下水计算书本船现就空船重量~2150T计算以disc的稳性计算书纵倾-0618m计算
5.根据配载图及船舶资料计算杂货船稳性、强度及吃水差解析

Pb>Pa局部强度不符合要求
措施:补加衬垫以扩大接触面积;降低单位面 积实际负荷
2018/10/13
货物积载与系固评估
25
某船底舱高6.14m,舱容1500m3,现拟垂直堆垛 S.F=0.97m3 /t的杂货,则
①最大能装多少米高?
HCH/μ=HC/S.FC 即6.14/1.39=HC/0.97
2018/10/13
货物积载与系固评估
19
5.1 计算杂货船稳性、强度及吃水差
二、杂货船强度相关计算及判断 局部强度的校核
2018/10/13
货物积载与系固评估
20
用经验方法确定的允许载荷
1.上甲板
Pa
9.81 H c
(kPa)
• Hc:货堆高度,重结构船取1.5m
轻结构船取1.2m • μ:船舶设计时采用的舱容系数—m3/t
货物积载与系固评估 22
2018/10/13
1、杂货船局部强度的校核
1)单位面积的实际载荷量Pb
H ci Pb 9.81 (kPa) i 1 SF i
n
Hci——自下而上第i层货物的货堆高度(m) SFi——该层货物的积载因素(m3/t)
2)均布载荷:满足Pb≤Pa
集中载荷:满足实际载货重量ΣP′≤n· P, 则该部 位满足局部强度条件
2018/10/13 货物积载与系固评估 4
船舶在中途港卸载后GM值变小,则_______ A. 船舶KG增大,KM减小 B. 船舶KG增大,KM增大 C. 船舶KG减小,KM减小 D. A、B、C均有可能 139.船舶在中途港卸载后GM值增大,则下列错误 的是_______ A. 船舶KG减小,KM增大 B. 船舶KG增大,KM增大 C. 船舶KG增大,KM减小 D. 船舶KG减小,KM减小 船舶压载后GM值增大,表明______ A. 船舶KG减小,KM增大 B. 船舶KM增大量较KG增大量大 C. 船舶KM减小量较KG减小量大 D. A、B均可能
船舶吨位的计算方法

船舶吨位的计算方法船舶吨位的计算方法船舶吨位是船舶大小的计量单位,可分为重量吨位和容积吨位两种:船舶的重量吨位1、排水量吨位排水量吨位是船舶在水中所排开水的吨数,也是船舶自身重量的吨数。
排水量吨位又可分为轻排水量、重排水量和实际排水量三种:1)轻排水量又称空船排水量,是船舶本身加上船员和必要的给养物品三者重量的总和,是船舶最小限度的重量。
2)重排水量又称满载排水量,是船舶载客、载货后吃水达到最高载重线时的重量,即船舶最大限度的重量。
3)实际排水量是船舶每个航次载货后实际的排水量。
排水量的计算公式如下:排水量(长吨)=长*宽*吃水*方模系数(立方英尺)/35(海水)或36(淡水)(立方英尺)排水量(公吨)=长*宽*吃水*方模系数(立方米)/0.9756(海水)或1(淡水)(立方米)排水量吨位可以用来计算船舶的载重吨;在造船时,依据排水量吨位可知该船的重量;在统计军舰的大小和舰队时,一般以轻排水量为准;军舰通过巴拿马运河,以实际排水量作为征税的依据。
2、载重吨位表示船舶在营运中能够使用的载重能力。
载重吨位可分为总载重吨和净载重吨。
1)总载重吨是指船舶根据载重线标记规定所能装载的最大限度的重量,它包括船舶所载运的货物、船上所需的燃料、淡水和其他储备物料重量的总和。
总载重吨= 满载排水量- 空船排水量2)净载重吨是指船舶所能装运货物的量大限度重量,又称载货重吨,即从船舶的总载重量中减去船舶航行期间需要储备的燃料、淡水及其他储备物品的重量所得的差数。
船舶载重吨位可用于对货物的统计;作为期租船月租金计算的依据;表示船舶的载运能力;也可用作新船造价及旧船售价的计算单位。
船舶的容积吨位船舶的容积吨位是表示船舶容积的单位,又称注册吨,是各海运国家为船舶注册而规定的一种以吨为计算和丈量的单位,以100立方英尺或2.83立方米为一注册吨。
容积吨又可分为容积总吨和容积净吨两种:1.容积总吨又称注册总吨,是指船舱内及甲板上所有关闭的场所的内部空间(或体积)的总和,是以100立方英尺或2.83立方米为一吨折合所得的商数。
课件第二章船舶重量重心估算

