PLC毕业设计的外文文献(及翻译)

合集下载

关于PLC外文文献翻译

关于PLC外文文献翻译

关于PLC外文文献翻译外文文献翻译2014年6月designate a person responsible for periodically repaired, if significant quality problems, whether it's design or construction reasons, are required at the first meeting to study and propose solutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officially accepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervision stations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed quality rating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important partof our quality assurance system, the company sold products and installation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties and quality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis, engineering quality problems and fill in the data form. 4) record type, the location, cause, and complete solutions. 5) identify reasons to propose solutions and,Understanding the Basics of S7-200 Network Communications Selecting the Communication Interface for Your NetworkThe S7-200 is designed to solve your communications and networking needs by supporting not only the simplest of networks but also supporting more complex networks. The S7-200 also provides tools that allow you to communicate with other devices, such as printers and weigh scales which use their owncommunications protocols.The S7-200 supports many different types of communication networks. The selection of a network isperformed within the Set PG/PC Interface property dialog. A selected network is referred to as an Interface. The different types of interfaces available to access these communication networks are:1. PPI Multi-Master cables2. CP communication cards3. Ethernet communication cardsTo select the communication interface for STEP 7--Micro/WIN, you perform the following steps. See Figure 7-1.1. Double-click the icon in the Communications Setup window.2. Select the interface parameter fo12Figure 7-1 STEP 7--Micro/WINCommunications Interface第 0 页共 2 页PPI Multi-Master CablesThe S7-200 supports communication through two different types of PPI Multi-Master cables. These cable types permit communication through either an RS-232 or a USB interface.As shown in Figure 7-2, selecting the PPI Multi-Master cable type is simple. You perform the following steps:1. Click the Properties button on the Set PG/PC Interface property page.2. Click the Local Connection tab on the Properties page.3. Select the USB or the desired COM port123Figure 7-2 PPI Multi-Master Cable SelectionTipPlease note that only one USB cable can be used at a time.TipExamples in this manual use the RS-232/PPI Multi-Master cable. TheRS-232/PPI Multi-Master cable replaces the previous PC/PPI cable. AUSB/PPI Multi-Master cable is also available. Refer to Appendix E for order numbers. Using Master and Slave Devices on a PROFIBUS Network The S7-200 supports a master-slave network and can function aseither a master or a slave in a PROFIBUS network, while STEP 7--Micro/WIN is always a master.第 1 页共 3 页MastersA device that is a master on a network can initiate a request to another device on the network. A master can also respond to requestsfrom other masters on the network. Typical master devices include STEP7--Micro/WIN, human-machine interface devices such as a TD 200, and S7-300 or S7-400 PLCs. The S7-200 functions as a master when it isrequesting information from another S7-200 (peer-to-peer communications).TipA TP070 will not work on a network with another master device.SlavesA device that is configured as a slave can only respond to requests from a master device; a slave never initiates a request. For most networks, the S7-200 functions as a slave. As a slave device, the S7-200responds to requests from a network master device, such as an operator panel or STEP 7--Micro/WIN.Setting the Baud Rate and Network AddressThe speed that data is transmitted across the network is the baud rate, which is typically measured in units of kilobaud (kbaud) or megabaud (Mbaud). The baud rate measures how much data can betransmitted within a given amount of time. For example, a baud rate of 19.2 kbaud describes a transmission rate of 19,200 bits per second.Every device that communicates over a given network must beconfigured to transmit data at the same baud rate. Therefore, thefastest baud rate for the network is determined by the slowest device connected to the network.Table 7-1 lists the baud rates supported by the S7-200.Table 7-1 Baud Rates Supported by the S7-200Network Baud RateStandard Network 9.6 kbaud to 187.5 kbauddesignate a person responsible for periodically repaired, if significant quality problems, whether it's design or construction reasons, are required at the first meeting to study and propose solutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officially accepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervisionstations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed quality rating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important part of our quality assurance system, the company sold products and installation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties and quality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis, engineering quality problems and fill in the data form. 4) record type, the location, cause, and complete solutions. 5) identify reasons to propose solutions and,Using an EM 277 9.6 kbaud to 12 MbaudFreeport Mode 1200 baud to 115.2 kbaudThe network address is a unique number that you assign to each device on the network. The unique network address ensures that the data is transferred to or retrieved from the correct device. The S7-200 supports network addresses from 0 to 126. For an S7-200 with two ports, each port has a network address. Table 7-2 lists the default (factory) settings for the S7-200 devices.Table 7-2 Default Addresses for S7-200 DevicesS7-200 Device Default AddressSTEP 7--Micro/WIN 0HMI (TD 200, TP, or OP) 1S7-200 CPU 2Setting the Baud Rate and Network Address for STEP7--Micro/WINYou must configure the baud rate and network address for STEP 7--Micro/WIN. The baud rate must be the same as the other devices on the network, and the network address must be unique.Typically, you do not change the network address (0) for STEP 7--Micro/WIN. If your network includes another programming package, you might need to change the network address for STEP 7--Micro/WIN.As shown in Figure 7-3, configuring the baud rate and network address for STEP 7--Micro/WIN is simple. After you click the Communications icon in the Navigation bar, you perform the following steps:第 3 页共 5 页\ 1234Figure 7-3 Configuring STEP 7--Micro/WINFigure 7-3 Configuring STEP 7--Micro/WIN1. Double-click the icon in the Communications Setup window.2. Click the Properties button on the Set PG/PC Interface dialog box.3. Select the network address for STEP 7--Micro/WIN.4. Select the baud rate for STEP 7--Micro/WIN.Setting the Baud Rate and Network Address for the S7-200You must also configure the baud rate and network address for theS7-200. The system block of the S7-200 stores the baud rate and network address. After you select the parameters for the S7-200, you must download the system block to the S7-200.The default baud rate for each S7-200 port is 9.6 kbaud, and thedefault network address is 2.As shown in Figure 7-4, use STEP 7--Micro/WIN to set the baud rateand network address for the S7-200. After you select the System Blockicon in the Navigation bar or select the View > Component > System Block menu command, you perform the following steps:1. Select the network address for the S7-200.2. Select the baud rate for the S7-200.designate a person responsible for periodically repaired, ifsignificant quality problems, whether it's design or construction reasons, are required at the first meeting to study and proposesolutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officiallyaccepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervision stations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed quality rating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important partof our quality assurance system, the company sold products andinstallation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties andquality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis, engineering quality problems and fill in the data form. 4) record type,the location, cause, and complete solutions. 5) identify reasons to propose solutions and,3. Download the system block to the S7-200.12Figure 7-4 Configuring the S7-200 CPUTipSelection of all baud rate options is permitted. STEP 7--Micro/WIN validates this selection during the download of the System Block. Baud rate selections that would prevent STEP 7--Micro/WIN from communicating with the S7-200 are prevented from being downloaded.Setting the Remote AddressBefore you can download the updated settings to the S7-200, you must set both the communications (COM) port of STEP 7--Micro/WIN (local) and the address of the S7-200 (remote) to match the current setting of the remote S7-200. See Figure 7-5.After you download the updated settings, you may need to reconfigure the PG/PC Interface baud rate setting (if different from the setting used when downloading to the remote S7-200). Refer to Figure 7-3 to configure the baud rate.