可逆电池的电动势及其应用
09可逆电池电动势及其应用

电池反应: 电池反应:Hg2SO4(s)+Cd(Hg)(a)+8/3H2O→CdSO48/3H2O(s)+2Hg(l)
优点: 优点: 电动势稳定,随温度改变小. 电动势稳定,随温度改变小.
ET/V = 1.01845 – 4.05× 10-5(T/K –293.15) × – 9.5× 10-7(T/K –293.15)2 × + 1× 10-8 (T/K –293.15)3 ×
三 设计原电池 设计电池基本思路: 设计电池基本思路: (1)根据元素氧化数的变化,确定氧还电对,写出电 根据元素氧化数的变化,确定氧还电对, 极反应. 极反应. (必要时可在方程式两边加同一物质) 必要时可在方程式两边加同一物质) (2)设计可逆电池, 写出电池简式.考虑电极材料, 设计可逆电池, 写出电池简式.考虑电极材料, 溶液浓度,相界面(双液电池必须加盐桥) 溶液浓度,相界面(双液电池必须加盐桥)等实际因 素. (3)检查所设计电池反应是否与原给反应吻合. 检查所设计电池反应是否与原给反应吻合.
丹尼尔( 丹尼尔(Daniel)电池
放电时:
A Zn (-): Zn →Zn2+ + 2e: Cu(+): Cu2+ + 2e- →Cu : 电池反应: 电池反应: Zn + Cu2+ →Zn2+ + Cu + Zn (+) : Zn2+ + 2e- → Zn Cu (-) : Cu → Cu2+ + 2e电池反应: 电池反应: Zn2+ + Cu → Zn + Cu2+
4.计算原电池可逆放电时的反应热 4.计算原电池可逆放电时的反应热 对于可逆电池, 对于可逆电池,有 rSm = QR/T
可逆电池的电动势及其应用

正极(Ag+AgC1 极, 阴极) : AgCl (s) + e − → Ag (s) + Cl− 总反应为
1 1 Zn (s ) + AgC1(s ) → Zn 2 + C1− + Ag(s ) 2 2
( 8–1 )
(2) 若E外>E,且E外-E=δE,电池内的反应恰(s) + Cl− → AgCl (s) + e − 阳极(Ag+AgC1 极) : 总反应为
1 2+ 1 Zn + Ag ( s ) + C1− → Zn ( s ) + AgC1( s ) 2 2
( 8–2 )
1 1 Zn 2+ + e − → Zn ( s ) 2 2
由于以上两个总反应互为逆反应,且在充放电时电流均很小,所以为一可逆电池。 又如,丹尼尔电池 正极:Cu电极(电解液:CuSO4) 负极:Zn电极(电解液:ZnSO4) 作为原电池 E>E外(电池放电)
△GT, p<-nFE′。
研究可逆电池十分重要,因为从热力学来看,可逆电池所作的最大有用功是化学能转 变为电能的最高极限,这就为我们改善电池性能提供了一个理伦依据,另一方面在研究可 逆电池电动势的同时,也为解决热力学问题提供了电化学的手段和方法。 例如,某一电化学装置 电极:Zn (s) 和 Ag (s)+AgCl (s)
6
陕西师范大学物理化学精品课程
图 8.2 韦斯顿标准电池简图 电极反应为 负极(Cd极) :Cd(汞齐)→ Cd2++2e正极(Hg极) :Hg2SO4(s)+2e- → 2Hg(l)+SO42− 电池反应
07章_可逆电池的电动势及其应用

8 8 2Cd( 汞齐) SO 4 H 2O(l) CdSO 4 H 2O(s) 2e 3 3
阴极:
8 8 电池反应 : Cd( 汞齐) Hg 2SO 4 (s) H 2O(l) 2Hg(l) CdSO 4 H 2O(s) 3 3
上一内容 下一内容 回主目录
' r , max
当可逆电池的反应进度=1mol时
下一内容 回主目录
返回
2016/1/6
化学反应设计成电池做功和热机做功区别
根据热力学原理,恒温恒压下,1mol反应进度放热化学反应对外能 放出的热是Qm为反应的摩尔反应焓变 r Hm 。
这一热量通过热机对外做 功或发电
目前最高能量转化 率40 %
上一内容 下一内容 回主目录
返回
2016/1/6
可逆电池可逆电池的必备条件
实际上并不是所有的电池都是可逆的 当电池电动势E >E外 ,电池对外放电, 其反应为: 正极反应: 2H+ +2e → H2 负极反应: Zn -2e → Zn2+ 电池反应: Zn +2H+ → Zn2+ + H2 当E < E外 ,对电池充电,其反应为: 正极反应: Cu-2e → Cu2+ 负极反应: 2H+ +2e → H2 电池反应: Cu+2H+ → Cu2++ H2
