的整数部分和小数部分,则a+b=.14.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.15.的整数部分为a,则a2﹣3=.16.将直线y=kx﹣2向下平移1个单位后,正好经过点(2,3),则k=.三.解答题17.计算:+﹣+|1﹣|.18.如图,方格纸中每个小方格都是长为1个单位的正方形,若学校位置坐标为A(1,2),解答以下问题:(1)请在图中建立适当的直角坐标系,并写出图书馆(B)位置的坐标;(2)若体育馆位置坐标为C(﹣3,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.19.如图,EF∥AD,A D∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC 的度数.20.A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a.b满足b﹣|a|=2.(1)a=;b=;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t >0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则的值是否为一个定值?如果是,求出定值,如果不是,说明理由.21.如图,A、B、C为一个平行四边形的三个顶点,且A、B、C三点的坐标分别为(3,3)、(6,4)、(4,6).(1)请直接写出这个平行四边形第四个顶点的坐标;(2)求这个平行四边形的面积.22.完成下面的证明,如图点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE ∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥AB,∴∠FDE=∠()∵DF∥CA,∴∠A=∠()∴∠FDE=∠A()23.已知,如图,MN⊥AB,垂足为G,MN⊥CD,垂足为H,直线EF分别交AB、CD于G、Q,∠GQC=120°,求∠EGB和∠HGQ的度数.24.已知一个正数的平方根是a+3和2a﹣15.(1)求这个正数.(2)求的平方根.25.如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并说明理由.参考答案一.选择题1.解:∵=﹣2∴的相反数是2.故选:B.2.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.3.解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:第四象限的点的坐标的符号特点为(+,﹣),观察各选项只有C符合条件,故选C.6.解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.解:A、∵a∥b,b∥c,∴a∥c,故本选项符合题意;B、在同一平面内,当a⊥b,b⊥c时,a∥c,故本选项不符合题意;C、当a∥b,b⊥c时,a⊥c,故本选项不符合题意;D、当a∥b,b∥c时,a∥c,故本选项不符合题意;故选:A.8.解:把点A(﹣2,3)先向右平移4个单位,再向下平移6个单位得到点A′(2,﹣3).故选:D.10.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.二.填空题11.解:|1﹣|=﹣1,=4,4的平方根为±2,故答案为﹣1,±2.12.解:∵(x﹣3)2+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴A点的坐标为(3,﹣2),∴点A在第四象限.故填:四.13.解:∵2<<3,∴﹣3<﹣<﹣2,∴2<5﹣<3,∴a=2,b=5﹣﹣2=3﹣;∴a+b=5﹣,故答案为:5﹣14.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.15.解:∵的整数部分为a,3<<4,∴a=3,∴a2﹣3=9﹣3=6.故答案为:6.16.解:将直线y=kx﹣2向下平移1个单位后所得直接解析式为y=kx﹣3,将点(2,3)代入y=kx﹣3,得:2k﹣3=3,解得:k=3,故答案为:3.三.解答题(共9小题,满分19分)17.解:原式=3+2﹣2+﹣1=4﹣1.18.解:(1)建立直角坐标系如图所示:图书馆(B)位置的坐标为(﹣3,﹣2);(2)标出体育馆位置C如图所示,观察可得,△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为==10.19.