第 5 页共 7 页Figure 7-5 Configuring STEP 7--Micro/WINSearching for the S7-200 CPUs on a NetworkYou can search for and identify the S7-200 CPUs that are attached to your network. You can also search the network at a specific baud rate or at all baud rates when looking for S7-200s.Only PPI Multi-Master cables permit searching of all baud rates.This feature is not available if communicating through a CP card. The search starts at the baud rate that is currently selected.1. Open the Communications dialog box and double-click the Refresh icon to start the search.2. To search all baud rates, select the Search All Baud Rates check box. 2.Selecting the Communications Protocol for Your NetworkThe following information is an overview of the protocols supportedby the S7-200 CPUs.1. Point-to-Point Interface (PPI)2. Multi-Point Interface (MPI)3. PROFIBUSFigure 7-6 Searching for CPUs on a Networkdesignate a person responsible for periodically repaired, if significant quality problems, whether it's design or construction reasons, are required at the first meeting to study and propose solutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officially accepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervision stations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed qualityrating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important part of our quality assurance system, the company sold products and installation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties and quality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis, engineering quality problems and fill in the data form. 4) record type, the location, cause, and complete solutions. 5) identify reasons to propose solutions and,Based on the Open System Interconnection (OSI) seven-layer model of communications architecture, these protocols are implemented on a token ring network which conforms to the PROFIBUS standard as defined in the European Standard EN 50170. These protocols are asynchronous, character-based protocols with one start bit, eight data bits, even parity, and one stop bit. Communications frames depend upon special start and stop characters, source and destination station addresses, frame length, and a checksum for data integrity. The protocols can run on a network simultaneously without interfering with each other, as long as the baud rate is the same for each protocol.Ethernet is also available for the S7-200 CPU with expansion modules CP243--1 and CP243--1 IT.PPI ProtocolPPI is a master-slave protocol: the master devices send requests to the slave devices, and the slave devices respond. See Figure 7-7. Slave devices do not initiate messages, but wait until a master sends them a request or polls them for a response.Masters communicate to slaves by means of a shared connection which is managed by the PPI protocol. PPI does not limit the number of masters that can communicate with any one slave; however, you cannot install more than 32 masters on the network.Figure 7-7 PPI NetworkS7-200 CPUs can act as master devices while they are in RUN mode, if you enable PPI master mode in the user program. (See the description of SMB30 in Appendix D.) After enabling PPI master mode, you can use the Network Read or the Network Write instructions to read from or write to other S7-200s.While the S7-200 is acting as a PPI master, it still responds as a slave to requests from other masters.第 7 页共 9 页PPI Advanced allows network devices to establish a logical connection between the devices. With PPI Advanced, there are a limited number of connections supplied by each device. See Table 7-3 for the number of connections supported by the S7-200.All S7-200 CPUs support both PPI and PPI Advanced protocols, while PPI Advanced is the only PPI protocol supported by the EM 277 module.Table 7-3 Number of Connections for the S7-200 CPU and EM 277 ModulesModule Baud Rate ConnectionsS7-200 CPU Port 0 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4Port 1 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4EM 277 Module 9.6 kbaud to 12 Mbaud 6 per moduleMPI ProtocolMPI allows both master-master and master-slave communications. See Figure 7-8. To communicate with an S7-200 CPU, STEP 7--Micro/WINestablishes a master--slave connection. MPI protocol does not communicate with an S7-200 CPU operating as a master.Network devices communicate by means of separate connections (managed by the MPI protocol) between any two devices. Communication between devices is limited to the number of connections supported by the S7-200 CPU or EM 277 modules. See Table 7-3 for the number of connections supported by the S7-200.For MPI protocol, the S7-300 and S7-400 PLCs use the XGET and XPUT instructions to read and write data to the S7-200 CPU. For information about these instructions, refer to your S7-300 or S7-400 programming manual.Figure 7-8 MPI Networkdesignate a person responsible for periodically repaired, if significant quality problems, whether it's design or construction reasons, are required at the first meeting to study and propose solutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officiallyaccepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervision stations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed quality rating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important partof our quality assurance system, the company sold products andinstallation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties andquality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis, engineering quality problems and fill in the data form. 4) record type,the location, cause, and complete solutions. 5) identify reasons to propose solutions and,PROFIBUS ProtocolThe PROFIBUS protocol is designed for high-speed communications with distributed I/O devices (remote I/O). There are many PROFIBUS devices available from a variety of manufacturers. These devices range from simple input or output modules to motor controllers and PLCs.PROFIBUS networks typically have one master and several slave I/O devices. See Figure 7-9. The master device is configured to know what types of I/O slaves are connected and at what addresses. The master initializes the network and verifies that the slave devices on the network match the configuration. The master continuously writes output data to the slaves and reads input data from them.Figure 7-9 PROFIBUS NetworkWhen a DP master configures a slave device successfully, it then owns that slave device. If there is a second master device on thenetwork, it has very limited access to the slaves owned by the first master.TCP/IP ProtocolThe S7-200 can support TCP/IP Ethernet communication through the use of an Ethernet (CP 243--1) orInternet (CP 243--1 IT) expansion module. Table 7-4 shows the baud rate and number of connections supported by these modules. Table 7-4 Number of Connections for the Ethernet (CP 243--1) and the Internet (CP 243--1 IT)ModulesModule Baud Rate ConnectionsEthernet (CP 243--1) Module 10 to 100 Mbaud 8 general purpose connections第 9 页共 11 页1 STEP 7--Micro/WINInternet (CP 243--1 IT) ModuleconnectionRefer to the CP 243--1 Communications Processor for Industrial EthernetManual or the CP 243--1 IT Communications Processor for Industrial Ethernet andInformation Technology Manual for additional information.designate a person responsible for periodically repaired, if significant quality problems, whether it's design or construction reasons, are required at the first meeting to study and proposesolutions; 5) post through re-examination on the basis to resolve all remaining issues, well prepared for formal acceptance. 9, officially accepted: 1) the letter of acceptance issued by the Chief Engineer, project manager, and submitted it to the construction completion data; 2) by the employer organization design, supervision and quality supervision stations, construction and other construction units work together to check the quality and acceptance of views put forward, assessed quality rating; 3) Unit checked and confirmed after the completion of works comply with the standards and requirements, issue a certificate of completion to the construction unit, construction and design, quality supervision station, the engineer, civil engineering and other units to sign the certificates of completion; 4) signed a final acceptance certificate and construction unit, and according to the contract provisions of settlement procedures, unless indicated in the contract by the contractor of the warranty work, economic and legal responsibilities of each party are able to remove; 5) get the files transfer and project procedures. 10 quality tracking, maintenance plan is an important partof our quality assurance system, the company sold products andinstallation works are carried out by the after-sales service obligations. In particular, we developed a departmental duties andquality guarantee measures, as follows: 1) visited customers and product usage information. 2) collect customer feedback, product information, customer reports, complaints. 3) based on customer comments and respond promptly to complaints, to the site to identify the cause analysis,engineering quality problems and fill in the data form. 4) record type, the location, cause, and complete solutions. 5) identify reasons to propose solutions and,中文翻译理解S7--200网络通讯的基本概念为网络选择通讯接口S7--200可以满足您的通讯和网络需求,它不仅支持简单的网络,而且支持比较复杂的网络。

