相似三角形总复习模型总结

合集下载

相似三角形的常见模型

相似三角形的常见模型

初中数学 ︵ 九年级 ︶培优篇初中数学 ︵ 九年级 ︶培优篇【基本模型】①如图,在ABC 中,点D 在AB 上,点E 在AC 上,//DEBC ,则ADE ABC △△∽,AD AE DEAB AC BC.②模型拓展1:斜交A 字型条件:C ADE ,图2结论:~ADE ACB ;③模型拓展2: 如图,∠ACD =∠B ⇔△ADC ∽△ACB ⇔AD AC CDAC AB BC.初中数学 ︵ 九年级︶培优篇【例1】如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走2米到达B 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度等于_________.【变式1-1】有一块直角三角形木板,∠B =90°,AB =1.5m ,BC =2m ,要把它加工成一个面积尽可能大的正方形桌面.甲、乙两位同学的加工方法分别如图1、图2所示.请你用学过的知识说明哪位同学的加工方法更好(加工损耗忽略不计).初中数学 ︵ 九年级 ︶培优篇 【变式1-2】(2022•衢州二模)已知菱形ABCD ,E 是BC 边上一点,连接AE 交BD 于点F (1)如图1,当E 是BC 中点时,求证:AF =2EF ;(2)如图2,连接CF ,若AB =5,BD =8,当△CEF 为直角三角形时,求BE 的长; (3)如图3,当∠ABC =90°时,过点C 作CG ⊥AE 交AE 的延长线于点G ,连接DG ,若BE =BF ,求tan ∠BDG 的值.初中数学 ︵九年级 ︶培优篇 ③模型拓展:如图,∠A =∠C ⇔△AJB∽△CJD ⇔A B JA C D JC【例2】如图,在平行四边形ABCD 中,E 为边AD 的中点,连接AC 、BE 交于点F .若△AEF 的面积为2,则△ABC 的面积为( ) A .8B .10C .12D .14初中数学 ︵ 九年级 ︶培优篇 【变式2-1】如图,在△ABC 中,BC =6,AEA F EBFC,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =14CE 时,EP +BP 的值为( )A .9B .12C .18D .24【变式2-2】如图,在Rt △ACB 中,∠ACB =90°,AC =4,BC =3,点D 为AC 上一点,连接BD ,E 为AB 上一点,CE ⊥BD 于点F ,当AD =CD 时,求CE 的长.【变式2-3】如图,已知D 是BC 的中点,M 是AD的中点.求AN:NC的值.初中数学 ︵ 九年级︶培优篇【例3】如图,在平行四边形ABCD 中,∠ABC 的平分线交AC 于点E ,交AD 于点F ,交CD 的延长线于点G ,若AF =2FD ,则BEEG的值为( ) A .12B .13C .23D .34【变式3-1】(2020•杭州)如图,在正方形ABCD 中,点E 在BC 边上,连接AE ,∠DAE 的平分线AG 与CD 边交于点G ,与BC 的延长线交于点F .设=λ(λ>0).(1)若AB =2,λ=1,求线段CF 的长. (2)连接EG ,若EG ⊥AF , ①求证:点G 为CD 边的中点. ②求λ的值.初中数学 ︵ 九年级 ︶培优篇【例4】如图,在△ABC 中,45ABC ,AB A D A E ,D A E 90 ,C E,则CD 的长为______.初中数学 ︵ 九年级 ︶培优篇 【变式4-1】矩形ABCD 中,AD =9,AB =12,点E 在对角线BD 上(不与B 、D 重合),EF ⊥AE 交CD 于F 点,连接AF 交BD 于G 点. (1)如图1,当G 为DE 中点时. ①求证:FD =FE ; ②求BE 的长.(2)如图2,若E 为BD 上任意点,求证:AG 2=BG •GE .初中数学 ︵ 九年级 ︶培优篇 【变式4-2】如图,ABC 中,,,AB AC AB AC 点D E 、分别是BC AC 、的中点,AF BE ⊥与点F .(1)求证:2AE FE BE ;(2)求A F C 的大小;(3)若DF=1,求△ABF 的面积.初中数学 ︵ 九年级 ︶培优篇结论:AH ⊥GF ,△AGF ∽△ABC ,GF AHBC AM【例5】如图1,在△ABC 中,AB =AC =5,BC =6,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上. (1)求正方形DEFG 的边长;(2)如图2,在BC 边上放两个小正方形DEFG 、FGMN ,则DE= .