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥B C,∴∠FEC=∠ECB,∴∠FEC=20°.20.解:(1)∵点A距离原点6个单位长度,点A在原点左边,∴a=﹣6,∵b﹣|a|=2.∴b=8,故答案为﹣6,8.(2)①∵OP=2PB,观察图象可知点P在点O的右侧:2t﹣6=2(14﹣2t)或2t﹣6=2(2t﹣14),解得t=或11.②(14﹣2t)=6或(2t﹣14)=6解得t=4或10.(3)当点P运动到线段OB上时,AP中点E表示的数是=﹣6+t,OB的中点F表示的数是4,所以EF=4﹣(﹣6+t)=10﹣t,则==2.所以的值为定值2.21.解:(1)BC为对角线时,第四个点坐标为(7,7);AB为对角线时,第四个点为(5,1);当AC为对角线时,第四个点坐标为(1,5).(2)图中△ABC面积=3×3﹣(1×3+1×3+2×2)=4,所以平行四边形面积=2×△ABC面积=8.22.解:证明:∵DE∥AB,∴∠FDE=∠BFD(两直线平行,内错角相等)∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等)∴∠FDE=∠A(等量代换).故答案为:BFD,两直线平行,内错角相等,BFD,两直线平行,同位角相等,等量代换.23.解:∵∠GQC=120°,∴∠DQG=60°∵MN⊥AB,MN⊥CD,∴AB∥CD,∠BGH=90°,∴∠EGB=∠DQG=60°,∠BGQ=∠GQC=120°,∴∠HGQ=120°﹣90°=30°.24.解:(1)∵一个正数的平方根是a+3和2a﹣15,∴a+3+2a﹣15=0,∴a=4,a+3=7,这个正数为72=49;(2)a+12=4+12=16,∵=4,∴的平方根是=±225.解:∠AED=∠ACB.理由:∵∠1+∠4=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠4.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).七年级(下)数学期中考试试题(答案)一、选择题(每小题3分,共计30分) 1.下列四个方程是二元次方程的是( )A.x+9=0B.2x-a=7C.3ab=9D.11y x3+=2.以下各组长度的线段为边,能构成三角形的是( )A.1,2,3B.3,4,5C.4,5,11D.8,4,4 3.在数轴上表示不等式x ≥-2的解集 正确的是( ) A.B. C.D.4.下列设备,有利用角形的稳定性的是( )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架 5.如果a >b ,那么下列不等式国立的是( )A.a-3>b-3B.-3b <-3aC.2a >2bD.-a <-b 6.关于x 、y 的方程组x 2y 3mx y 9m+=⎧⎨-=⎩的解是方程3x+2y=34的一组解,那么m 的值是( )A.1B.-1C.1D.-2 7.边长是整数,周长不大于12的等边三角形的个数是( ) A.1个 B.2个 C.3个 D.4个8.某种植物适宜生长的温度为18C-20C.已知山区海拔每升高100米,气器下降0.55ºC ,现测得山脚下的气温为22ºC ,问该植物种在山上的哪部分为宜? 如果该植物种植在海拔高度为x 米的山区较适宜,则由题意可列出的不等式组为( ) A..x 182205520100≤-⨯≤ B..x 182205520100≤-⨯<C..1822055x 20≤-≤D.x 182220100≤-≤9.如右图,△ABC 中,BD 是∠ABC 的角平分线,DE ∥BD ,交AB 于E ,∠A=60º,∠BDC=95º,则∠BED 的度数是( )A.35ºB.70ºC.110ºD.130º10.下列说法正确的有( )①同平面内,三条线段首尾顺次相接组成的图形三角形;②三角形的外角大于它的内角;③各边都相等的多边形是正多边形;④三角形的中线把三角形分成面积相等的两部分;⑤三角形的三条高交于一点;⑥果个三角形只有一条高在三角形的内部,那么这个三角用一定是钝角三角形A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共计30分)11.已知方程x-2y=8,用含的式子表示y ,则y=____________. 12.不等式4x-3<4的解集中,最大的整数x=____________. 13.若个多边形内角和等于1260º,则该多边形边数是____________. 