PLC毕业设计外文翻译3

PLC毕业设计外文翻译3

学校名称外文翻译专业:班级学号:学生姓名:指导教师:二〇一一年六月学校名称本科生毕业设计原文1:Programmable logic controllers 译文1:可编程逻辑控制器原文2:Foundation of PLC译文2:PLC基础专业班级:学生姓名:指导教师:学院:2011年6月原文1:Programmable logic controllersProgrammable logic controller(PLC) is eight 10- Year on behalf new generation industry that develop the control equip, and is an automatic control, calculator with the thing that the correspondence technique combine together, and is a the spot equipments for exclusively used foring the industry production line controling. Make the PLC there is characteristics of obvious oneself on the design with the long- term and continuous that circulate because of the special of the complexity, usage environment of the control object: The dependable is high, and the adaptability is wide, and have to correspond by letter the function, and weave the the convenience, construction mold piece . Gather the the control in the modern in the system, the PLC have already become a kind of importance of basic control unit, control the realm the inside in the industry applied the foreground is very and extensive.A programmable logic controller(PLC) is a solid-state devide used to control machine motion or process operation by means of a stored program. The PLC sends output control signals and receives input signals through input/output (I/O) devices.A PLC controls outputs in response to stimuli at the inputs according to the logic prescribed by the stored program.The inputs are made up of limit switches,pushbuttons,thumbwheels, switches,pulses,analog signals,ASCII serial data,and binary or BCD data from absolute position encoders.The outputs are voltage or current levers to drive end devices such as lolenids,motor staters,relays,lights,and so on.Other output devices such include analog devices,digital BCD displays,ASCII compatible devices,servo variable-speed drives,and even computers.Programmable controllers were developed(circa in 1968) when General Motors Corp,and other automobile manufacturers were experimenting to see if there might be an alterantive to scrapping all their hardwired control panels of machine tools and other production equipment during a model changeover.This annual tradition was necessary because rewiring of the panels was more expensive than buying new oens.The automotive companies approached a number of control equipment manufacturers and asked them to develop a control system that would have a longer productive life without major rewiring,but would still be understandable to and repairable by plant personnel.The new product wa namd a“programmable controller”.The processor part of the PLC contains a central processing unit and memory.The central proce ssing unit(CPU) is the“trafficdirector”of the processor,the memory stores ing into the processor are the electrical signals from the input devices,as conditioned by the input module to voltage levels acceptable to processor logic.The processor scans the state of I/O and updates outputs based on instructions stored in the memory of the PLC.For example,the processor may be programmed so that if an input connected to a limit switch is true(1imit switch closed),then a corresponding output wired to an output module is to be energized.This output might be asolenoid for example.The processor remembers this command through its memory and compares on each scan to see if that limit is, in fact ,closed. If it is closed, the processor energizes the solenoid by turning on the output module.The output device, such as a solenoid or motor stater,is wired to an output mofule’s terminal,and itreceives its shift signal from the processor, in effect the peocessor is performing a long and complicated series of logic decisions. The PLC performs such decisions sequentially and in accordance with the stored program.similarly, analog I/O allows the processor to make decisions based on the magnitude of a signal, rather than just if is on or off.For example,the processor may be programmes toencrease or decrease the steam flow to a boiler(analog output) based on a comparison of the actual temperature in the boiler(analog input) to the desired temperature. this is often performed by utilizing the built-in PID(proportional,integral,derivative) capabilities of the processor.Proper power to the programmable controller is critical. Today’s systems are available in a wide variety of electrical configurations. Virtually all are designed for use in single-phase power systems, and most are now beginning to be offered with the optional ability to operate in a DC supply environment. AC designs are offered in either single voltage supplies, such as 115 or 230V AC; while some can be configured as either through a selection made on the power supply. Proper grounding of the power supply connection is required for a safe installation. Some programmable controller designs have individual grounding connections from rack to face- plates and other system components, so care must be taken to follow well electrical practice in system grounding during electricalinstallation. In certain applications, a 24 or 120 V DC power supply is required. This is common for installations that axe made where no AC power is available, such as remote electrical generation stations. It is also found where AC power is unreliable and where loss of control is considered an unacceptable situationEven the best of today' s well-designed and manufactured programmable controllers require occasional preventative maintenance and repair. This section looks at some of the tools provided by the manufacturer and techniques for general maintenance.Most of the medium- and large-sized programmable controller systems available today are designed to be maintained by individuals with a wide variety of skills, without the benefit of in-depth formal training of this piece of equipment. This is accomplished in the design by providing individual modules of functionality installed in a chassis serviced from the front (all module types including power supplies). Front access is critical to proper maintenance. This allows easy inspection and replacement of the suspected bad module. Module health is determined by inspecting the LED indicators normally provided on the front of each module. Typical indicators will be on or off depending on the design and individual condition of the module in question. Various CPU and I/O modules will have indicators showing I/O control communications status, memory integrity, power supply tolerance check, scan integrity, and others. On future controller designs, and even today on a few systems, it is likely that English language messages will be displayed on the controller advising the user or maintenance personnel that a particular failure has occurred and recommended actions to take.The modular design and diagnostic indicators are, of course, important, but would be quite useless without well designed documentation provided by the manufacturer for the programmable controller system in question. Proper documentation will have sections dedicated to each major subsystem including CPU, I/O, and programming device. Each should explain in depth the stop-by-stop inspection of the system. All possible combinations of failure mode should be listed, along with suggested actions for repair. This will most often involve only the substitution of a re- placement board for the suspected failed unit. The user is urged to purchase a set of spare modules for the system in question as recommended by the manufacturer. This is normally, at a minimum, a single replacement module for each CPU and programming device serviceable module, and spare I/O modules equal to 10% of the number in the system.Because a PLC is “software based”,its control logic functions can be changed byreprogramming its memory. Keyboard programming devices facilitate entry of the revised program, which can be designed to cause an existing machine or process to operate in a different sequence or to respond to different levels of, or combinations of stimuli .Hardware modifications are needed only if additional, changed, or relocated input/output devices are involved.Programmable controller memory is formatted into bits, bytes, and words of memory.A bit is a single storage element for either a zero or a one. A byte consists of eight bits, and a word (normally) consists of 16 bits, or two bytes. Some systems still use a word length of eight bits, but most have adopted a 16 bit word, even though they may use an 8 bit microprocessor.Depending on the specific design of the programmable controller, it will have a stated memory capacity. This is an indication, although not the only one, of the capability and power of the system. Medium and large controllers are normally expandable from one memory size to their maximum size. Small controllers are normally fixed in their memory size. Size of the memory capacity must be examined relative to the word size ( 8 bit or 16 bit) and utilization. While it is clear that twice the information can be stored in a 16 bit word than in an 8 bit word, it may not be immediately clear that some controllers utilize memory more efficiently than others. For example, a normally open contact and its associated reference address (e.g. Input 1), may use in 8 bit byte each for storage. Combined, they consume one 16 bit word. Some controllers may use more memory than this for these instructions or others. In a large program, these inefficiencies can build on each other to cause a poor utilization of the system memory. A careful analysis of the various programmable controller models is required to assess utilization efficiency. Normal practice calls for an additional 20% - 40% of memory size to be specified to allow for modifications and later expansion. This analysis, combined with knowledge of the application needs, will allow for an intelligent choice of programmable controller.In fine, PLC conduct and actions the spot control equipments, can dependable,accurately complete the control the operation, and can pass with upper grade work machine correspondence, constitute the distribute type the system to complete to control the industry equip. system control request, is a modern industry control the inside compare forerunner’s control project, and apply the foreground to is extensive.译文1:可编程逻辑控制器可编程逻辑控制器(PLC)是八十年代发展起来的新一代工业控制装置,是自动控制、计算机和通信技术相结合的产物,是一种专门用于工业生产过程控制的现场设备。

