排列组合练习题及答案.doc
数学概率(排列组合)练习题(含答案)

乙
两名员工必须分配至同一车间,则不同的分配方法总数为
(用数字作答).
7.用 4 种颜色给一个正四面体的 4 个顶点染色,若同一条棱的两个端点不能用相同的
颜色,那么不同的染色方法共有_____________种。
8.数字 1,2,3,4,5,6 按如图形式随机排列,设第一行的数为 N1,其中 N2,N3 分别表示 第二、三行中的最大数,则满足 N1<N2<N3 的所有排列的个数是________.
个(用数字作答).
4.将 一个白 球,一 个红球 ,三个 相同 的黄球 摆放成 一排,则 白球与 红球不 相邻的 放法
有
.
5.用 1、2、3、4、5、6 六个数组成没有重复数字的六位数,其中 5、6 均排在 3 的同
侧,这样的六位数共有
个(用数字作答).
6.某工厂将 4 名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、
对问卷结果进行了统计,并将其中“是否知道灭火器使用方法(知道或不知道)”的调
查结果统计如下表:
年龄(岁) [10,20) [20,30) [30,40) [40,50) [50,60) [60,70]
频数
m
n
15
10
7
3
知道的人数 4
6
12
6
3
2
表中所调查的居民年龄在[10,20),[20,30),[30,40)的人数成等差数列.
,
则直线 OM 与 xOz 平面所成的角为 .
56 . 在 极 坐 标 系 中 , 曲 线 2sin 与 cos 3 的 交 点 的 极 坐 标 为 2
_________. (0 2 )
57.已知圆 C 的极坐标方程为 =2 ,以极点为原点,极轴为 x 轴的正半轴建立平面直
排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。
选项D正确。
2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。
选项B正确。
3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。
选项D 错误。
4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。
5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。
6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。
选项B正确。
7.首先从8个元素中选出2个排在前排,有8选2种选择方式。
然后从剩下的6个元素中选出1个排在后排,有6种选择方式。
最后将剩下的5个元素排在后排,有5!种排列方式。
因此不同的排法有8选2×6×5!=28×720=20,160种。
8.首先将甲、乙、丙三人排成一排,有3!种排列方式。
然后将其余4人插入到相邻的位置中,有4!种排列方式。
因此不同的排法有3!×4!=144种。
9.首先将10个名额排成一排,有10!种排列方式。
然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。
因此不同的分配方案有10!÷(6×8)=21,000种。
10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。
然后将甲和乙插入到相邻的位置中,有2种插入方式。
因此不同的派遣方案有8!×2=80,640种。
11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。
(完整版)排列组合练习题3套(含答案)

(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
(完整版)排列组合练习题(含答案)

排列组合练习题1、三个同学必须从四种不同的选修课中选一种自己想学的课程,共有种不同的选法。
2、8名同学争夺3项冠军,获得冠军的可能性有种。
3、乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有_________种。
4、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有。
5、有8本不同的书,从中取出6本,奖给5位数学优胜者,规定第一名(仅一人)得2本,其它每人一本,则共有种不同的奖法。
6、有3位老师、4名学生排成一排照相,其中老师必须在一起的排法共有种。
7、有8本不同的书,其中数学书3本,外文书2本,其他书3本,若将这些书排成一列放在书架上,则数学书恰好排在一起,外文书也恰好排在一起的排法共有____________种。
8、五种不同的收音机和四种不同的电视机陈列一排,任两台电视机不靠在一起,有种陈列方法。
9、有6名同学站成一排:甲、乙、丙不相邻有种不同的排法。
10、五个人排成一排,要求甲、乙不相邻,且甲、丙也不相邻的不同排法的种数是11、6名男生6名女生排成一排,要求男女相间的排法有种。
12、4名男生和3名女生排成一排,要求男女相间的排法有种。
13、有4男4女排成一排,要求女的互不相邻有种排法;要求男女相间有种排法。
14、一排有8个座位,3人去坐,要求每人左右两边都有空位的坐法有种。
15、三个人坐在一排7个座位上,若3个人中间没有空位,有种坐法。