14.若方程m n 3m 4n x 2y 60+-++=是二元一次方程,则____________.15.已知三形的两边分别为3和5,当周长为,5的倍数时,第三边长为____________. 16.如图△ABC 中,AD 是BC 上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是___________. 17.关于x 的不等式组3x 515x a 12->⎧⎨+≤⎩有2个整数解,则a 的取值范围是____________.18.如图所示,∠A=100º,作BC 的延长线CD ,∠ABC 与∠ACD 的角平分线相交于A 1,∠A 1BC 与∠A 1CD 的角平分线相交于A 2...以此类推,∠A 5BC 与∠A 5CD 的角平分线相交于A 6,则∠A 6=__________.2A16题18题20题19.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________. 20.如图,AC ⊥BD ,AF 平分∠BAC ,DF 平∠EDB ,∠BED=100º,则∠F 的度数是___________. 21.(本题8分) 解二元一次方程组:()2x y 313x 2y 8-=⎧⎨+=⎩ ()()x y 32433x 2y 120⎧+=⎪⎨⎪--=⎩(1)解一元一次不等式52x x 247x 15210-+--<-(2)解不等式组并把它的解集在数轴上表示出来 (2x 1x 53x 22x 3+<⎧⎨+≥-⎩)+23.(本题6分)如图,在10×10的网格中的每个小正方形边长都是1,线段交点称作格点。
七年级下册期中的模拟试题

七年级下册期中的模拟试题七年级下册期中的模拟试题一、单项选择题(每题2分,共50分)1、隋朝时,一位商人从今天的杭州由水路到洛阳做生意,他先后要经过()A、永济渠、江南河、邗沟B、通济渠、会通河、江南河C、江南河、邗沟、通济渠D、通惠河、江南河、邗沟2、我国历史上被称作有"贞观遗风"的统治者是()A、隋文帝B、唐太宗C、武则天D、唐玄宗3、唐朝进入全盛时期是在()A、唐太宗时期B、武则天时期C、唐玄宗统治前期D、唐玄宗统治后期4、用分科考试的方法选拔官员的科举制度形成于()A、汉朝B、隋朝C、唐朝D、元朝5、唐朝有一位高僧六次东渡日本,促进了中日友好交往,传播了中华文明,这位高僧是()A、僧一行B、玄奘C、郑和D、鉴真D6、史称"得人者昌",唐朝前期统治者都十分重视人才。
下列人物中唐玄宗和武则天都曾重用的有()(1)房玄龄(2)姚崇(3)杜如晦(4)魏征(5)宋璟A、(1)(2)(3)(4)B、(1)(4)C、(2)(5)D、(2)(3)(4)(5)7、有位收藏家最近从古董市场上购得一座彩陶马,上面有多种颜色,主要有黄、绿、青三色,经专家鉴定是真品,你知道它是什么时候制作的()A、秦朝B、汉朝C、隋朝D、唐朝8、"和同为一家"反映的是哪个少数民族与唐朝的友好相处()A、吐蕃B、回纥C、彝族D、白族9、“澶渊之盟”的双方是()A、北宋与辽B、北宋与西夏C、南宋与西夏D、南宋与金10、宋代城市中固定的娱乐场所叫做()A、城B、市C、坊D、瓦子11、王安石在《元日》中写道:"爆竹声中一岁除,春风送暖如屠苏。
千户万户曈曈日,总把新桃换旧符。
"诗中描述的节日是()A、元宵节B、中秋节C、春节D、冬至12、“苏湖熟,天下足。
”这一谚语反映的实质问题是()A、江南地区已经成为我国的经济重心B、苏湖地区粮食获得大丰收C、宋朝粮食产量非常大D、苏湖地区是我国经济重心13、北宋时期发明的活字印刷术比欧洲早()A、300年B、400年C、700年D、1100年14、郭靖和杨康是金庸小说《射雕英雄传》中两个重要人物。
2023年七年级语文(下册期中)模拟试卷及答案

2023年七年级语文(下册期中)模拟试卷及答案满分:120分考试时间:120分钟一、语言的积累与运用。
(35分)1、下列加点字的注音无误的一项是()A.憎.恶(zèng)惶.急(huáng)涎.水(xián)滞.笨(zhì)B.诘.问(jié)疮.疤(cāng)晌.午(shǎng)镶嵌.(qiàn)C.哀悼.(dào)侮.辱(wū)筹.划(chóu)骷髅..(kū lóu)D.震悚.(sǒng)尴尬..(gān gà)取缔.(dì)愧怍.(zuò)2、下列词语书写正确的一项是()A.建壮嘹亮精神抖擞喜出忘外B.茏罩澄清花枝招展小心冀冀C.烘托莅临恍然大悟翻来覆去D.决别憔悴混为一团各得其所3、下列句子中划线的成语使用不恰当的一项是()A.班主任很善于发挥每个同学的长处,大家各得其所,各尽所能地为班级做出自己的贡献。