孙明明 外文资料翻译

孙明明 外文资料翻译

毕业设计(论文)外文资料翻译学院:机械电子工程学院专业:机械设计制造及其自动化姓名:孙明明学号: 070501504外文出处: The advantages of PLC control,filed under PLC Articles附件: 1.外文资料翻译译文;2.外文原文。

(用外文写)附件1:外文资料翻译译文PLC的控制优势任何控制系统从概念到进入工厂工作都要经历四个阶段。

PLC系统在每一个阶段都有优势。

第一阶段是设计,对工厂的需要进行研究和制定控制策略,传统的运行平台的设计和制造必须在设计进行前完成。

PLC系统仅仅需要的是一个模糊的关于机器的可能大小的想法和I/O数量的要求(多少输入和输出接口)。

在这个阶段输入和输出芯片十分便宜,所以可以内置一个很健全的备用容量,它允许用来补充遗漏项目和为未来的扩充做准备。

其次是设计。

传统的方案是,每一项工作都是“一次成型”这不可避免的造成了工程拖延和增加成本。

一个的PLC系统使用最简单的标准件螺栓连接在一起。

在这样的连接下开始编写 PLC程序(或者至少是写入详细的程序规范)。

下一阶段是安装,安装是一种繁琐和昂贵的工作,例如安装传感器、执行器、限制开关系统和主机的连接。

分布式PLC系统使用串行链路式的预编译,测试界面可以简化安装它带来了巨大的成本优势。

PLC的程序多数在这个阶段完成。

最后是调试,而这正是PLC真正的优势被发掘的部分。

没有任何设备在第一次就正常工作。

人性就是这样,总会有一些疏漏。

与传统的系统变动情况的耗时和昂贵相比,PLC的设计师提供了系的内置备用内存容量、备用I/O和一些备用多芯电缆线,多数的变动能迅速和相对便宜的完成。

另外一个好处是,所有的变化PLC都有记录,程序的调试和修改不会因为没有被记录而遗失,这是一个经常发生在常规系统中的问题。

还有一个额外的第五阶段,维护,一旦启动工作,并移交生产就产生了维护的问题。

所有设备都有缺点,大多数设备在错误的模式中度过了它们的大部分的时间。

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面.

电气工程及其自动化专业_外文文献_英文文献_外文翻译_plc方面.

1、外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le -c hi p m ic ro co mp ut er i s t he c ul mi na ti on of both t h e de ve lo pm en t of the dig it al com pu te r an d th e in te gr at ed c i rc ui t arg ua bl y t h e tow m os t s ig ni f ic an t i nv en ti on s o f t he 20th c e nt ur y [1].Th es e tow type s of arch it ec tu re are foun d in sin g le -ch i p m i cr oc om pu te r. Som e empl oy the spli t prog ra m/da ta me mo ry of the H a rv ar d ar ch it ect u re , sh ow n in Fig.3-5A -1, oth ers fo ll ow the p h il os op hy , wi del y ada pt ed for gen er al -p ur po se com pu te rs and m i cr op ro ce ss o r s, o f ma ki ng no log i ca l di st in ct ion be tw ee n p r og ra m and dat a me mo ry as in the Pr in ce to n arch ite c tu re , show n i n Fig.3-5A-2.In gen er al ter ms a sin gl e -chi p mic ro co mp ut er i sc h ar ac te ri zed b y t he i nc or po ra ti on of a ll t he un it s of a co mp uter i n to a sin gl e d ev i ce , as sho wn inFi g3-5A -3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM.R OM is usua ll y for the pe rm an ent,n o n-vo la ti le stor a ge of an app lic a ti on s pr og ra m .M an ym i cr oc om pu te rs and m are inte nd e d for high -v ol um e ap pl ic at ions a n d he nc e t h e eco n om ic al man uf act u re of th e de vic e s re qu ir es t h at t he cont en t s o f t he prog ra m me m or y be co mm it t ed perm a ne ntly d u ri ng the man ufa c tu re of ch ip s .Cl ea rl y, thi s im pl ie s a r i go ro us app ro ach to ROM cod e deve l op me nt sin ce cha ng es can not b e mad e afte r manu f a c tu re .Th is dev e lo pm en t proc ess may invo lv e e m ul at io n us in g aso ph is ti ca te d de ve lo pm en t sy ste m wit h a h a rd wa re emu la tio n cap ab il it y as w el l as the use o f po we rf ul s o ft wa re too ls.So me man uf act u re rs pro vi de add it io na l RO M opt i on s by i n cl ud in g in their ra n ge dev ic es wit h (or int en de d fo r use wit h u s er pro gr am ma ble me mo ry. Th e sim p le st of th es e is usu al ly d e vi ce whi ch can op er at e in a micro p ro ce ssor mod e by usi ng som e o f the inp ut /outp u t li ne s as an ad dr es s an d da ta b us fora c ce ss in g ex te rna l mem or y. Thi s t y pe of de vi ce can beh av ef u nc ti on al ly as th e sing le chip mi cr oc om pu te r from whi ch it is d e ri ve d al be it wit h re st ri ct ed I/O and a mod if ied ex te rn al c i rc ui t. The use of thes e d ev ic es is com mo n eve n in prod uc ti on c i rc ui ts wher e t he vo lu me does no tj us ti f y t h e d ev el o pm en t c osts o f c us to m o n -ch i p R OM [2];t he re c a n s ti ll bea s ignif i ca nt saving i n I /O and o th er c h ip s com pa re d to a conv en ti on al mi c ro pr oc es sor b a se d ci rc ui t. Mor e ex ac t re pl ace m en t fo r RO M dev i ce s ca n be o b ta in ed in th e fo rm of va ri an ts w it h 'p ig gy -b ack 'E P RO M(Er as ab le pro gr am ma bl e ROM s oc ke ts or dev ic e s with EPROM i n st ea d o f RO M 。