若4个空位中恰有3个空位连在一起,有种坐法。
16、由1、2、3、4、5组成一个无重复数字的5位数,其中2、3必须排在一起,4、5不能排在一起,则不同的5位数共有个。
17、有4名学生和3位老师排成一排照相,规定两端不排老师且老师顺序固定不变,那么不同的排法有种。
18、从6名短跑运动员中选4人参加4 100米的接力赛,如果其中甲不能跑第一棒,乙不能跑第四棒,共有种参赛方案。
排列组合专项练习1-4

1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有 ( )A .36种B .30种C .42种D .60种2.从甲、乙、丙、丁四名同学中选出三名同学,分别参加三个不同科目的竞赛,其中甲同学必须参赛,不同的参赛方案共有 ( )A .24种B .18种C .21种D .9种3.某校园有一椭圆型花坛,分成如图四块种花,现有4种不同颜色的花可供选择,要求每块地只能种一种颜色,且有公共边界的两块不能种同一种颜色,则不同的种植方法共有( )(A )48种 (B)36种 (C)30种 (D)24种4.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( B )种.A 240 .B 150 .C 60 .D 1805.甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( )A .72种B .54种C .36种D .24种6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为( )A .12B .16C .24D .327.某班要从6名同学中选出4人参加校运动会的4×100m 接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( )A .24种B .72种C .144种D .360种8.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .549. 将A 、B 、C 、D 、E 五种不同的文件放入一排编号依次为1、2、3、4、5、6的六个抽屉内,每个抽屉至多放一种文件.若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放相邻的抽屉内,则文件放入抽屉内的满足条件的所有不同的方法有 种.9610.某车队有7辆车,现在要调出4辆,再按一定顺序出去执行任务.要求甲、乙两车必须参加,而且甲车在乙车前开出,那么不同的调度方案有 种.12011.从4个班级的学生中选出7名学生代表,若每一个班级中至少有一名代表,则选法种数为20 。
排列组合练习题及答案

排列组合习题精选一、纯排列与组合问题:1.从9人中选派2人参加某一活动,有多少种不同选法?2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派方法?3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学的人数是()A.男同学2人,女同学6人B.男同学3人,女同学5人C. 男同学5人,女同学3人D. 男同学6人,女同学2人4.一条铁路原有m个车站,为了适应客运需要新增加n个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有()A.12个B.13个C.14个D.15个2221322选C.二、相邻问题:1. A、B、C、D、E五个人并排站成一列,若A、B必相邻,则有多少种不同排法?2. 有8本不同的书,其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )A.720B.1440C.2880D.3600答案:1.242448A A=(2) 选B 3253251440A A A=三、不相邻问题:1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有()A.2880B.1152C.48D.1444.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法?5.8X椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中,需给舞台上方安装一排彩灯共15只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮方式是()A.28种B.84种C.180种D.360种答案:1.43451440A A = (2)3434144A A = (3)选B 444421152A A = (4)3424A = (5)4245480A A =(6)333424A C = (7)3334144A A = (8)选A 6828C =四、定序问题:1. 有4名男生,3名女生。
排列组合经典练习题答案答案.doc