B.这件事我在床上翻来覆去地想了很多遍,但还是没有想出其中的道理。
C.参观完所有场馆,他喜出望外地宣布:我终于看完了所有的景点!D.小孩子遇事要和父母商量,不要自作主张。
4、下面的句子没有语病的一项是( )A.老舍的纪念馆是位于丰富胡同19号的普通的一座四合院。
B.雪后的济南即使很寒冷,也绝对让人感到温馨。
C.我国青少年体质连续多年下滑已不再是不争的事实。
D.是否具备良好的心理素质,是我们能取得好成绩的条件之一。
5、下面句子不是比喻句的一项()A.狂风呼啸着穿过破房子的缝隙,像一只饥饿的野兽发出的吼叫。
B.在我眼里,他就像这块不毛之地上涌出的神秘泉水。
C.看到了一片灰灰的薄雾,像地毯一样,铺在高原上。
D.狡诈者轻鄙学问,愚鲁者羡慕学问,惟聪明者善于运用学问。
6、依次填入下面横线处的句子,顺序排列最恰当的一项是()地球的每一缕伤痕,都承载着人类惨痛的历史。
①它是一部例证“落后就要挨打”的活生生的教材;②它是一部控诉战争和种族歧视的血泪书。
人教版七年级下册数学期中考试试题附答案

人教版七年级下册数学期中考试试卷一、单选题1的值等于()A .32B .32-C .32±D .81162.在平面直角坐标系中,点P 在第二象限,点P 到x 轴的距离为4,到y 轴的距离为3,则点P 的坐标为()A .()3,4-B .()4,3-C .()3,4-D .()4,3-3.如图,三条直线相交于点O .若CO ⊥AB ,∠1=56°,则∠2等于()A .30°B .34°C .45°D .56°4.若将点(),A a b 向左平移2个单位,再向上平移3个单位得到点B ,则点B 的坐标为()A .()2,3a b -+B .()2,3a b --C .()2,3a b ++D .()2,3a b +-5.8-的立方根为()A .2-B .2±C .2D .46.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=()A .10︒B .15︒C .20︒D .25︒7.如图,CD AB ⊥于点D ,90ACB ∠=︒,则下列说法错误的是()A .点C 到AB 的距离等于CD 的长B .点A 到BC 的距离等于AC 的长C .点B 到CD 到的距离等于BD 的长D .点D 到AC 的距离等于AD 的长8.将不大于实数a 的最大整数记为[]a ,则3⎤=⎦()A .3-B .2-C .1-D .09.如图,正方形的一条边的端点恰好是数轴上0和1的对应点,以0的对应点为圆心,以正方形的对角线为半径,逆时针画弧,交数轴于点P ,则点P 对应的数是()A 1B .C .1D . 1.414-10.在数轴上,点A 对应的数是2-,点B 对应的数是1,点P 数轴上动点,则PA PB +的最小值为()A .0B .1C .2D .3二、填空题11“>”,“=”,或“<”).12.在测定跳远成绩时,从落地点拉向起跳线的皮尺应当与起跳线_______.13.如图,//AB l ,//AC l ,则A ,B ,C 三点共线,理由是:__________________________________________.14.把命题“相等的角是对顶角”改写成“如果…,那么…”的形式是_____.15.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A 出发,沿着A B C D A →→→→→B →…路径循环爬行,当爬行路径长为2019个单位长时,蚂蚁所在格点坐标为_______.三、解答题16.计算:(1;(2.17.求下列各式中的x 的值:(1)()2110x +-=;(2)()3291034x ++=.18.定义:两条线段所在直线相交形成四个角,我们称不大于直角的角叫做两条线段的夹角.如图,小明在一张白纸上画了两条相交线段,用一张小纸片盖住了相交部分,同桌的你如何知道这两条线段的夹角呢?只有一把直尺、一个量角器和一支铅笔供你使用,请你画出一个与夹角相等的角(不能延长),标出该角并测量度数.19.保留画图痕迹,并回答问题:如图,点P 在MON ∠的内部.(1)过点P 画//PA ON ,交OM 于点A ;.(2)过点P 画PB ON ⊥,交ON 于点B ;(3)填空:若70MON ∠=︒,则PAM ∠=_______,BPA ∠=_______.20.完成下列证明.如图,点D ,E ,F 分别在线段BC ,AB ,AC 上,12∠=∠,23180∠+∠=︒.求证:180A B C ∠+∠+∠=︒.证明: ∠l=∠2,∴//AB DF (_________________________________________________________).