由 rGm和rSm 两个量,就可以容易地求得:
E Δr H m ΔrGm TΔr Sm zFE zFT T p (7.6.5)
E
这个rHm 是在没有非体积功的情况下,恒温恒压反应热。 因为电动势容易精确测定,所以按上式求
Zn
Cu
HCl 不满足充、放 电反应互为可逆 反应,因此,这 个电池不是可逆 电池。 P-319
可逆电池电动势及应用

可逆电池电动势及应用可逆电池是指在一定条件下,电池的氧化还原反应既可以正向进行,也可以逆向进行,进而可以通过外加电势来实现电能的存储和释放。
可逆电池的电动势是指在电池没有电流通过时,测得的产生的电动势。
可逆电池的电动势主要是由电极反应引起的。
在可逆电池中,每一个电极都有自己的电对,可以分别写出其电对的反应方程式。
例如,在可逆电池中,如果正极是铜,负极是锌,则其电对可以写作:Cu2+ + 2e- -> Cu (正极反应)Zn -> Zn2+ + 2e- (负极反应)在可逆电池中,正极与负极之间既可以发生正极反应,也可以发生负极反应。
当外加电势为正极时,正极反应发生;当外加电势为负极时,负极反应发生。
当外加电势为零时,正负极反应同时发生,而且它们的速率相等。
因此,在可逆电池中,电化学动力学状态迅速达到平衡状态,电池的电动势不会因为正负极反应到达平衡而发生变化。
应用方面,可逆电池具有以下几个方面的重要应用。
1. 电能存储和释放:可逆电池是一种可充放电电池,可以通过外加电势电化学反应的正向和逆向来在化学能和电能之间进行转换。
电池在充电状态下将电能转化为化学能,而在放电状态下将化学能转化为电能。
可逆电池被广泛应用于手机、笔记本电脑、电动车等各种移动设备中,能够实现电能的高效存储和释放。
2. 电源备份:可逆电池的典型例子是蓄电池,它们能够储存电能并在需要时释放出来。
蓄电池被应用于各种场合,如UPS电源、太阳能和风能储能系统、汽车启动电池等。
蓄电池的高可逆性和长寿命使得它们成为电力系统的备用电源,确保供电的稳定性和可靠性。
3. 温度控制:可逆电池也被应用于温度控制的设备中,如恒温器和温度计。
可逆电池在恒温器中起到稳定温度的作用,通过测量温度引起的电动势差,来调整继电器的工作状态,从而实现恒定的温度控制。
4. 电化学分析:可逆电池的电动势在电化学分析中也具有重要的应用价值。
通过测量可逆电池的电动势变化,可以对溶液中的阳离子或阴离子进行定量分析。
可逆电池的电动势及其应用

z+
电极符号(负极) M(s)|Mz+(aq) Zn(s)|Zn2+(aq) Cu(s)|Cu2+(aq) Cd(Hg)(a)|Cd2+(a+) Na(Hg)(a)|Na+(a+) (Pt)H2(p)|H+(a+) (Pt)H2(p)|OH-(a-) (Pt)O2(p)|OH-(a-) (Pt)O2(p)|H+(a+) (Pt)Cl2(p)|Cl-(a-)
E x = Es ⋅
AH AC
二、标准电池 韦斯顿标准电池
特点:稳定、温度系数小、重现性好、高度可逆
负极:镉汞齐(含镉 5-14%) Cg(Hg)(12.5%) – 2e- → Cd2+(a+) + Hg(l) 正极:Hg(l)与 Hg2SO4(s)的糊状体 Hg2SO4(s) + 2e- → 2Hg(l) + SO 4 (a-) 电池反应:Cd(Hg)(12.5%)+Hg2SO4(s)+8/3H2O = CdSO4⋅8/3H2O(s)+2Hg(l) 注意: (1)正负极不要接反 (2)切勿倒置 (-)Cd(Hg)(12.5%)| CdSO4⋅8/3H2O(s) | CdSO4(a) | CdSO4⋅8/3H2O(s) | Hg2SO4(s)+ Hg(l) (+)
第九章 可逆电池的电动势及其应用
9.1 可逆电池和可逆电极