排列组合二项定理排列组合二项定理知识要点—、两个原理.1.乘法原理、加法原理.2.可以有事复无奉的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二...... 第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m-m-... m= m n..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:秫"种)二' 排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m<n)个元素,哲眼丁定顺序排成一列,叫做从儿个不同元素中取出秫个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出个元素排成一列,称为从«个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A片表示.⑷排列数公式:A m= n(n一1)• • • (〃一m +1)= :——(m < n, n, m G N)注意:n-nl=(n + l)!-n!规定0! = 1看=履客规定C?=C:=12,含有可事及素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a” a2,......a”其中限重复数为ni、n2......n k,且n = ni+n2+ ... 以,则S的排列个数等于n = ----- --- .n i ln2\..n k\例如:已知数字3、2、2,求其排列个数"=(1 + 2)!=3又例如:数字5、5、5、求其排列个数?其排列个1!2! 数n = - = l.3!三、组合.1.⑴组合:从〃个不同的元素中任取m(m<n)个元素并成一组,叫做从〃个不同元素中取出秫个元素的一个组合.⑵组合数公式:c,"=41 = "("T)“・(n + l)C"'=—-—”A;;;尻"m\(n-my.⑶两个公式:①C*=Cf②C%+驾=C£%1从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(n + 1)! (n (或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是 含红球选法有c m -*-c ;=c m-,! 一类是不含红球的选法有C :)%1 根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与 不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-l 个元素,所以有C”':,如果不取这 一元素,则需从剩余n 个元素中取出m 个元素,所以共有C :种,依分类原理有C m ~\+C^=C n ^.⑷排列与组合的联系与区别.联系:都是从"个不同元素中取出加个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 n n n nC°+C 2+C 4+••- =C*+C 3+C 5+••• =2,?-1n n nn n n ° 〃十° m+1 十° m+2 • •七 m+n+1kc k =心:1 「k_ 1 厂灯1C n~ C n+1k + 1 n + 1%1 常用的证明组合等式方法例.i. 裂项求和法.如:-+-+-+—— =1-一—(利用 —=——一1)n! (〃一 1)! n\ 2! 3! 4! (n + 1)! (〃 + 1)!ii. 导数法.iii.数学归纳法.iv.倒序求和法.V.递推法(即用 c"-+c m -l=c n :;递推)如:C ;+C ;+C ;+ •••C :=C"+:. Vi.构造二项式.如:(C°)2+(C^)2 + ••• + (C:)2=C 2;; 证明:这里构造二项式(x + l)"(l + x)"=(l + x)2"其中x"的系数,左边为席吒+•••+ac=e)2+(c;)2+...+(a)2,而右边=c 2:四、排列' 组合综合.i.i.排列、组合问题几大解题方法及题型:%1 直接法.②排除法.%1 捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局 部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某/»(/»<»)个元素必相邻的排列有个.其中A ::::;是一个“整体排列”,而则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-%1 有n 件不同商品,若其中A 、B 排在一起有%1 有n 件不同商品,若其中有二件要排在一起有A,;.A ;;:;.注:①③区别在于①是确定的座位,有A ;种;而③的商品地位相同,是从n 件不同商品任取的2个,有不 确定性.%1插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n-m+l>m,即mV*时有意义,2%1占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.%1调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有A岩种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到A n去调序的作用,即若"个元素排成一列,其中加个元素次序一定,共有二种排列方法.A m例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?C n C%1平均法:若把kn个不同元素平均分成k组,每组n个,共有~ .例如:从1, 2, 3, 4中任取2个元素将其平均分成2组有几种分法?有管=3 (平均分组就用不着管组2!