∴4∠=∠B (__________________________________________________________). 23180∠+∠=︒,∴//DE AC (_________________________________________________________).∴1A ∠=∠(___________________________________________________________),24180C ∠+∠+∠=︒(_____________________________________________________________),∴180A B C ∠+∠+∠=︒.21.如图,四边形ABCD 中,//AD BC ,100A ∠=︒,BD 平分ABC ∠,BD CD ⊥,求C ∠的度数.22.如图,网格的每个小正方形的边长都是1个单位长度,三角形ABC 的顶点都在网格的格点上.(1)建立适当的平面直角坐标系,写出三角形ABC 顶点的坐标;(2)在(1)的平面直角坐标系下,将三角形ABC 向右平移1个单位长度,然后再向上平移2个单位长,得到三角形A B C ''',画出平移后的图形,并指出其各点的坐标.23.如图,在平面直角坐标系中,已知点(),0A a ,()0,B b ,将线段AB 沿着x 轴向右平移至CD ,使点C 与点A 对应,点D 与点B 对应,连接BD .(1)若a ,b 满足40a ++.①填空:a =_______,b =_______;②若面积关系:1:3AOB OCDB S S ∆=四边形成立,则点D 的坐标为_______;(2)BE 平分ABO ∠,DE 平分BDC ∠,BE ,DE 相交于点E ,判断BED ∠的大小,并说明理由.参考答案1.A【详解】分析:根据平方与开平方互为逆运算,可得答案.32,点睛:本题考查了算术平方根,注意一个正数的算术平方根只有一个.2.A【分析】根据“点P在第二象限”可知,点P的横坐标为负,纵坐标为正,根据“点P到x轴的距离为4,到y轴的距离为3”可分别得出点P横坐标与纵坐标的绝对值,即可得出坐标【详解】解:∵点P在第二象限∴点P的横坐标小于0,纵坐标大于0∵点P到x轴的距离为4,到y轴的距离为3∴点P的坐标是(-3,4)故选:A【点睛】本题考查坐标平面内点的坐标的特点与点的坐标的几何意义:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.3.B【详解】试题分析:根据垂线的定义求出∠3,然后利用对顶角相等解答.解:∵CO⊥AB,∠1=56°,∴∠3=90°﹣∠1=90°﹣56°=34°,∴∠2=∠3=34°.故选B.考点:垂线.4.A【分析】根据坐标平移的规律:横坐标左减右加,纵坐标上加下减,即可得出答案解:原来的横坐标是a ,向左平移2个单位得到点B 横坐标a -2,原来纵坐标是b ,向上平移3个单位得到点B 纵坐标b+3.故答案是A【点睛】本题考查坐标平移的规律,关键是要熟练掌握左右移动改变点的横坐标,上下移动改变点的纵坐标.5.A【分析】根据立方根的定义与性质即可得出结果【详解】解:∵3(2)=8--∴8-的立方根是2-故选A【点睛】本题考查了立方根,关键是熟练掌握立方根的定义,要注意负数的立方根是负数.6.B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
浙教版七年级下册期中模拟卷(含解析)

浙教版七年级下册期中模拟卷一、单选题(每小题3分,共30分)1.如图,AB,CD被DE所截,则∠D的同旁内角是( )A.∠1B.∠2C.∠3D.∠42.方程2x−1y=0,3x+y=0,2x+xy=1,3x+y−2x=0,x2−x+1=0中,二元一次方程的个数是( )A.5个B.4个C.3个D.2个3.某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为( )A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s 4.已知{x=3y=5是方程mx+2y=-2的一个解,那么m的值为( )A.83B.-83C.85D.-45.下列计算正确的是( )A.a3•a2=a6B.6a2÷2a2=3a2C.x5+x5=x10D.y7•y=y86.如图,若△DEF是由△ABC经过平移后得到,已知A,D之间的距离为1,CE=2,则EF是( )A.1B.2C.3D.47.