拖船 渔船 中、小型货船 大型货船 中、小型油船
0.85--0.95 0.60—0.75 0.30—0.43 0.27—0.36 0.35—0.50
大型油船 中、小型客船
大型客船 驳船
0.20—0.35 0.50—0.70 0.45—0.60 0.20—0.30
由上表可见,空船重量占船舶排水量的相当部分, 所以空船重量估算准确度是船舶设计能否成功的关键。
在船舶稳性规范中,对各类典 型载况给出具体规定。
•满载 出港
•满载 到港
•空载 出港
• 空载 到港
2、军船
A:空载排水量 B:标准排水量 C:正常排水量 D:满载排水量 E:最大排水量
•
建造完工后的排水量
军用舰艇的设计排水量 出航时舰艇最大装载状态 超载排水量
三、重量、重心估算的重要性
重量、重心估算可能出现的情况
船底及内底骨 架
LBC b hd
电焊重量:中小型船为钢料重量的2-3%,大型油船 取1-1.5%
裕度:一般取(2-4%)Wh
三、木作舾装重量的估算
• 影响木作舾装的四类情况
• 情况1
与船舶排水量和主尺度相关的重量
• 情况2
与船员和旅客人数、生活设施相关的重量
•情况3
与船的使用特点相关的重量
• 情况4
B、平方模数法
假定Wh正比于船体结构的总面积,并用L, B, D的某种组合
来表征,最常见的形式为
Wh Ch LB D
B D可近似看成是单甲板船从龙骨到甲板中心的周长
LB D实际上表征船壳表面积及甲板表面积的一种面积特
征数
本方法对于总纵强度不突出的船,其计算结果比较准确。
C、立方模数法
船舶稳性和吃水差计算

船舶稳性和吃水差计算船舶稳性和吃水差计算Ship stability and trim calculations1.总则General rules保证船舶稳性和强度在任何时候都保持在船级社认可的稳性计算书规定范围内,防止因受载不当,产生应力集中造成船体结构永久性变形或损伤。
Ensure stability and strength of the ship at all times to maintain stability within stability calculations approved by the classification societies in order to prevent due to load improperly resulting in stress concentration which will cause the ship structure permanent deformation or subversion.2.适用范围Sphere of application公司所属和代管船舶的稳性、强度要求To satisfy the requirement of company owned and managed ships stability and strength3.责任Responsibility3.1.大副根据本船《装载手册》或《稳性计算手册》等法定装载资料,负责合理配载或对相关部门提供的预配方案进行核算,确保船舶稳性及强度处于安全允许值范围。
Based on the ship "loading manual" or "stability calculations manual" and other legal loading information, the chief officer is responsible for making reasonable stowage plan or adjust accounts of the pre plan from relevant departments to ensure stability and strength of the ship in a safe range of allowed values.3.2.船长负责审批大副确认的配载方案和稳性计算。
船舶的重量重心

实时监控船舶状态参数变化
监测船舶吃水深度
监测压载水和货物状态
通过测量船舶在不同位置的吃水深度, 可以推算出船舶的浮态和载重状态。
通过测量压载水和货物的重量和分布 情况,可以了解船舶载重的变化。
监测船舶纵倾和横倾角
船舶的纵倾和横倾角反映了船舶重心 的位置,实时监测这些参数有助于判 断船舶的稳定性。
灵活调整压载水和货物分布
船舶的重量重心
contents
目录
• 船舶重量与重心概述 • 船舶空载时重量与重心计算 • 装载条件下船舶重量与重心变化分析 • 航行过程中动态调整策略 • 法规标准与检验要求 • 总结与展望
01 船舶重量与重心概述
船舶重量定义及分类
船舶重量是指船舶本身以及所装载货物、燃料、淡水、备品备件等物品的总重量 。
船舶证书要求
船舶必须持有有效的证书,如吨位证书、载重线 证书等,以证明其符合相关法规和标准的要求。
3
监管部门的处罚措施
对于不符合相关法规和标准的船舶,监管部门将 采取相应的处罚措施,如罚款、扣留船舶等。
企业内部管理制度完善建议
建立完善的重量重心管理制度
企业应制定详细的重量重心管理制度,明确各部门和人员的职责和工 作流程。
调整压载水
01
通过改变压载水的数量和分布,可以调整船舶的重心和稳定性。
调整货物分布
02
在航行过程中,可以根据需要调整货物的位置和分布,以改变
船舶的重心位置。
综合考虑风浪流等环境因素
03
在调整压载水和货物分布时,需要综合考虑风浪流等环境因素
对船舶稳定性的影响。
确保航行安全稳定性
遵守安全操作规程
在航行过程中,必须严格遵守安全操作规程,确保船舶的稳定性。
船舶稳性校核计算书