初中数学 ︵ 九年级 ︶培优篇 【变式5-1】有一块锐角三角形卡纸余料ABC ,它的边BC =120cm ,高AD =80cm ,为使卡纸余料得到充分利用,现把它裁剪成一个邻边之比为2:5的矩形纸片EFGH 和正方形纸片PMNQ ,裁剪时,矩形纸片的较长边在BC 上,正方形纸片一边在矩形纸片的较长边EH 上,其余顶点均分别在AB ,AC 上,具体裁剪方式如图所示. (1)求矩形纸片较长边EH 的长;(2)裁剪正方形纸片时,小聪同学是按以下方法进行裁剪的:先沿着剩余料△AEH 中与边EH 平行的中位线剪一刀,再沿过该中位线两端点向边EH 所作的垂线剪两刀,请你通过计算,判断小聪的剪法是否正确.初中数学 ︵ 九年级︶培优篇 ②拓展:(1)在正方形、长方形中经常会出现射影定理模型,如图,在有射影定理模型.(2)如图,在圆中也会出现射影定理模型.【例6】如图,四边形ABCD 中,AD ∥BC ,∠B =90°,E 为AB 上一点,分别以ED 、EC 为折痕将两个角(∠A 、∠B )向内折起,点A 、B 恰好落在CD 边的点F 处,若AD =3,BC =5,则EF 的长是( ) A.15B .215C .17D .217初中数学 ︵ 九年级 ︶培优篇 【变式6-1】如图所示,在△ABC 中,∠ABC =90°,BD ⊥AC ,DE ⊥BC ,垂足分别为D 、E 两点,则图中与△ABC 相似的三角形有( ) A .4个B .3个C .2个D .1个【变式6-2】如图,在R t △ABC 中,∠ACB =90°,点D 在AB 上,且AD AC =ACAB. (1)求证 △ACD ∽△ABC ;(2)若AD =3,BD =2,求CD 的长.【变式6-3】ABC 中,90ABC ,BD AC ,点E 为B D 的中点,连接A E 并延长交B C 于点F ,且有AF CF ,过F 点作FH AC 于点H . (1)求证:AD E CD B ∽; (2)求证:=2A E EF ; (3)若FHB C 的长.初中数学 ︵ 九年级 ︶培优篇②如图所示,BDE 和ABC 则ABD CBE ∽△△,且相似比为总结:旋转相似型中由公共旋转顶点、一点及其旋转后的对应点组成的三角形与由公共旋转顶点、另一点及其旋转后的对应点组成的三角形相似.初中数学 ︵ 九年级 ︶培优篇【例7】如图,在△ABC 与△ADE 中,∠ACB =∠AED =90°,∠ABC =∠ADE ,连接BD 、CE ,若AC :BC =3:4,则BD :CE 为( ) A .5:3B .4:3C .√5:2D .2:√3【变式7-1】如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,相似比是:2,连接EB ,GD .(1)求证:EB =GD ;(2)若∠DAB =60°,AB =2,求GD 的长.初中数学 ︵ 九年级 ︶培优篇 【变式7-2】如图,正方形ABCD ,对角线AC ,BD 相交于O ,Q 为线段DB 上的一点,90MQN ,点M 、N 分别在直线BC 、DC 上.(1)如图1,当Q 为线段OD 的中点时,求证:1132DN BM BC ;(2)如图2,当Q 为线段OB 的中点,点N 在CD 的延长线上时,则线段DN 、BM 、BC 的数量关系为 ;(3)在(2)的条件下,连接MN ,交AD 、BD 于点E 、F ,若:3:1M B M C ,N Q ,求EF 的长.初中数学 ︵ 九年级 ︶培优篇 补充:其他常见的一线三等角图形【例8】【感知】如图①,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),90A B DPC .易证DAP PBC △△∽.(不需要证明) 【探究】如图②,在四边形ABCD 中,点P 在边AB 上(点P 不与点A 、B 重合),A B D PC .若4PD ,8P C ,6BC ,求AP 的长.【拓展】如图③,在ABC 中,8AC BC ,12A B ,点P 在边AB 上(点P 不与点A 、B 重合),连结CP ,作CPE A ,PE 与边BC 交于点E ,当CPE △是等腰三角形时,直接写出AP 的长.初中数学 ︵ 九年级 ︶培优篇 【变式8-1】如图,在矩形ABCD 中,CD =4,E 是BC 的中点,连接AE ,tan ∠AEB 43,P 是AD 边上一动点,沿过点P 的直线将矩形折叠,使点D 落在AE 上的点D ¢处,当A P D △是直角三角形时,PD 的值为( )A .23或67B .83或247C .83或307D .103或187初中数学 ︵ 九年级 ︶培优篇 【变式8-2】(2022秋•温州校级月考) 【推理】如图1,在正方形ABCD 中,点E 是CD 上一动点,将正方形沿着BE 折叠,点C 落在点F 处,连结BE ,CF ,延长CF 交AD 于点G . (1)求证:BCE CDG △△≌. 【运用】(2)如图2,在【推理】条件下,延长BF 交AD 于点H .若45HD HF ,9C E ,求线段DE 的长.【拓展】(3)将正方形改成矩形,同样沿着BE 折叠,连结CF ,延长CF ,BF 交直线AD 于G ,两点,若AB k BC ,45HD HF ,求DEEC的值(用含k 的代数式表示).。