如图,将三角板的直角顶点放在直尺的一边上,如果∠1=70°,那么∠2的度数为( )A.10°B.15°C.20°D.25°8.《算法统宗》中有如下问题:“哑巴来买肉,难言钱数目,一斤少二十五,八两多十五,试问能算者,合与多少肉”,意思是一个哑巴来买肉,说不出钱的数目,买一斤(16两)还差二十五文钱,买八两多十五文钱,问肉数和肉价各是多少?设肉价为x 文/两,哑巴所带的钱数为y 文,则可建立方程组为( )A .{16x =y−258x =y +15B .{16x =y +258x =y−15C .{8x =y−2516x =y +15D .{8x =y +2516x =y−159.使(x 2+px+8)(x 2﹣3x+q )的乘积不含x 3和x 2,则p 、q 的值为( )A .p=0,q=0B .p=﹣3,q=﹣1C .p=3,q=1D .p=﹣3,q=110.观察:(x−1)(x +1)=x 2−1,(x−1)(x 2+x +1)=x 3−1,(x−1)(x 3+x 2+x +1)=x 4−1,(x−1)(x 4+x 3+x 2+x +1)=x 5−1,⋯据此规律,求22023+22022+22021+⋯22+2+1的个位数字是( )A .1B .3C .5D .7二、填空题(每小题3分,共24分)11.如图,直线AB//CD ,∠B =70°,∠D =30°,则∠E 的度数是 .12.已知二元一次方程3x -2y =10,用含x 的代数式表示y ,则y = .13.已知x m =8,x n =4,则x 2n ﹣m = ,x 3n+2m = .14.对于非零的两个实数a ,b ,规定a ⊗b =am−bn ,若3⊗(−5)=−5,(−4)⊗7=−8,则(−1)⊗2的值为 .15.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使BC 边与三角形ADE 的一边互相平行.则∠BAD (0°<∠BAD <180°)所有可能符合条件的度数为 .16.已知2m +n−3=0,则4m ×2n 的值是 .17.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2= .18.如图,在长方形ABCD 中放入边长为8的正方形AEGF 和边长为4的正方形NHCM ,S 1、S 2、S 3表示对应阴影部分的面积,若S 2=4S 1−3S 3,且AD 、AB 的长为整数,则S 2的值是 .三、解答题(第19题每小题4分,第20题4分,第21-24题每小题5分,共46分)19.计算:(1)计算:(π−3.14)0+(12)−1+(−1)2023(2)化简:(-b )2⋅b +6b 4÷(2b )+(−2b )3(3)化简:(x−1)2−x(x +2)20.解方程组:{x 3=y 44x +5y =3221.已知:如图,∠ABC=∠ADC ,DE 是∠ADC 的平分线,BF 是∠ABC 的平分线,且DE//BF .求证:∠1=∠3.22.已知如图,AB ∥CD ∥EF ,点M 、N 、P 分别在AB 、CD 、EF 上,NQ 平分∠MNP .(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP 、∠DNQ 的度数; (2)探求∠DNQ 与∠AMN 、∠EPN 的数量关系.23.解答题(1)根据如图所示的图形写出一个恒等代数式;(2)已知x- 1x=3(其中x>0),求x+ 1x的值.24.根据以下素材,探索完成任务。
七年级下学期期中考试模拟卷(含答案)

详解:∵6< < , , , . ∴ ∴ 40 7 a=6 b=7 a+b=13
故答案为 .13
点睛:考查了估算无理数的大小,能估算出 40 的范围是解答此题的关键.
.15 −2 【分析】 将 m 看做已知数,表示出 x+y,利用 = x+y 0 列出方程,即可求出 m 的值. 【详解】
.C 20cm
.D 22cm
1
10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条
长为 2025 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按 ﹣A B
﹣C﹣D﹣A﹣的规律绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是( )
3
(2)如果在第二象限内有一点 P(m, 1 ),请用含 m 的式子表示四边形 ABOP 的面积; 2
(3)在(2)的条件下,是否存在点 P,使四边形 ABOP 的面积为△ABC 的面积相等?若存在,
求出点 P 的坐标;若不存在,请说明理由.