与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?厂8厂2(p=)G”2!注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有当n-m+l>m, BP m<ZL±l 时有意义.2%1隔板法:常用于解正整数解组数的问题.例如:%1+X2+X3+X4=12的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为无,巧/3/4显然X1+X2+X3+X4=12,故(x1,x2,x3,x4)是方程的一组解.反之,方程的任何一组解(y1,j,2,y3,y4),对应着惟了的一f 中在〔12个球之间插入隔板的方式(如图•匚丁',二,所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数C* 注意:若为非负数解的X 个数,即用勺皿中⑶等于"1 ,有X] + x2 + .v3... + X" = A => % -1 + % -1 + ■■-a n -1 = A ,进而转化为求a的正整数解的个数为C^+n .%1定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r 个指定位置则有例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:A::;;不在某一位置上:A':—A';;]:或&岩+&」.&;:(一类是不取出特殊元素a, 有A”. 一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)%1指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。
排列组合的试题及答案高中

排列组合的试题及答案高中一、选择题1. 从5个不同的小球中取出3个进行排列,共有多少种不同的排列方式?A. 20种B. 60种C. 120种D. 240种2. 有5个人排成一排,其中甲乙两人必须相邻,共有多少种不同的排法?A. 48种B. 60种C. 120种D. 240种二、填空题3. 用0,1,2,3,4这五个数字组成没有重复数字的三位数,其中个位数字为1的共有多少个?4. 某班有10名同学,需要选出3名代表,有多少种不同的选法?三、解答题5. 某公司有10名员工,需要选出5名员工组成一个工作小组,要求其中至少有1名女性员工。
如果公司中有5名女性员工和5名男性员工,问有多少种不同的组合方式?6. 某校有5个社团,每个学生最多可以参加2个社团,问有多少种不同的参加方式?答案一、选择题1. 答案:B解析:从5个不同的小球中取出3个进行排列,使用排列公式A_{5}^{3} = 5 × 4 × 3 = 60。
2. 答案:A解析:将甲乙两人看作一个整体,有4!种排法,再将甲乙两人内部排列,有2!种排法,所以总共有4! × 2! = 48种排法。
二、填空题3. 答案:18解析:首先确定百位,有4种选择(不能选0和1),然后确定十位,有3种选择(不能与百位相同),最后确定个位为1,所以共有 4 × 3 = 12种。
但是,由于0不能作为百位,所以需要减去3种情况,最终答案为 12 - 3 = 9种。
4. 答案:120解析:从10个人中选出3个人,使用组合公式 C_{10}^{3} = 10! / (3! × (10 - 3)!) = 120。
三、解答题5. 答案:252种解析:首先计算所有可能的组合数,即 C_{10}^{5} = 252。
然后计算没有女性员工的组合数,即 C_{5}^{5} = 1。
所以至少有1名女性员工的组合数为 252 - 1 = 251。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合习题精选一、纯排列与组合问题:1. 从 9 人中选派 2 人参加某一活动,有多少种不同选法?2. 从 9 人中选派 2 人参加文艺活动, 1 人下乡演出, 1 人在本地演出,有多少种不同选派方法?3. 现从男、女 8 名学生干部中选出 2 名男同学和 1 名女同学分别参加全校“资源”、“生态” 和“环保”三个夏令营活动,已知共有 90 种不同的方案,那么男、女同学的人数是( )A. 男同学2 人,女同学6 人B.男同学3 人,女同学5 人C. 男同学5 人,女同学3 人D.男同学6 人,女同学2 人4. 一条铁路原有 m 个车站,为了适应客运需要新增加 n 个车站( n>1),则客运车票增加了 58 种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( )个个个个答案:1、2 272 3 、选B. 设男生 n 2 1 3 2299n8n 3。