一、可逆电池 必须满足两个必要条件: (1)该化学反应可逆,即当 E > E 外时,电池放电;当 E < E 外时,电池充电 (2)能量的转移可逆(I → 0) Cu – Zn 电池 E > E 外时放电,为原电池 (-) Zn – 2e- → Zn2+ (+) Cu2+ + 2e- → Cu 电池反应:Zn + Cu2+ = Zn2+ + Cu E < E 外时充电,为电解池 (-) Zn2+ + 2e- → Zn (+) Cu – 2e- → Cu2+ 电池反应:Zn2+ + Cu = Zn + Cu2+ 说明:充放电时,电极反应和电池反应互为可逆反应,并且当 I → 0 时能量的转变也是可逆的。 Zn-Cu H2SO4 溶液电池 E > E 外时放电,为原电池 (-) Zn – 2e- → Zn2+ (+) 2H+ + 2e- → H2(p) 电池反应+ + H2(p) E < E 外时充电,为电解池 (-) 2H+ + 2e- → H2(p) (+) Cu – 2e- → Cu2+ 电池反应:Cu + 2H+ = H2(p) + Cu2+ 说明:不互为可逆反应 注意: (1)并不是所有反应可逆的电池都是可逆电池(如 E 外>>E) (2)丹尼尔电池实际上并不是可逆电池(因为存在离子的扩散) ,可插入盐桥处理;严格地说,凡是具有两 个不同电解质溶液接界的电池都是热力学不可逆的。 二、可逆电极 1.第一类电极 电极反应(氧化反应) 金属 电极 汞齐 电极 气体 电极 M(s)–ze →M (aq) Zn(s)–2e-→Zn2+(aq) Cu(s)–2e-→Cu2+(aq) Cd(Hg)(a)–2e-→Cd2+(a+)+Hg(l) Na(Hg)(a)–e-→Na+(a+)+Hg(l) H2(p)–2e-→2H+(a+) H2(p)+2OH-(a-)-2e-→2H2O(l) 4OH-(a-)–4e-→2H2O+O2(p) 2H2O–4e-→4H+(a+)+O2(p) Cl2(p)–2e-→2Cl-(a-) 2. 第二类电极 金属难溶盐 金属难熔氧化物 Ag(s)+Cl-(a-)–e-→AgCl(s) 2Hg(l)+2Cl-(a-)–2e-→Hg2Cl2(s) 2Ag(s)+H2O-2e-→Ag2O(s)+2H+(a+) 2Ag(s)+2OH-(a-)-2e-→Ag2O(s)+H2O Hg(l)+H2O-2e-→HgO(s)+2H+(a+) Hg(l)+2OH-(a-)-2e-→HgO(s)+H2O
第九章 可逆电池的电动势及其应用

电池总反应: 1/2Zn2+(aq) + Ag(s)+Cl-(aq) 1/2Zn(s) + AgCl(s)
2013-7-26
Shenming
12
第九章 可逆电池的电动势
从以上分析可见 ,当Zn电极、Ag+AgCl电极和 ZnCl2溶液组成的电池在作为原电池和电解池时,其电 极上的反应或者说电池总反应正好相反,即电池反应 是可逆的。具备了可逆电池的必要条件,所以上述电 池是一个可逆电池,该电池由两电极加一种电解质组 成的故称为单液电池,但是假如上述电池在充放电时 通过的电流不是很小,则电池就成为不可逆电池了。 严格地讲凡是具有两个不同电解质溶液接界的电 池都是热力学不可逆电池,所以在设计热力学上的可 逆电池时,均应设计类似于上面讨论的单液电池,或 用一些串联的单液电池来解决一些电化学中的问题。
2013-7-26
Shenming
23
第九章 可逆电池的电动势
2013-7-26
Shenming
24
第九章 可逆电池的电动势
标准电池电动势与温度的关系 ET/V=1.018454.05×10-5(T/K293.15) 9.5×10-7(T/K293.15)2 +1×10-8(T/K293.15)3 我国在1975年提出的公式为:
25
第九章 可逆电池的电动势
§9.3 可逆电池的书写方法及电动势的取号
一、可逆电池的书写方法 规定: 1. 左边为负极,起氧化作用; 右边为正极,起还原作用。 2.“|”表示相界面,有电势差存在(有时也用逗号)。 3.“||”表示盐桥,使液接电势降到可以忽略不计。 4. 要注明温度,不注明时就是指 298.15 K;要注明物态, 气体要注明压力;溶液要注明浓度。 5. 气体电极和氧化还原电极要写出导电的惰性电极, 通常是铂电极。 6.在书写电极和电池反应时必须遵守物料平衡和电荷平衡。
章可逆电池的电动势及其应用

RT
标准电池的电动势与温度的关系
E(T
)
/
V
1.018
45
4.05 105
T K
293.15
9.5107
T K
2
293.15
1108
T K
293.15
3
通常要把标准电池恒温、恒湿存放,使电动势稳定。
我国在1975年提出的公式为:
CdSO4
8 3
H2O(s)
nHg(l)
Cd(Hg)(a) 中含镉 w(Cd) 0.05 0.14
298.15K时 E 1.018 32 V
问题
为什么在定温度下,含Cd的质量分数在0.05~0.14 之间,标准电池的电动势有定值?