.25 (10 分)如图,直线 PQ//MN ,点 C 是 、 PQ MN 之间(不在直线 , PQ MN 上)的一个动点.
的
值.
(①A3)CB如+①图A3D,B若的点度D数是. MN 下方一点,BC 平分①PBD,AM 平分①CAD,已知①PBC=25°,求
4
参考答案
.1 D 【分析】
根据第四象限的点的横坐标是正数,纵坐标是负数解答.
【详解】
解:A、(2,0)在 x 轴上,不合题意; B、(﹣2,3)在第二象限,不合题意; C、(﹣3,﹣5)在第三象限,不合题意; D、(2,﹣5),在第四象限,符合题意. 故选:D. 【提点】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册期中模拟考试试卷
一、选择题
1. 下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()
A . 1
B . 2
C . 3
D . 4
2. 如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()
A . 70°
B . 100°
C . 110°
D . 120°
3. 若a2=4,b2=9,且ab<0,则a-b的值为()
A . -2
B . ±5
C . 5
D . -5
4. 下列说法正确的是()
A . 有理数都是有限小数
B . 无限循环小数都是无理数
C . 有理数和无理数都可以用数轴上的点表示
D . 无理数包括正无理数,0和负无理数
5. 如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()
A . 30°
B . 35°
C . 40°
D . 45°
6. 如图,直线AB和CD相交于O,OE⊥AB,那么图中∠DOE与∠COA的关系
是()
A . 对顶角
B . 相等
C . 互余
D . 互补
7. 由方程组可得出x与y的关系式是()
A .
B .
C .
D .
8. 下列各点中,位于第四象限的点是()
A .
B .
C .
D .
9. 如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,3),B (﹣3,1),C(﹣1,2),若将△ABC平移后,点A的对应点A1的坐标为(1,2),则点C的对应点C1的坐标为()
A . (﹣1,5)
B . (2,2)
C . (3,1)
D . (2,1)
10. 如图,用直尺和三角尺画图:已知点P和直线a,经过点P作直线b,使b∥a,其画法的依据是()
A . 同位角相等,两直线平行
B . 两直线平行,同位角相等
C . 过直线外一点有且只有一条直线与已知直线平行
D . 内错角相等,两直线平行
11. 下列语句正确的是()
A . 一个数的立方根不是正数就是负数
B . 负数没有立方根
C . 如果一个数的立方根是这个数本身,那么这个数一定是零
D . 一个数的立方根与这个数同号,零的立方根是零
12. 如图,AB∥CD,EF交AB、CD于点E、F、EG平分∠BE F,交CD于点G.若∠1=40°,则∠EGF=()
A . 20°
B . 40°
C . 70°
D . 110°
二、填空题
13. 下列各数:,,,1.414,
,3.12122,,3.161661666…(每两个1之间依次多1个6)中,无理数有________个,有理数有________个,负数有________个,整数有________个.
14. ﹣的绝对值的倒数是________.
15. 如图所示,将含有30°角的三角板的直角顶点放在互相平行的两条直线其中一
条上,若∠1=35°,则∠2的度数为________度
16. 一个正数的平方根分别是x+1和x﹣5,则x=________.
17. 点P(3,5)到x轴的距离有________个单位长度,到y轴的距离有________个单位长度.
18. 如图,△ABC中,点D在BA的延长线上,DE∥BC,如果∠BAC=80°,∠C=33°,那么∠BDE的度数是________.
三、计算题
19. 解方程:(1)4x2-9=0 x+x-2=0
20. 计算:
(1);
(2)
四、解答题
21. 已知x是16的算术平方根,y是9的平方根,求x2+y2+x﹣2的值.
22. 如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.
23. 如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标.
(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.
(3)求出三角形ABC的面积.
24. 如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
25. 将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°,∠E=∠B=45°)
(1)① 若∠DCE=35°,则∠ACB=________°②若∠ACB=140°,则∠DCE=________°(2)由(1)猜想,∠ ACB与∠DCE 的数量关系:________
(3)当∠ACE<180°,且点E在直线AC上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由),若不存在,说明理由。
26. 长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°
(1)求a、b的值;
(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.。