可编程控制器外文翻译、中英文翻译、外文文献翻译

可编程控制器外文翻译、中英文翻译、外文文献翻译

毕业设计中英文翻译院系专业班级姓名学号指导教师20**年 4 月Programmable Logic Controllers (PLC)1、MotivationProgrammable Logic Controllers (PLC), a computing device invented by Richard E. Morley in 1968, have been widely used in industry including manufacturing systems, transportation systems, chemical process facilities, and many others. At that time, the PLC replaced the hardwired logic with soft-wired logic or so-called relay ladder logic (RLL), a programming language visually resembling the hardwired logic, and reduced thereby the configuration time from 6 months down to 6 days [Moody and Morley, 1999].Although PC based control has started to come into place, PLC based control will remain the technique to which the majority of industrial applications will adhere due to its higher performance, lower price, and superior reliability in harsh environments. Moreover, according to a study on the PLC market of Frost and Sullivan [1995], an increase of the annual sales volume to 15 million PLCs per year with the hardware value of more than 8 billion US dollars has been predicted, though the prices of computing hardware is steadily dropping. The inventor of the PLC, Richard E Morley, fairly considers the PLC market as a 5-billion industry at the present time.Though PLCs are widely used in industrial practice, the programming of PLC based control systems is still very much relying on trial-and-error. Alike software engineering, PLC software design is facing the software dilemma or crisis in a similar way. Morley himself emphasized this aspect most forcefully by indicating [Moody and Morley, 1999, p. 110]:`If houses were built like software projects, a single woodpecker could destroy civilization.”Particularly, practical problems in PLC programming are to eliminate software bugs and to reduce the maintenance costs of old ladder logic programs. Though the hardware costs of PLCs are dropping continuously, reducing the scan time of the ladder logic is still an issue in industry so that low-cost PLCs can be used.In general, the productivity in generating PLC is far behind compared to other domains, for instance, VLSI design, where efficient computer aided design tools are in practice. Existent software engineering methodologies are not necessarily applicable to the PLC basedsoftware design because PLC-programming requires a simultaneous consideration of hardware and software. The software design becomes, thereby, more and more the major cost driver. In many industrial design projects, more than SO0/a of the manpower allocated for the control system design and installation is scheduled for testing and debugging PLC programs [Rockwell, 1999].In addition, current PLC based control systems are not properly designed to support the growing demand for flexibility and reconfigurability of manufacturing systems. A further problem, impelling the need for a systematic design methodology, is the increasing software complexity in large-scale projects.PLCs (programmable logic controllers) are the control hubs for a wide variety of automated systems and processes. They contain multiple inputs and outputs that use transistors and other circuitry to simulate switches and relays to control equipment. They are programmable via software interfaced via standard computer interfaces and proprietary languages and network options.Programmable logic controllers I/O channel specifications include total number of points, number of inputs and outputs, ability to expand, and maximum number of channels. Number of points is the sum of the inputs and the outputs. PLCs may be specified by any possible combination of these values. Expandable units may be stacked or linked together to increase total control capacity. Maximum number of channels refers to the maximum total number of input and output channels in an expanded system. PLC system specifications to consider include scan time, number of instructions, data memory, and program memory. Scan time is the time required by the PLC to check the states of its inputs and outputs. Instructions are standard operations (such as math functions) available to PLC software. Data memory is the capacity for data storage. Program memory is the capacity for control software.Available inputs for programmable logic controllers include DC, AC, analog, thermocouple, RTD, frequency or pulse, transistor, and interrupt inputs. Outputs for PLCs include DC, AC, relay, analog, frequency or pulse, transistor, and triac. Programming options for PLCs include front panel, hand held, and computer.Programmable logic controllers use a variety of software programming languages for control. These include IEC 61131-3, sequential function chart (SFC), function block diagram (FBD), ladder diagram (LD), structured text (ST), instruction list (IL), relay ladder logic (RLL), flow chart, C, and Basic. The IEC 61131-3 programming environment provides support for five languages specified by the global standard: Sequential Function Chart,Function Block Diagram, Ladder Diagram, Structured Text, and Instruction List. This allows for multi-vendor compatibility and multi-language programming. SFC is a graphical language that provides coordination of program sequences, supporting alternative sequence selections and parallel sequences. FBD uses a broad function library to build complex procedures in a graphical format. Standard math and logic functions may be coordinated with customizable communication and interface functions. LD is a graphic language for discrete control and interlocking logic. It is completely compatible with FBD for discrete function control. ST is a text language used for complex mathematical procedures and calculations less well suited to graphical languages. IL is a low-level language similar to assembly code. It is used in relatively simple logic instructions. Relay Ladder Logic (RLL), or ladder diagrams, is the primary programming language for programmable logic controllers (PLCs). Ladder logic programming is a graphical representation of the program designed to look like relay logic. Flow Chart is a graphical language that describes sequential operations in a controller sequence or application. It is used to build modular, reusable function libraries. C is a high level programming language suited to handle the most complex computation, sequential, and data logging tasks. It is typically developed and debugged on a PC. BASIC is a high level language used to handle mathematical, sequential, data capturing and interface functions.Programmable logic controllers can also be specified with a number of computer interface options, network specifications and features. PLC power options, mounting options and environmental operating conditions are all also important to consider.2、ResumeA PLC (programmable Logic Controller) is a device that was invented to replace the necessary sequential relay circuits for control.The PLC works by looking at its input and depending upon their state, turning on/off its outputs. The user enters a program, usually via software or programmer, which gives the desired results.PLC is used in many "real world" applications. If there is industry present, chance are good that there is a PLC present. If you are involved in machining, packing, material handling, automated assembly or countless other industries, you are probably already using them. If you are not, you are wasting money and time. Almost any application that needs some type of electrical control has a need for a PLC.For example, let's assume that when a switch turns on we want to turn a solenoid on for 5second and then turn it off regardless of how long the switch is on for. We can do this with a simple external timer. But what if the process included 10 switches and solenoids? We should need 10 external times. What if the process also needed to count how many times the switch individually turned on? We need a lot of external counters.As you can see the bigger the process the more of a need we have for a PLC. We can simply program the PLC to count its input and turn the solenoids on for the specified time.We will take a look at what is considered to be the "top 20" PLC instructions. It can be safely estimated that with a firm understanding of these instructions one can solve more than 80% of the applications in existence.Of course we will learn more than just these instruction to help you solve almost ALL potential PLC applications.The PLC mainly consists of a CPU, memory areas, and appropriate circuits to receive input/output data. We can actually consider the PLC to be a box full of hundreds or thousands of separate relay, counters, times and data storage locations,Do these counters,timers, etc. really exist? No,they don't "physically" exist but rather they simulated and be considered software counters, timers, etc. . These internal relays are simulated through bit locations in registers.What does each part do? Let me tell you.Input RelaysThese are connected to the outside world.They physically exsit and receive signals from switches,sensors,ect..Typically they are not relays but rather they are transistors.Internal Utility RelaysThese do not receive signals from the outside world nor do they physically exist.they are simulated relays and are what enables a PLC to eliminate external relays.There are also some special relays that are dedicated to performing only one task.Some are always on while some are always off.Some are on only once during power-on and are typically used for initializing data that was stored.CountersThese again do not physically exist. They are simulated counters and they can be programmed to count pulses.Typically these counters can count up,down or both up anddown.Since they are simulated,they are limited in their counting speed.Some manufacturers also include high-speed counters that are hardware based.We think of these as physically existing.Most times these counters can count up,down or up and down.TimersThese also do not physically exist.They come in many varieties and increments.The most common type is an on-delay type.Others include off-delays and both retentive and non-retentive types.Increments vary from 1ms through 1s.Output RelaysThere are connected to the outside world.They physically exist and send on/off signals to solenoids,lights,etc..They can be transistors,relays,or triacs depending upon the model chosen Data StorageTypically there are registers assigned to simply store data.They are usually used as temporary storage for math or data manipulation.They can also typically be used to store data when power is removed form the PLC.Upon power-up they will still have the same contents as before power was moved.Very convenient and necessary!A PLC works by continually scanning a program.We can think of this scan cycle as consisting of 3 important steps.There are typically more than 3 but we can focus on the important parts and not worry about the others,Typically the others are checking the system and updating the current