微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)

微专题16 相似三角形之五大模型++++课件+2025年九年级中考数学总复习人教版(山东)

过一个直角顶点向两边作垂线,得到△PGE∽△PHF
29
【针对训练】
14.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,在Rt△MPN中,∠MPN=90°,点P在AC
3
上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=_______.
30
15.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上,OM,
微专题16
相似三角形
之五大模型
2
模型1
特点
A字型(公共顶角)
两个三角形有一个公共角∠BAC,或者有DE∥BC,或者DE与BC不平行,
有∠ABC=∠AED
示例
思路 △ADE∽△ABC或△AED∽△ABC.如果没有明确说明对应关系,就应分
结论 以上两种情况讨论
3
【针对训练】
1.如图,在Rt△ABC中,∠ABC=90°,E,F分别为AC,BC的中点,连接EF,H为AE的中点,

1


ON分别交CA,CB于点P,Q,∠MON绕点O任意旋转.当 = 时, 的值为______;当
2


1


= 时, 的值为______.(用含n的式子表示)


31
16.(2024·青岛市南区二模)如图,点F在四边形ABCD的边AB上,
(1)如图1,当四边形ABCD是正方形时,过点B作BE⊥CF,垂足为O,交AD于点E.则BE
∴∠PBG=180°-∠ABC=90°,
∴∠PBG=∠POC=90°,
∵∠BPG=∠OPC,
∴△BPG∽△OPC,

∴ = ,

中考数学相似三角形重要模型一线三等角模型

中考数学相似三角形重要模型一线三等角模型

相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。

相似三角形常见模型(总结材料)

相似三角形常见模型(总结材料)

第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)ABCDE(平行)CBA DE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型ABCDCAD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:CAD二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第二部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.AC D E B2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

相似三角形模型总结以及例题

相似三角形模型总结以及例题

相似三角形模型总结以及例题
相似三角形模型是同一个三角形被两次放大或缩小的一种模型,具有
以下特点:
1. 比较定理:三条边的比值相等,两个三角形都是一样的形状,只有
大小不同。

2. 角平分线定理:若两个三角形相似,则其中一角被平分线分割,得
到的两条边构成另一个三角形,且两个三角形也是相似的。

3. 中位线定理:若两个三角形相似,则其中一角的一边被中线分割,
形成的两个三角形,也是相似的。

理解相似三角形模型,最重要的是理解它的边和角之间的关系。

例题:若两个三角形的边比例是2:3:4和8:24:32,则它们是否相似?
答案:是的,它们是相似的。

由比较定理可知,若两个三角形的边比
例满足x:ax:ax^2关系,则它们是相似的,而2:3:4 = 8:24:32,满足
x:ax:ax^2关系,所以它们是相似的。

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)