从Hg-Cd相图可知,在室温 下,镉汞齐中镉的质量分数在 0.05~0.14之间时,系统处于熔化 物和固溶体两相平衡区,镉汞齐 活度有定值。
组成可逆电池的必要条件
Zn(s)|ZnSO4||HCl|AgCl(s) | Ag(s)
作原电池 () Zn(s) Zn2 2e
() 2AgCl(s) 2e 2Ag(s) 2Cl 净反应 Zn(s) 2AgCl(s) 2Ag(s) 2Cl Zn2
作电解池 阴极: Zn2 2e Zn(s)
从化学反应设计电池(1)
Zn(s)+H2SO4(aq)→H2(p)+ZnSO4(aq)
Zn(s) | ZnSO4 (aq)|| H2SO4 (aq)| H2(p) | Pt 验证: () Zn(s) Zn2+ (aZn2+ ) 2e
() 2H (aH ) 2e H2(p)
净反应: Zn(s)+2H+→Zn2++H2(p)
可逆电池的电动势及其应用

5.电池的电动势等于右边正极的还原电极电势减去左边负极的还 原电极电势
电池表示式与电池反应“互译”
由电池表达式写出化学反应:分别写出左侧电极发生氧化反应, 右侧电极发生还原反应,然后两者相加。
通常用对消法测电池电动势.
对消法测定电池电动势
1. 校准工作电流: 开关K 打向D1.若在实验温度下 标准电池电动势为 1.01865 V, 将触点打在滑 线电阻AB上标记1.01865 V处,调节R使G中无电流 流过为止.
有: ES / VAB = AC1 / AB. VAB:A,B两点间电势差. ES:标准电池的电动势.
通常要把标准电池恒温、恒湿存放,使电动势稳定。
问题
为什么在定温度下,含Cd的质量分数在0.05~0.14之间,标准 电池的电动势有定值?
从Hg-Cd相图可知,在室温下 ,镉汞齐中镉的质量分数在 0.05~0.14之间时,系统处于 熔化物和固溶体两相平衡区, 镉汞齐活度有定值。
而标准电池电动势只与镉汞齐 的活度有关,所以也有定值。
Fe3 (a1) e Fe2 (a2 ) Sn4 (a1) 2e Sn2 (a2 ) Cu2 (a1) e Cu (a2 )
不同类型的可逆电极
M(s) M+(aq)
M(s), MX(s)
X-(aq)
Pt(s)
Pt(s)
X(aq)
M+(aq), M2+(aq)
净反应:
Hg2SO4(s)+Cd(Hg)(a)+8/3H2O →CdSO4·8/3H2O(s)+Hg(l)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【8】有哪些求算标准电动势 的方法?在公式 中, 是否是电池反应达平衡时的电动势? 是否是电池中各物都处于标准态时的平衡常数?