internal counter and timer values,Step 1 is to check input status,First the PLC takes a look at each input to determine if it is on off.In other words,is the sensor connected to the first input on?How about the third...It records this data into its memory to be used during the next step.Step 2 is to execute program.Next the PLC executes your program one instruction at a time.Maybe your program said that if the first input was on then it should turn on the first output.Since it already knows which inputs are on/off from the previous step,it will be able to decide whether the first output should be turned on based on the state of the first input.It will store the execution results for use later during the next step.Step 3 is to update output status.Finally the PLC updates the status the outputs.It updates the outputs based on which inputs were on during the first step and the results executing your program during the second step.Based on the example in step 2 it would now turn on the firstoutput because the first input was on and your program said to turn on the first output when this condition is true.After the third step the PLC goes back to step one repeats the steps continuously.One scan time is defined as the time it takes to execute the 3 steps continuously.One scan time is defined as the time it takes to execute the 3 steps listed above.Thus a practical system is controlled to perform specified operations as desired.3、PLC StatusThe lack of keyboard, and other input-output devices is very noticeable on a PLC. On the front of the PLC there are normally limited status lights. Common lights indicate;power on - this will be on whenever the PLC has powerprogram running - this will often indicate if a program is running, or if no program is runningfault - this will indicate when the PLC has experienced a major hardware or software problemThese lights are normally used for debugging. Limited buttons will also be provided for PLC hardware. The most common will be a run/program switch that will be switched to program when maintenance is being conducted, and back to run when in production. This switch normally requires a key to keep unauthorized personnel from altering the PLC program or stopping execution. A PLC will almost never have an on-off switch or reset button on the front. This needs to be designed into the remainder of the system.The status of the PLC can be detected by ladder logic also. It is common for programs to check to see if they are being executed for the first time, as shown in Figure 1. The ’first scan’ input will be true on the very first time the ladder logic is scanned, but false on every other scan. In this case the address for ’first scan’ in a PLC-5 is ’S2:1/14’. With the logic in the example the first scan will seal on ’light’, until ’clear’ is turned on. So the light will turn on after the PLC has been turned on, but it will turn off and stay off after ’clear’ is turned on. The ’first scan’ bit is also referred to at the ’first pass’ bit.Figure 1 An program that checks for the first scan of the PLC4、Memory TypesThere are a few basic types of computer memory that are in use today.RAM (Random Access Memory) - this memory is fast, but it will lose its contents when power is lost, this is known as volatile memory. Every PLC uses this memory for the central CPU when running the PLC.ROM (Read Only Memory) - this memory is permanent and cannot be erased. It is often used for storing the operating system for the PLC.EPROM (Erasable Programmable Read Only Memory) - this is memory that can be programmed to behave like ROM, but it can be erased with ultraviolet light and reprogrammed.EEPROM (Electronically Erasable Programmable Read Only Memory) – This memory can store programs like ROM. It can be programmed and erased using a voltage, so it is becoming more popular than EPROMs.All PLCs use RAM for the CPU and ROM to store the basic operating system for the PLC. When the power is on the contents of the RAM will be kept, but the issue is what happens when power to the memory is lost. Originally PLC vendors used RAM with a battery so that the memory contents would not be lost if the power was lost. This method is still in use, but is losing favor. EPROMs have also been a popular choice for programming PLCs. The EPROM is programmed out of the PLC, and then placed in the PLC. When the PLC is turned on the ladder logic program on the EPROM is loaded into the PLC and run. This method can be very reliable, but the erasing and programming technique can be time consuming. EEPROM memories are a permanent part of the PLC, and programs can be stored in them like EPROM. Memory costs continue to drop, and newer types (such as flash memory) are becoming available, and these changes will continue to impact PLCs.5、Objective and Significance of the ThesisThe objective of this thesis is to develop a systematic software design methodology for PLC operated automation systems. The design methodology involves high-level description based on state transition models that treat automation control systems as discrete event systems, a stepwise design process, and set of design rules providing guidance and measurements to achieve a successful design. The tangible outcome of this research is to find a way to reduce the uncertainty in managing the control software development process, that is, reducing programming and debugging time and their variation, increasing flexibility of theautomation systems, and enabling software reusability through modularity. The goal is to overcome shortcomings of current programming strategies that are based on the experience of the individual software developer.A systematic approach to designing PLC software can overcome deficiencies in the traditional way of programming manufacturing control systems, and can have wide ramifications in several industrial applications. Automation control systems are modeled by formal languages or, equivalently, by state machines. Formal representations provide a high-level description of the behavior of the system to be controlled. State machines can be analytically evaluated as to whether or not they meet the desired goals. Secondly, a state machine description provides a structured representation to convey the logical requirements and constraints such as detailed safety rules. Thirdly, well-defined control systems design outcomes are conducive to automatic code generation- An ability to produce control software executable on commercial distinct logic controllers can reduce programming lead-time and labor cost. In particular, the thesis is relevant with respect to the following aspect Customer-Driven ManufacturingIn modern manufacturing, systems are characterized by product and process innovation, become customer-driven and thus have to respond quickly to changing system requirements.A major challenge is therefore to provide enabling technologies that can economically reconfigure automation control systems in response to changing needs and new opportunities. Design and operational knowledge can be reused in real-time, therefore, giving a significant competitive edge in industrial practice.Higher Degree of Design Automation and Software QualityStudies have shown that programming methodologies in automation systems have not been able to match rapid increase in use of computing resources. For instance, the programming of PLCs still relies on a conventional programming style with ladder logic diagrams. As a result, the delays and resources in programming are a major stumbling stone for the progress of manufacturing industry. Testing and debugging may consume over 50% of the manpower allocated for the PLC program design. Standards [IEC 60848, 1999; IEC-61131-3, 1993; IEC 61499, 1998; ISO 15745-1, 1999] have been formed to fix and disseminate state-of-the-art design methods, but they normally cannot participate in advancingthe knowledge of efficient program and system design.A systematic approach will increase the level of design automation through reusing existing software components, and will provide methods to make large-scale system design manageable. Likewise, it will improve software quality and reliability and will be relevant to systems high security standards, especially those having hazardous impact on the environment such as airport control, and public railroads.System ComplexityThe software industry is regarded as a performance destructor and complexity generator. Steadily shrinking hardware prices spoils the need for software performance in terms of code optimization and efficiency. The result is that massive and less efficient software code on one hand outpaces the gains in hardware performance on the other hand. Secondly, software proliferates into complexity of unmanageable dimensions; software redesign and maintenance-essential in modern automation systems-becomes nearly impossible. Particularly, PLC programs have evolved from a couple lines of code 25 years ago to thousands of lines of code with a similar number of 1/O points. Increased safety, for instance new policies on fire protection, and the flexibility of modern automation systems add complexity to the program design process. Consequently, the life-cycle cost of software is a permanently growing fraction of the total cost. 80-90% of these costs are going into software maintenance, debugging, adaptation and expansion to meet changing needs [Simmons et al., 1998].Design Theory DevelopmentToday, the primary focus of most design research is based on mechanical or electrical products. One of the by-products of this proposed research is to enhance our fundamental understanding of design theory and methodology by extending it to the field of engineering systems design. A system design theory for large-scale and complex system is not yet fully developed. Particularly, the question of how to simplify a complicated or complex design task has not been tackled in a scientific way. Furthermore, building a bridge between design theory and the latest epistemological outcomes of formal representations in computer sciences and operations research, such as discrete event system modeling, can advance future development in engineering design.Application in Logical Hardware DesignFrom a logical perspective, PLC software design is similar to the hardware design of integrated circuits. Modern VLSI designs are extremely complex with several million parts and a product development time of 3 years [Whitney, 1996]. The design process is normally separated into a component design and a system design stage. At component design stage, single functions are designed and verified. At system design stage, components are aggregated and the whole system behavior and functionality is tested through simulation. In general, a complete verification is impossible. Hence, a systematic approach as exemplified for the PLC program design may impact the logical hardware design.可编程控制器1、前言可编程序的逻辑控制器(PLC),是由Richard E.Morley 于1968年发明的,如今已经被广泛的应用于生产、运输、化学等工业中。