中考数学几何专项——相似模型(相似三角形)相似模型相似模型一:A字型特征:DE∥BC模型结论:根据A字型相似模型,可以得出以下结论:C∠B=∠XXXAC²=AD×AB相似模型二:X型特征:AC∥BD模型结论:根据X型相似模型,可以得出以下结论:AO×OB=OC×ODBOC∽△DOACAOC∽△DOB相似模型三:旋转相似特征:成比例线,段共端点模型结论:根据旋转相似模型,可以得出以下结论:BEF∽△BCDDEF∽△DABAEB∽△DEC相似模型四:三平行模型特征:AB∥EF∥CD模型结论:根据三平行模型,可以得出以下结论:ABE∽△CDF相似模型五:半角模型特征:90度,45度;120度,60度模型结论:根据半角模型,可以得出以下结论:ABN∽△MAN∽△MCAABD∽△CAE∽△CBA相似模型六:三角形内接矩形模型特征:矩形EFGH或正方形EFGH内接与三角形模型结论:根据三角形内接矩形模型,可以得出以下结论:ABC∽△EFH相似模型七:十字模型特征:正方形HDGB模型结论:根据十字模型,可以得出以下结论:若AF=BE,则AF⊥BE,且为长方形若AF⊥BE,则AF=BEBDBC平行四边形,且△GME∽△HNF,△MED≌△BFA。

下面给出几个几何问题。

1.在△ABC中,AB=AC,且有以下七个结论:①D为AC中点;②AE⊥BD;③BE:EC=2:1;④∠ADB=∠CDE;⑤∠AEB=∠CED;⑥∠BMC=135°;⑦BM:MC=2:1.求AC和CD的比值。

2.在平行四边形ABCD中,AB∥CD,线段BC,AD相交于点F,点E是线段AF上一点且满足∠BEF=∠C,其中AF=6,DF=3,CF=2,求AE的长度。

3.在Rt△ABD中,过点D作CD⊥BD,垂足为D,连接XXX于点E,过点E作EF⊥BD于点F,若AB=15,CD=10,求4.在□ABCD中,E为BC的中点,连接AE,AC,分别交BD于M,N,求5.在平行四边形ABCD中,AB∥CD,AD,BC相交于点E,过E作EF∥AB交BD于点F。

相似三角形模型总结

相似三角形模型总结

相似三角形模型总结相似三角形是中学数学中常见的一个概念。

相似三角形有着非常重要的应用,尤其在建筑、地图、航空等领域中被广泛地运用。

在这篇文章中,我将对相似三角形的模型及其应用进行总结。

一、相似三角形的定义相似三角形是指形状相似而大小不同的两个或多个三角形。

它们的对应角度相等,对应边的比例相等。

根据这个定义,我们可以推出相似三角形的判定定理:若两个三角形对应角度分别相等,则它们是相似的。

二、重心模型重心模型是一种抽象的几何模型,它是在研究固体对象的重心和转动惯量时得出的。

对于任意三角形 ABC,以其三条边的中点为顶点,连上互相垂直的直线,将它们相交于 G 点。

这里 G 点称为三角形 ABC 的重心,它与每个中点连成的线段相等。

同时,可以证明如果一个点在三角形内部且到三边距离的乘积等于其到三条中线距离的乘积,则该点一定是三角形的重心。

三、海龟图模型海龟图模型是一个很著名的相似三角形应用模型,它是由美国数学家T. N. Thiele 提出的。

在海龟图中,一个三角形符号代表前进一步,一个圆点符号则代表不动。

当这个图形以相似的规律继续扩展时,就能在图形中看到似乎随机且自相似的模式。

在实际操作中,我们可以将这个模型用于分形的制作和操作中,实现较好的效果。

四、印章模型印章模型是相似三角形的另一种应用模型。

在制作印章时,多会使用到相似三角形的概念。

根据相似三角形的定义,我们可以通过相似三角形来制造缩小复制的图案。

具体来说,我们可以通过将大三角形分割为单位面积相等的若干小三角形,然后根据相似的规律进行缩小,就可以得到与大三角形相似而更小的三角形。

五、三角剖分模型三角剖分模型是相似三角形的一种实际应用模型。

在三角剖分中,我们会把一个多边形分解为多个三角形,这些三角形可以保持相似性,这比将多边形分解成其它形状的图形更容易实现。

总结在本文中,我们总结了几种相似三角形的应用模型,这些模型不仅具有学术研究的意义,更能够应用于实际的生产和生活中。

相似三角形常见模型(总结)1

相似三角形常见模型(总结)1

相似三角形第一部分 相似三角形模型分析一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)BDE(平行)BDE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型BDD(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:(六)双垂型:ADC 二、相似三角形判定的变化模型旋转型:由A字型旋转得到。