一、概述本船为航行于内河B级航区的一条旅游船。
现按照中华人民共和国海事局《内河船舶法定检验技术规则》(2004)第六篇对本船舶进行完整稳性计算。
二、主要参数总长L OA 13.40 m垂线间长L PP13.00 m型宽 B 3.10 m型深 D 1.40 m吃水 d 0.900 m排水量∆17.460 t航区内河B航区三、典型计算工况1、空载出港2、满载到港四、稳性总结表五、受风面积A及中心高度Z六、旅客集中一弦倾侧力矩L KL K=1∆1−n5lb=0.030 mn lb =1.400<2.5,取nlb=1.400式中:C—系数,C=0.013lbN=0.009<0.013,取C=0.013 n—各活动处所的相当载客人数,按下式计算并取整数n=NSbl=28.000S—全船供乘客活动的总面积,m2,按下式计算:S=bl=20.000 m2 b—乘客可移动的横向最大距离,b=2.000 m;l—乘客可移动的横向最大距离,b=2.000 m。
七、全速回航倾侧力矩L VL V=0.045V m2L SKG−a2+a3F r d KN−m式中:Fr—船边付氏数,F r=V m9.81L;Ls—所核算状态下的船舶水线长,m;d—所核算状态下的船舶型吃水,m;∆—所核算状态下的船舶型排水量,m2;KG—所核算状态下的船舶重心至基线的垂向高,m;Vm—船舶最大航速,m/s;a3—修正系数,按下式计算;a3=25F r−9当a3<0,取a3=0;当a3>1时,取a3=1;a2—修正系数,按下式计算;a2=0.9(4.0−Bs/d)当Bs/d<3.5时,取Bs/d=3.5;当Bs/d>4.0时,取Bs/d=4.0;其中:Bs—所核算状态下船舶的最大水线宽度;八、横摇周期及横摇角的计算。
船舶静稳性臂介绍及手动计算分析

船舶静稳性臂介绍及手动计算分析摘要:文章介绍了与船舶稳性息息相关的静稳性臂的定义,讲解了静稳性臂曲线的特征,并重点分析了在有一定的文件基础上手动计算静稳性臂并绘制静稳性曲线,进而根据此静稳性曲线来校核船舶的稳性。
标签:稳性回复力臂;静稳性臂;静稳性曲线;横倾角φ;复原力矩;自由液面船舶稳性系指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消除后能自行恢复到原来平衡位置的能力,其大小取决于排水量、重心和浮心的相对位置等因素。
稳性是确保船舶及各种海上浮体安全航行及作业的主要性能指标之一,船舶稳性研究是船舶业中一个非常重要的课题。
在建造,航行等过程中时刻都应受到各方的关注,船舶在小倾角稳性主要考核的是初稳性GM值,大倾角稳性主要考核的静稳性臂GZ。
文章着重介绍大倾角稳性静稳性臂以及手动计算的方法。
如图1所示,船舶原浮于水线W0L0,在一外力矩的作用下产生一个较大的角度φ,此时浮于水线WφLφ,重心G位置不变,浮心B0移动到Bφ,于是重力Δ与浮力ω▽产生了一个复原力矩MR=Δ*GZ=Δ*L,L=GZ为重力作用线与浮力作用线之间的垂直距离,称为复原力臂或静稳性臂。
对于小倾角时,GZ=GM*sinφ。
对于大倾角时,GZ=B0R-B0E。
图2为一典型静稳性曲线图,横坐标为船舶的横倾角φ,纵坐标为静稳性臂的值L,如果得知一条船舶的静稳性曲线,则可根据此曲线的特征分析此船的稳性特点,并可校核在某一工况下是否有足够的稳性。
根据上图可以得出以下结论:(1)静稳性曲线在原点处的斜率等于初稳性高GM0。
(2)静稳性曲线下的面积等于船舶倾斜后所具有的位能,或者说等于倾斜力矩所做的功。
显然,静稳性曲线的面积越大,船舶的稳性越好。
因此,静稳性曲线下的面积也是表征船舶稳性的一个重要标志。
(3)静稳性曲线上的最高点表示船舶所能承受的最大静倾斜力矩,即船体本身所具有的最大复原力臂,其对应的横倾角为φmax。
(4)复原力矩MR为0即为静稳性曲线与横轴的交点,共有两个交点。
船舶稳性计算书的V