电气工程及其自动化专业 外文文献 英文文献 外文翻译 plc方面

电气工程及其自动化专业 外文文献 英文文献 外文翻译 plc方面

1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n i n -5A, ot he rs fo ll ow th e ph i lo so ph y, w i de ly a da pt ed fo r g en er al-p ur pos e c om pu te rs an d m i cr op ro ce ss or s, o f m a ki ng no lo gi c al di st in ct io n b e tw ee n p ro gr am a n d da t a m em ory a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n in-5A.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e dev i ce, as s ho wn in Fi g3-5A-3.-5A-1 A Harvard type-5A. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt, n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at io ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m ad e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he re c a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。

自动化专业-外文文献-英文文献-外文翻译-plc方面

自动化专业-外文文献-英文文献-外文翻译-plc方面

1、外文原文(复印件)A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w t ype s o f a rc hi te ct ur e a re fo un d i n s i ng le—ch ip m i cr oc om pu te r。

S o me em pl oy th e s p li t p ro gr am/d at a me mo ry of t he H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A—1,ot he r s fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al—pu rp os e c o mp ut er s an dm i cr op ro ce ss or s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n in F ig。

3-5A-2.In g en er al te r ms a s in gl e—ch i p mi cr oc om pu ter isc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e de v i ce,as s ho wn i n F ig3—5A—3。

可编程控制器本科毕业论文中英文翻译材料关于PLC外文翻译

可编程控制器本科毕业论文中英文翻译材料关于PLC外文翻译

可编程控制器本科毕业论文中英文翻译材料关于PLC外文翻译中文翻译可编程控制器技术可编程序控制器(Programmable Logic Controller,习惯上简称为PLC)是以微处理器为核心的通用工业自动化装置。

是20世纪60年代末在继电器控制系统的基础上开发出来的,它将传统的继电器控制技术与计算机技术和通信技术融为一体,具有结构简单、性能优越、可靠性高、灵活通用、易于编程、使用方便等优点。

具体来说,PLC的特点表现为以下几个方面:?硬件的可靠性高。

PLC专业在工业环境的恶劣条件下应用而设计。

一个设计良好的PLC能置于有很强电噪声、电磁干扰、机械振动、极端温度和湿度很大的环境中。

在硬件设计方面,首先是选用优质器件,再就是采用合理的系统结构,加固、简化安装,使它易于抗振冲击,对印刷电路板的设计、加工和焊接都采取了极为严格的工艺措施,而在电路、结构及工艺上采取了一些独特的方式。

由于PLC 本身具有很高的可靠性,所以在发生故障的部位大多集中在输入/输出的部位以及如传感器件、限位开关、光电开关、电磁阀、电机等外围装置上。

?编程简单,使用方便。

用微机实现自动控制,常使用汇编语言编程,难于掌握,要求使用者具有一定水平的计算机硬件和软件知识。

PLC采用面向控制过程、面向问题的编程方式,与目前微机控制常用的汇编语言相比,虽然在PLC内部增加了解释程序,增加了程序的执行时间,但对大多数的机电控制设备来说,这种损耗是微不足道的。

?接线简单,通用性好。

在电信号匹配的情况下,PLC的接线只需将输入信号的设备(按钮、开关等)与PLC输入端子连接,将接受输出信号执行控制任务的执行元件(接触器、电磁阀)与PLC输出端子连接。