【答】(1)求算标准电动势 的方法有
A. 法B. 法C. 法
(2)在公式 中, 不是电池反应达平衡时的电动势,是该电池各物都处于标准态时,电池的电动势。
若反应式中各物质的化学计量减半,则 不变
【10】298K时,已知如下三个电池的反应及标准还原电极电势,如将电极(1)与电极(3)和(2)与(3)分别组成自发电池(设活度均为1),请写出电池的书面表示式;写出电池反应式并计算电池的标准电动势。
(1)
(2)
(3)
【解】将(1)与(3)组成自发电池时,必须E大于0,即 >
【解】
=-2×[1.01845-4.05×10-5(298.15-293.15)-9.5×10-7(298.15-293.15)2] ×96500
=-196.5kJ·mol-1
=2×96500×[-4.05×10-5-2×9.5×10-7(298.15-293.15)]
=-9.65J·K-1·mol-1
根据 和 得:
(5)稀的HCl水溶液中,HCl的平均活度因子 ;
设计电池:
测定298K下的电动势E,
根据
其中 可通过查表或通过极稀HCl溶液的E获得,这样就可以计算出给定浓度下的 。
(6) 的标准摩尔生成焓 和分解压;
设计电池:
测定298K和303K下的电动势E1和E2,
根据 和 得:
根据 和查表求得
=-196.5×103+298.15×-9.65
=-199.38 kJ·mol-1
【4】298K时,下述电池的电动势为1.228V:
已知H2O(l)的标准摩尔生成焓为 。试求
(1)该电池的温度系数;
(2)该电池在273K时的电动势。设反应焓在该温度区间内为常数。
【解】(1)在298K时,该电池的电极反应和电池反应为:
B.第二类电极:包括难溶盐电极和难溶氧化物电极
难溶盐电极:由金属表面覆盖一薄层该金属的难溶盐,然后浸在含有该难溶盐的负离子的溶液中组成。例如甘汞电极
难溶氧化物电极:由金属表面覆盖一薄层该金属的难溶氧化物,然后浸在含有H+或OH-离子的溶液中组成。例如汞-氧化汞电极
C.第三类电极:叫氧化还原电极。由惰性金属(如铂片)插入含有某种离子的不同氧化态溶液中构成的电极。例如
正极:
电池反应:
(3)负极:
正极:
电池反应:
(4)负极:
正极:
电池反应:
(5)负极:
正极:
电池反应:
【9】试为下述反应设计一电池
求电池在298K时的标准电动势 ,反应的 和标准平衡常数 。如果将电池反应写成 再计算 , 和 ,比较两者的结果,并说明为什么。
【解】设计的电池为:
负极:
正极:
电池反应:
=5.56×1031
=181.94kJ·K-1·mol-1
=-210.76×103+298×181.94=-156.54 kJ·mol-1
若只有1个电子得失时:
=-1×1.092×96500=-105.38kJ·mol-1
=1×96500×(9.427×10-4)=90.97kJ·K-1·mol-1
=-105.38×103+298×90.97=-78.27 kJ·mol-1
所以(3)电极为正极,(1)电极为负极,电池表示式为:
电池反应:
同理(2)与(3)组成的自发电池中(3)电极为正极,(2)电极为负极,电池表示式为:
电池反应:
【11】列式表示下列两组标准电极电势 之间的关系。
(1) , ,
(2) , ,
【解】(1)①
②
③
因为③=①-②,则
即:
(2)同理,有
【12】298K时,已知如下电池的标准电动势
(3) 不一定是电池中各物都处于标准态时的平衡常数,而是在一定温度下的平衡常数。
【9】联系电化学与热力学的主要公式是什么?电化学中能用实验测定哪些数据?如何用电动势法测定下述各热力学数据?试写出所设计的电池,应测的数据及计算公式。
(1) 的标准摩尔生成Gibbs自由能 ;
(2) 的离子积常数 ;
(3) 的溶度积常数 ;
(3)用Nernst公式计算电极电势
【6】如果规定标准氢电极的电极电势为1.0V,则各电极的还原电极电势将如何变化?电池的电动势将如何变化?
【答】如果规定标准氢电极的电极电势为1.0V,各电极的还原电极电势将的值都增加1V,电池的电动势的值不变。
【7】在公式 中, 是否表示该电池各物都处于标准态时,电池反应的Gibbs自由能变化值?
【5】电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测量?如何用Nernst公式计算电极的还原电势?