V.Moment是船舶稳性计算书中一个重要的概念,它代表了船舶载重时的纵向动态力。
它
可以通过船舶的各种参数来计算,如船舶的质量、尺寸、型号、载荷等等。
V.Moment的
计算结果是一个可以衡量船舶稳定性的重要参数,船舶设计师可以根据这个参数来设计船舶的型号,从而确保船舶在海上行驶时能够稳定地行驶。
V.Moment的计算是一个复杂的过程,需要考虑到船舶的各种参数,如船舶的质量、尺寸、型号、载荷等等。
比如,当一艘船载有质量为50吨的货物时,船舶的V.Moment就会受
到质量的影响。
而当船舶的型号发生变化时,V.Moment也会发生变化,比如当船舶的型
号变为更大的时候,V.Moment也会增加。
同时,V.Moment也受到船舶的载荷影响,比如船舶上装有大量的货物,V.Moment就会
增加,如果船舶上搭载了很多油箱,V.Moment会增加,而如果船舶上搭载了很多人,
V.Moment会减少。
由此可见,V.Moment是一个非常复杂的参数,它受到船舶的各种参数影响,可以用来衡
量船舶的稳定性。
船舶设计师需要根据V.Moment的计算结果来设计船舶的型号,以确保
船舶能够稳定地行驶。
正如英国发明家Thomas Edison所说的:“没有工作,没有进步。
”
只有正确的计算,才能确保船舶在海上行驶时能够稳定地行驶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下水计算书
本船现就空船重量~2150T计算。
以disc的稳性计算书纵倾-0.618m计算。
1、船舶主要参数:
总长:114.40m
总宽: 14.50m
型深: 8.10m
下水重量: 2150t
2、船台主要参数:
滑道坡度: 1:18
滑道宽度: 0.8m
滑道间距: 6.0m
滑道高度: 0.7m
陆上滑道长: 15.0m
水下滑道长: 60.0m
滑道面距船底高度: 0.6m
划道末端水位: -1.1m
3、下水参数
重心至FR0点距离: 46.25m
重心至划道末端距离: 62.255m
4、下水计算
1,根据稳性计算书表格得出当FR0的吃水在3.91m时重力对艏支点的力距等于浮力对艏支点的力距即开始艉浮,此时船舶下划距离约为75m.见图1 考虑临界状态:重心在划道末端且正好开始艉浮可以得出此时FR0的吃水
2.2-0.6=1.6m (重心在末段时0点到末段的距离-划板高度)见图2
3.9-1.6=2.3m (需要的吃水-1.6)
2.3-1.1=1.2m (2.3-末段水位)
即水位为1.2m时艉浮且重心在船台上。
2,判断艏跌落
当全浮状态时,艏支点仍在船台上即不会发生艏跌落。
空船状态时:纵倾-2.543 中部吃水1.734m 艏吃水0.4m 艏支点至水面高度为0.4+0.6=1.0m<<2.7m(1.1+1.6) 故当艏浮时,艏支点仍在船台上。
不会发生艏跌落。
判断冲程:
全浮状态下:根据下水草图可以得出。
本船下划81.73米时下水(从Fr0-全浮),那么根据经验数据下水冲程为81.83+150=231m
结论:本船下水状态
黄海标高>1.2米时,可保证本船安全下水
Fr0 触水开始计算,本船从下水到最后静止下划约为231m。