、 m nmC362、A人,则有 C C A 90 4 AA 58选 C.二、相邻问题:1. A 、B 、C 、D 、E 五个人并排站成一列,若 A 、B 必相邻,则有多少种不同排法?2. 有 8 本不同的书, 其中 3 本不同的科技书, 2 本不同的文艺书, 3 本不同的体育书,将这 些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )答案: 1.2 432524325A A48(2) 选B AAA 1440三、不相邻问题:1. 要排一个有 4 个歌唱节目和 3 个舞蹈节目的演出节目单,任何两个舞蹈节目都不相邻,有多少种不同排法?2、1 到 7 七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个?名男生和 4 名女生站成一排,若要求男女相间,则不同的排法数有()4. 排成一排的 8 个空位上,坐 3 人,使每人两边都有空位,有多少种不同坐法?张椅子放成一排, 4 人就坐,恰有连续三个空位的坐法有多少种?6. 排成一排的 9 个空位上,坐 3 人,使三处有连续二个空位,有多少种不同坐法?7. 排成一排的 9 个空位上,坐 3 人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法?8. 在一次文艺演出中, 需给舞台上方安装一排彩灯共 15 只,以不同的点灯方式增加舞台效果,要求设计者按照每次点亮时,必须有 6 只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必 须点亮的要求进行设计,那么不同的点亮方式是( )种种种 种答案:1. A 44 A 53 1440 ( 2) A 33 A 44 144 ( )选 B 2A 44 A 44 1152 ( 4) A 43 24 (5) A 44 A 52 480 333( ) 3 3 ( )选 6(6) 3424 3 4144 A C 828A C7 A A8四、定序问题:1. 有 4 名男生, 3 名女生。
现将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法?2. 书架上有 6 本书,现再放入 3 本书,要求不改变原来 6 本书前后的相对顺序,有多少种不同排法?答案: 1.A 77840 2.A 99504A 33 A 66五、分组分配问题:1. 某校高中二年级有 6 个班,分派 3 名教师任教,每名教师任教两个班,不同的安排方法有多少种?2. 6 本不同的书分给甲、乙、丙三人,每人一本、二本、三本的不同分法有多少种?项工程,甲承包三项,乙承包一项,丙、丁各承包二项,不同的承包方案有多少种?4. 6 人住 ABC 三个房间,每间至少住 1 人,有多少种不同住宿方案?5. 有 4 个不同小球放入四个不同盒子,其中有且只有一个盒子留空,有多少种不同放法?6. 把标有 a,b,c,d,e,f,g,h,8 件不同纪念品平均赠给甲、乙两位同学,其中a、b 不赠给同一个人,则不同的赠送方法有种(用数字作答)。
答案:1. C62C42 C22 390 1 2 3 3( 3)C83C51C42C22 2A333 6 5 3 3A222A (2)C C C A 360 A 1680( 4)C61C51C44 3 1 2 3 3 C62C42 C22 3 540 (5)C42C21C11 1 A 3 144 A22 A C C C A A33 A A22 C3 6 5 3 3 34 3C21C11 C63C33 2 2(6)A22 A22 A2 A2 40六、相同元素问题:1.不定方程x1x2x3x47 的正整数解的组数是,非负整数解的组数是。
2.某运输公司有 7 个车队,每个车队的车多于 4 辆,现从这 7 个车队中抽出 10 辆车,且每个车队至少抽一辆组成运输队,则不同的抽法有()种种种种3.将 7 个相同的小球全部放入 4 个不同盒子中,(1)每盒至少 1 球的方法有多少种?(2)恰有一个空盒的方法共有多少种?4.有编号为 1、2、3 的 3 个盒子和 10 个相同的小球,现把 10 个小球全部装入 3 个盒子中,使得每个盒子所装球数不小于盒子的编号数,这种装法共有()种种种种5.某中学从高中 7 个班中选出 12 名学生组成校代表队,参加市中学数学应用题竞赛活动,使代表中每班至少有 1 人参加的选法有多少种?答案:1.C 3 3 684 3.(1)C3 1 260()选C, C215 6 10 9 6 4 6 620, C 1202.选A C 20 (2)C C 4( 5)C116462七、直接与间接问题:1. 有 6 名男同学, 4 名女同学,现选 3 名同学参加某一比赛,至少有 1 名女同学,由多少种不同选法?人排成一列( 1)甲乙必须站两端,有多少种不同排法?( 2)甲必须站两端,乙站最中间,有多少种不同排法?(3) 甲不站排头乙不站排尾 , 有多少种不同排法?3. 由 1、2、3、4、5、6 六个数字可组成多少个无重复数字且不是 5 的倍数的五位数?4. 2 名男生 4 名女生排成一行,女生不全相邻的排法有多少种?5. 从 5 门不同的文科学科和 4 门不同的理科学科中任选 4 门,组成一个综合高考科目组,若 要求这组科目中文理科都有,则不同的选法的种数()种种 种 种6. 5 人排成一排,要求甲、乙之间至少有 1 人,共有多少种不同排法?7. 四面体的顶点和各棱中点共有 10 个点,在其中取 4 个不共面的点不同取法有多少种?答案: 1、 C 41 C 62 C 42 C 61 C 43 100 或 C 103 C 63 100 2. (1) A 22 A 55 240 (2) A 21 A 55 240 (3)1 15 63720 或7653 、 14 600 或5460055567655565A A AAA2A A 3720A AA A4、6433222 122576 5 、选 1 3 2 C 2 3 1 120 或64342342235 4 5 4 5 4A A A576或AAAAAAA C C C C 94 C 54 C 44 120 6 、 A 31 A 22 A 33 A 32 A 22 A 22 A 33 A 22 72 或 A 55 A 22 A 44 72 7 、C 1044C 6463141八、分类与分步问题:1. 求下列集合的元素个数.(1) M {( x, y) | x, y N , x y 6} ;( 2).{( x, y) | x, y N ,1 x 4,1 y 5}H2. 一个文艺团队有 10 名成员,有 7 人会唱歌, 5 人会跳舞,现派 2 人参加演出,其中 1 名会唱歌, 1 名会跳舞,有多少种不同选派方法?3. 9 名翻译人员中, 6 人懂英语, 4 人懂日语,从中选拔 5 人参加外事活动,要求其中 3 人担 任英语翻译, 2 人担任日语翻译,选拔的方法有 种(用数字作答)。