【答】(1)电极电势不是否就是电极表面与电解质溶液之间的电势差,而是电极与标准氢电极之间的电势差。
(2)单个电极的电势不能测量,而要把待测电极与标准电极组成电池,测得的电动势就是待测电极与标准电极的电极电势的差,即可求出待测电极的电极电势。
(7)负极:
正极:
电池反应:
(8)负极:
正极:
电池反应:
【2】试将下述化学反应设计成电池
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
【解】(1)
(2)
(3) 或
(4)
(5) 或
(6)
(7) 或
(8)
(9)
(10)
【3】从饱和Weston电池的电动势与温度的关系式,试求在298.15K,当电池可逆地产生2mol电子的电荷量时,电池反应的 , 和 。已知该关系式为
【答】当组成电极的气体为非理想气体时,公式 仍成立。但Nernst公式不能直接使用,应该用逸度代替各气体的分压进行计算。
【11】什么叫液接电势?用盐桥能否完全消除液接电势?
【答】在双液电池的两种电解质溶液的交界处,不用盐桥,则由于电解质溶液不同,或虽然电解质溶液相同而浓度不同,也会产生电势差,这就是液接电势。用盐桥可以防止两种液体直接接触以免产生液接电势,从液接电势的公式知,只有 时,Ej=0,而 与 完全相同的电解质是很难找到的,所以盐桥不能完全除液接电势只能使Ej接近零。
=2×96500×(-4.92×10-4)
=-94.96J·K-1·mol-1
=-195.90×103+298×(-94.96)=-2.242×105J·mol-1
=-224.2 kJ·mol-1
【6】在298K时,电池 的电动势为1.092V,温度系数为9.427×10-4V·K-1。
(1)写出有2个电子得失的电极反应和电池的净反应;
【12】根据公式 ,如果 为负值,则表示化学反应的等压热效应一部分转变成电功( ),而余下部分仍以热的形式放出[因为 <0]。这就表明在相同的始终态条件下,化学反应的 比按电池反应进行的焓变值大(指绝对值),这种说法对不对?为什么?
【答】不对,H是状态函数, 的值只和反应的始终状态有关,而和反应的途径无关,不管反应经历的是化学反应还是电池反应,始终态相同时, 的值是相同的。
设计电池:
测定298K时的电动势E,然后根据 计算。
(2) 的离子积常数 ;
设计电池:
测定298K时的电动势 ,然后根据 计算。
(3) 的溶度积常数 ;
设计电池:
测定298K时的电动势 ,然后根据 计算出
然后由 和表中查到的 求出
最后根据 计算。
(4)反应 的标准摩尔反应焓变 ;
设计电池:
测定298K和303K下的电动势E1和E2,
故体系做功
所以
如果要分别求酸恒温槽和电池的熵变,还需电池反应的焓变。
【8】分别写出下列电池的电极反应、电池反应,列出电动势E的计算公式,并计算电池的标准电动势 。设活度因子均为1,气体为理想气体。所需的标准电极电势从电极电势表中查阅。
(1)
(2)
(3)
(4)
(5)
【解】(1)负极:
正极:
电池反应:
(2)负极:
负极:
正极:
电池反应:
所以
又因为
得:
=-8.49×10-4V/K
(2)
得:E(273K)=1.249V
【5】电池 的电动势与温度的关系为 试计算在298K当电池有2mol电子的电荷量输出时,电池反应的 , , 和此过程的可逆热效应QR.
【解】
=-2×1.015×96500=-195.90kJ·mol-1
计算
(7)反应 的标准平衡常数 ;
设计电池:
测定 值,根据公式 计算 。
(8)醋酸的解离平衡常数。
设计电池为:
测定E值,根据
求出 ,当HAC很稀时,
求得 后根据解离前后的HAC、AC-、H+的关系可求出醋酸的解离平衡常数。
【10】当组成电极的气体为非理想气体时,公式 是否成立?Nernst公式能否使用?其电动势应如何计算?
对于气体电极和氧化还原电极在书写电极表示式时应注意:要有惰性金属作为导体,惰性金属只传导电子,不发生化学变化。
【2】什么叫电池的电动势?用伏特表测得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法?
【答】(1)电池的电动势是原电池组成相间的各界面上所产生的电势差的代数和。
(2)用伏特表测得的电池的端电压与电池的电动势不相同,当把伏特表与电池接通后,必须有适量的电流通过才能使伏特表显示,这样有电流通过时原电池不再可逆,另外电池本身有内阻。