接线简单、工作量少,省去了传统的继电器控制系统的接线和拆线的麻烦。

PLC的编程逻辑提供了能随要求而改变的逻辑关系,这样生产线的自动化过程就能随意改变。

这种性能使PLC具有很高的经济效益。

用于连接现场设备的硬件接口实际上已经设计成为PLC的组成部分,模块化的自诊断接口电路能指出故障,并易于排除故障与替换故障部件,这样的软硬件设计就使现场电气人员与技术人员易于使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PLC technique discussion and future developmentTest Equipment-principles and ApplicationsPrinceton University .AmericaAlong with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise.The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc, well-trained operation work, technical personnel or expert, governor but can judge and operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain and calculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best path.We come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can do for the low level only; And the PLC emergence also became the epoch-making topic, adding the vivid software control through a very and stable hardware, making the automation head for the new high tide.The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculations of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunctioncontact machine or control the start equipments of the big power after the electric appliances, but the exportation equipments direct conjunction of the small power can.PLC internal containment have the CPU of the CPU, and take to have an I/ O for expand of exterior to connect a people's address and saving machine three big pieces to constitute, CPU core is from an or many is tired to add the machine to constitute, mathematics that they have the logic operation ability, and can read the procedure save the contents of the machine to drive the homologous saving machine and I/ Os to connect after pass the calculation; The I/ O add inner part is tired the input and output system of the machine and exterior link, and deposit the related data into the procedure saving machine or data saving machine; The saving machine can deposit the data that the I/ O input in the saving machine, and in work adjusting to become tired to add the machine and I/ Os to connect, saving machine separately saving machine RAM of the procedure saving machine ROM and dates, the ROM can do deposit of the data permanence in the saving machine, but RAM only for the CPU computes the temporary calculation usage of hour of buffer space.…The PLC anti- interference is very and excellent, our root need not concern its service life and the work situation bad, these all problems have already no longer become the topic that we fail, but stay to our is a concern to come to internal resources of make use of the PLC to strengthen the control ability of the equipments for us, make our equipments more gentle.PLC language is not we imagine of edit collected materials the language or language of Cs to carry on weaving the distance, but the trapezoid diagram that the adoption is original after the electric appliances to control, make the electrical engineering teacher while weaving to write the procedure very easy comprehended the PLC language, and a lot of non- electricity professional also very quickly know and go deep into to the PLC.Is PLC one of the advantage above and only, this is also one part that thepeople comprehend more and easily, in a lot of equipments, the people have already no longer hoped to see too many control buttons, they damage not only and easily and produce the artificial error easiest, small is not a main error perhaps you can still accept; But lead even is a fatal error greatly is what we can't is tolerant of. New technique always for bringing more safe and convenient operation for us, make we a lot of problems for face on sweep but light, do you understand the HMI Says the HMI here you basically not clear what it is, also have no interest understanding, change one inside text explains it into the touch to hold or man-machine interface you knew, it combines with the PLC to our larger space.HMI the control not only is reduced the control press button, increase the vivid of the control, more main of it is can sequence of, and at can the change data input to output the feedback with data, control in the temperature curve of imitate but also can keep the manifestation of view to come out. And can write the function help procedure through a plait to provide the help of various what lies in one's power, the one who make operate reduces the otiose error. Currently the HMI factory is also more and more, the function is also more and more strong, the price is also more and more low, and the noodles of the usage are wide more and more. The HMI foreground can say that think to be good.At a lot of situations, the list is a smooth movement that can't guarantee the equipments by the control of the single machine, but pass the information exchanges of the equipments and equipments to attain the result that we want. For example fore pack and the examination of the empress work preface, we will arrive wrapping information feedback to examine the place, and examine the information of the place to also want the feedback to packing. Pass the information share thus to make both the chain connect, becoming a total body, the match of your that thus make is more close, at each other attain to reflect the result that mutually flick.The PLC correspondence has already come more body now its value, at the PLC and correspondence between Places, can pass the communication of the information and the share of the data’s to guarantee that of the equipments moderatesmutually, the result that arrive already to repair with each other. Data conversion the adoption RS232 between PLC connect to come to the transmission data, but the RS232 pick up a people and can guarantee 10 meters only of deliver the distance, if in the distance of 1000 meters we can pass the RS485 to carry on the correspondence, the longer distance can pass the MODEL only to carry on deliver.The PLC data transmission is just to be called a form to it in a piece of and continuous address that the data of the inner part delivers the other party, we, the PLC of the other party passes to read data in the watch to carry on the operation. If the data that data in the watch is a to establish generally, that is just the general data transmission, for example today of oil price rise, I want to deliver the price of the oil price to lose the oil ally on board, that is the share of the data; But take data in the watch for an instruction procedure that controls the PLC, that had the difficulty very much, for example you have to control one pedestal robot to press the action work that you imagine, you will draw up for it the form that a procedure combine with the data sends out to pass by.The form that information transport contain single work, the half a work and the difference of a workers .The meaning of the single work also is to say both, a can send out only, but a can receive only, for example a spy he can receive the designation of the superior only, but can't give the superior reply; A work of half is also 2 and can send out similar to accept the data, but can't send out and accept at the same time, for example when you make a phone call is to can't answer the phone, the other party also; But whole pair works is both can send out and accept the data, and can send out and accept at the same time. Be like the Internet is a typical example.|The process that information transport also has synchronous and different step cent: The data line and the clock lines are synchronous when synchronous meaning lie in sending out the data, is also the data signal and the clock signalsto be carry on by the CPU to send out at the same time, this needs to all want the specialized clock signal each other to carry on the transmission and connect to send, and is constrained, the characteristics of this kind of method lies in its speed very quick, but correspond work time of take up the CPU and also want to be long oppositely, at the same time the technique difficulty also very big. Its request lies in canting have an error margins in a dates deliver, otherwise the whole piece according to compare the occurrence mistake, this on the hardware is a bigger difficulty. Applied more and more extensive in some appropriative equipments, be like the appropriative medical treatment equipments, the numerical signal equipments...etc., in compare the one data deliver, its result is very good.And the different step is an application the most extensive, this receive benefit in it of technique difficulty is opposite and want to be small, at the same time not need to prepare the specialized clock signal, its characteristics to lie in, its data is partition, the long-lost send out and accept, be the CPU is too busy of time can grind to a stop sex to work, also reduced the difficulty on the hardware, the data throw to lose at the same time opposite want to be little, we can pass the examination of the data to observe whether the data that we send out has the mistake or not, be like strange accidentally the method, tired addition and eight efficacies method etc, can use to helps whether the data that we examine to send out have or not the mistake occurrence, pass the feedback to carry on the discriminator.A line of transmission of the information contains a string of and combines the cent of: The usual PLC is 8 machines, certainly also having 16 machines. We can be at the time of sending out the data a send out to the other party, also can be 88 send out the data to the other party, and 8 differentiations are also the as that we say to send out the data and combine sends out the data.A speed is more and slowly, but as long as 2 or three lines can solve problem, and can use the telephone line to carry on the long range control. But combine the ocular transmission speed is very quick of, it is a string of ocular of 25600%,occupy the advantage in the short distance, the in view of the fact TTL electricity is even, being limited by the scope of one meter generally, it combine unwell used for the data transmission of the long pull, thus the cost is too expensive.Under a lot of circumstances we are total to like to adopt the string to combine the conversion chip to carry on deliver, under this kind of circumstance not need us to carry on to deposited the machine to establish too and complicatedly, but carry on the data exchanges through the data transmission instruction directly, but is not a very viable way in the correspondence, because the PLC of the other party must has been wait for your data exportation at the time of sending out the data, it can't do other works.When you are reading the book, you hear someone knock on door, you stop to start up of affair, open the door and combine to continue with the one who knock on door a dialogue, the telephone of this time rang, you signal hint to connect a telephone, after connecting the telephone through, return overdo come together knock on door to have a conversation, after dialogue complete, you continue again to see your book, this kind of circumstance we are called the interruption to it, it has the authority, also having sex of have the initiative, the PLC had such function .Its characteristics lie in us and may meet the urgently abrupt affairs in the operation process of the equipments, we want to stop to start immediately up of work, the whereabouts manages the more important affair, this kind of circumstance is we usually meet of, PLC while carry out urgent mission, total will keep the current appearance first, for example the address of the procedure, CPU of tired add the machine data etc., be like to stick down which the book that we see is when we open the door the page or simply make a mark, because we treat and would still need to continue immediately after book of see the behind. The CPU always does the affair that should do according to our will, but your mistake of give it an affair, it also would be same to do, this we must notice.The interruption is not only a, sometimes existing jointly with the hourseveral inside break, break off to have the preferred Class, they will carry out the interruption of the higher Class according to person's request. This kind of breaks off the medium interruption to also became to break off the set. The Class that certainly breaks off is relevant according to various resources of CPU with internal PLC; also following a heap of capacity size of also relevant fasten.The contents that break off has a lot of kinds, for example the exterior break off, correspondence in of send out and accept the interruption and settle and the clock that count break off, still have the WDT to reset the interruption etc., they enriched the CPU to respond to the category while handle various business. Speak thus perhaps you can't comprehend the internal structure and operation orders of the interruption completely also, we do a very small example to explain.Each equipment always will not forget a button, it also is at we meet the urgent circumstance use of that is nasty to stop the button. When we meet the Human body trouble and surprised circumstances we as long as press it, the machine stops all operations immediately, and wait for processing the over surprised empress recover the operation again. Nasty stop the internal I/ O of the internal CPU of the button conjunction PLC to connect up, be to press button an exterior to trigger signal for CPU, the CPU carries on to the I/ O to examine again, being to confirm to have the exterior to trigger the signal, CPU protection the spot breaks off procedure counts the machine turn the homologous exterior I/ O automatically in the procedure to go to also, be exterior interruption procedure processing complete, the procedure counts the machine to return the main procedure to continue to work. Have 1:00 can what to explain is we generally would nasty stop the button of exterior break off to rise to the tallest Class, thus guarantee the safety.。

相关文档
最新文档