8字型拓展CB EDA共享性GABEF一线三等角的变形一线三直角的变形第二部分相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD中,AD∥BC,对角线AC、BD交于点O,BE∥CD交CA延长线于E.求证:OEOAOC⋅=2.例2:已知:如图,△ABC中,点E在中线AD上, ABCDEB∠=∠.求证:(1)DADEDB⋅=2;(2)DACDCE∠=∠.例3:已知:如图,等腰△ABC中,AB=AC,AD⊥BC于D,CG∥AB,BG分别交AD、AC于E、F.求证:EGEFBE⋅=2.相关练习:1、如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FCFBFD⋅=2.A CDEBGMF EHDCBA2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB4.在∆ABC 中,AB=AC ,高AD 与BE 交于H ,EF BC ⊥,垂足为F ,延长AD 到G ,使DG=EF ,M 是AH 的中点。

求证:∠=︒GBM 905.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE 的面积分别是27和3,DE=62,求:点B 到直线AC 的距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形相似总复习第一部分相似三角形知识要点大全知识点1..相似图形的含义把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.例1.放大镜中的正方形与原正方形具有怎样的关系呢?分析:要注意镜中的正方形与原正方形的形状没有改变.解:是相似图形。

因为它们的形状相同,大小不一定相同.例2.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角80°的两个等腰三角形;⑤两个正五边形;⑥有一个内角是100°的两个等腰三角形,其中一定是相似图形的是_________(填序号).解析:根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,而平行四边形、矩形、等腰三角形都属于形状不唯一的图形,而圆、正多边形、顶角为100°的等腰三角形的形状不唯一,它们都相似.答案:②⑤⑥.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d=(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.解读:(1)四条线段a,b,c,d成比例,记作a cb d=(或a:b=c:d),不能写成其他形式,即比例线段有顺序性.(2)在比例式a cb d=(或a:b=c:d)中,比例的项为a,b,c,d,其中a,d为比例外项,b,c为比例内项,d是第四比例项.(3)如果比例内项是相同的线段,即a bb c=或a:b=b:c,那么线段b叫做线段和的比例中项。

(4)通常四条线段a,b,c,d的单位应一致,但有时为了计算方便,a和b统一为一个单位,c和d统一为另一个单位也可以,因为整体表示两个比相等.例3.已知线段a=2cm, b=6mm, 求ab.分析:求ab即求与长度的比,与的单位不同,先统一单位,再求比.例4.已知a,b,c,d成比例,且a=6cm,b=3dm,d=32dm,求c的长度.分析:由a,b,c,d成比例,写出比例式a:b=c:d,再把所给各线段a,b,,d统一单位后代入求c.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.例5.若四边形ABCD的四边长分别是4,6,8,10,与四边形ABCD相似的四边形A1B1C1D1的最大边长为30,则四边形A1B1C1D1的最小边长是多少?分析:四边形ABCD 与四边形A 1B 1C 1D 1相似,且它们的相似比为对应的最大边长的比,即为13,再根据相似多边形对应边成比例的性质,利用方程思想求出最小边的长. 知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种; (2)应结合相似多边形的性质来理解相似三角形; (3)相似三角形应满足形状一样,但大小可以不同; (4)相似用“∽”表示,读作“相似于”; (5)相似三角形的对应边之比叫做相似比.注意:①相似比是有顺序的,比如△ABC ∽△A 1B 1C 1,相似比为k,若△A 1B 1C 1∽△ABC ,则相似比为1k。

②若两个三角形的相似比为1,则这两个三角形全等,全等三角形是相似三角形的特殊情况。

若两个三角形全等,则这两个三角形相似;若两个三角形相似,则这两个三角形不一定全等.例6.如图,已知△ADE ∽△ABC ,DE=2,BC=4,则和的相似比是多少?点D ,E 分别是AB ,AC 的中点吗?注意:解决此类问题应注意两方面:(1)相似比的顺序性,(2)图形的识别.解:因为△ADE ∽△ABC ,所以DE AD AE BC AB AC ==,因为2142DE BC ==,所以12AD AE AB AC ==,所以D ,E 分别是AB ,AC 的中点. 知识点5.相似三角的判定方法(1) 定义:对应角相等,对应边成比例的两个三角形相似;(2) 平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似. (3) 如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. (4) 如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5) 如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似. (6) 直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.例7.如图,点D 在△ABC 的边AB 上,满足怎样的条件时,△ACD 与△ABC 相似?试分别加以列举. 分析:此题属于探索性问题,由相似三角形的判别方法可知,△ACD 与△ABC 已有公共角∠A ,要使此两个三角形相似,可根据相似三角形的判别方法寻找一个条件即可.解:当满足以下三个条件之一时,△ACD ∽△ABC条件一:∠1=∠B ;条件二:∠2=∠ACB ;条件三:,即AC 2=AD ·AB . 知识点6.相似三角形的性质(1) 对应角相等,对应边的比相等;(2) 对应高的比,对应中线的比,对应角平分线的比都等于相似比; (3) 相似三角形周长之比等于相似比;面积之比等于相似比的平方.例8.如图,已知△ADE ∽△ABC ,AD=8,BD=4,BC=15,EC=7 (1) 求DE 、AE 的长;(2) 你还能发现哪些线段成比例.分析:此题重点考查由两个三角形相似,可得到对应边成例,即.例9.已知△ABC ∽△A 1B 1C 1,,=23,△ABC 的周长为20cm ,面积为40cm 2. 求(1)△A 1B 1C 1的周长;(2)△A 1B 1C 1的面积.11AB A B分析:根据相似三角形周长之比等于相似比;面积之比等于相似比的平方求解.易求出△A 1B 1C 1的周长为30cm; △A 1B 1C 1的面积90cm2第二部分 相似三角形模型分析大全一、相似三角形判定的基本模型认识(一)A 字型、反A 字型(斜A 字型)BCDE(平行)CBDE(不平行)(二)8字型、反8字型J OADBCAB CD(蝴蝶型)(平行) (不平行) (三)母子型(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景 (五)一线三直角型: (六)双垂型:二、相似三角形判定的变化模型旋转型:由A 字型旋转得到。

8字型拓展CB EDA共享性GABCEF一线三等角的变形一线三直角的变形第三部分 相似三角形典型例题讲解母子型相似三角形例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.相关练习:1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FBFD =2. 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延长线交于一点N 。

求证:(1)△AME ∽△NMD; (2)ND 2=NC ·NB3、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

求证:EB ·DF=AE ·DB5. 已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y .(1)求证:AE =2PE ;A CDEBBP(2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.双垂型1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高求证:(1)△ABD ∽△ACE ;(2)△ADE∽△ABC ;(3)BC=2ED2、如图,已知锐角△ABC ,AD 、CE 分别是BC 、AB 边上的高,△ABC 和△BDE DE=62,求:点B 到直线AC 的距离。

共享型相似三角形1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE=︒120,已知BD=1,CE=3,,求等边三角形的边长.2、已知:如图,在Rt △ABC 中,AB =AC ,∠DAE =45°.求证:(1)△ABE ∽△ACD ; (2)CD BE BC ⋅=22.一线三等角型相似三角形例1:如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF =60° (1)求证:△BDE ∽△CFD(2)当BD =1,FC =3时,求BE例2:(1)在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在射线CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.①若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长;②若x BP =,y CQ =,求y 与x 之间的函数关系式,并写出函数的定义域;(2)正方形ABCD 的边长为5(如下图),点P 、Q 分别在直.线.CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长.知在梯形ABCD 中,AD ∥例3:已BC ,AD <BC ,且AD =5,AB =DC =2.ABC备用图ADCADBE F ADABCPQABC备用图AB CD(1)如图8,P 为AD 上的一点,满足∠BPC =∠A . ①求证;△ABP ∽△DPC ②求AP 的长. P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.例4:如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF . (1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长. 相关练习:1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域; (3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长; (3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当BEP DMF S S ∆∆=49时,求BP 的长.C DDAB C DE4、如图,已知边长为3的等边ABC ∆,点F 在边BC 上,1CF =,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线,EG FG 交直线AC 于点,M N , (1)写出图中与BEF ∆相似的三角形; (2)证明其中一对三角形相似;(3)设,BE x MN y ==,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若1AE =,试求GMN ∆的面积.一线三直角型相似三角形例1、已知矩形ABCD 中,CD=2,AD=3,点P 是AD 上的一个动点,且和点A,D 不重合,过点P 作CP PE ⊥,交边AB 于点E,设y AE x PD ==,,求y 关于x 的函数关系式,并写出x 的取值范围。

相关文档
最新文档