4. 某博物馆要在 20 天内接待 8 所学校的学生参观,每天只安排一所学校,其中一所人数较多的学校要连续参观 3 天,其余学校只参观 1 天,则在这 20 天内不同的安排方法为 ( )A. C 320 A 177 种B.A 820 种 C.C 118A 177 种 D.A 1818 种5.从 10 种不同的作物种子选出 6 种放入 6 个不同的瓶子展出,如果甲乙两种种子不能放第一号瓶内,那么不同的放法共有 ( )A. C102A48种B.C19A 59种C.C18A 59种D.C19A 58种6.在画廊要展出 1 幅水彩画、 4 幅油画、 5 幅国画,要求排成一排,并且同一种的画摆放在一起,还要求水彩画不能摆两端,那么不同的陈列方式有 ( )A.A14A55种B.A23A 44A55种C.A14A 44A55种D. A 22A 44A 55种7.把一个圆周 24 等分,过其中任意 3 个分点,可以连成圆的内接三角形,其中直角三角形的个数是( )8.有三张纸片,正、反面分别写着数字 1、 2、 3 和 4、5、6 ,将这三张纸片上的数字排成三位数,共能组不同三位数的个数是 ( )A. 249.在 1~20 共 20 个整数中取两个数相加 , 使其和为偶数的不同取法共有多少种 ?10.用 0, 1, 2, 3,4,5 这六个数字,( 1)可以组成多少个数字不重复的三位数?( 2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不重复的三位数的奇数?( 4)可以组成多少个数字不重复的三位数的偶数?( 5)可以组成多少个数字不重复的小于 1000 的自然数?( 6)可以组成多少个大于 3000,小于 5421 的数字不重复的四位数?11.由数字 1, 2, 3,4,5,6,7 所组成的没有重复数字的四位数,按从小到大的顺序排列起来,第 379 个数是()12.设有编号为 1、2、3、 4、 5 的五个茶杯和编号为 1、 2、3、 4、 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有()种种种种13.从编号为 1,2,, 10,11 的 11 个球中取 5 个,使得这 5 个球的编号之和为奇数,其取法总数是( )种种 种 种14. 从 6 双不同颜色的手套中任取 4 只,试求各有多少种情况出现如下结果(1) 4 只手套没有成双; (2) 4 只手套恰好成双;(3) 4 只手套有 2 只成双,另 2 只不成双15. 从 5 部不同的影片中选出 4 部,在 3 个影院放映,每个影院至少放映一部,每部影片只放 映一场,共有种不同的放映方法(用数字作答)。
16. 如下图 , 共有多少个不同的三角形 ?答案: 1、( 1) 15 (2)20 2 、32 C 22 C 21C 81 C 51C 31 32 3. C 53C 32 C 52C 32C 53C 3190 4.选 C1C 75.156.45 27.C 1222 264 8.C 23348C17 选 C CA选 D A A A选 选 A188 945239.290 10.111100 ( )6 6180 ( ) 4 48 ( ) 211 110()55 452 442C1A A A 2 5 3 3 4 4 AAAA 52(5)6 25 100 131 (6) 120 48 61 175 11. 选 B32379 12 、选B653AA 1C 55 C 53 1 C 52 2 31 13、选 B C 61C 54 C 63C 52 C 65236 14 、(1)C 64C 21C 21C 21C 21240 (2) C 6215 (3) C 61C 52 C 21C 2124015.4C 42C 21C 113180 16. 所有不同的三角形可分为三类:5A 223C A第一类 : 其中有两条边是原五边形的边 , 这样的三角形共有 5 个 ; 第二类 : 其中有且只有一条边是原五边形的边 , 这样的三角形共有 5× 4=20个 ; 第三类 : 没有一条边是原五边形的边 , 即由五条对角线围成的三角形 , 共有 5+5=10 个. 由分类计数原理得 , 不同的三角形共有 5+20+10=35个 .九、元素与位置问题:1.有四位同学参加三项不同的比赛,(1)每位同学必须参加一项竞赛,有多少种不同的结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?2.25200 有多少个正约数 ?有多少个奇约数 ?答案: 1. (1)每位学生有三种选择,四位学生共有参赛方法:333381种;(2)每项竞赛被选择的方法有四种,三项竞赛共有参赛方法:44464 种.2.25200 的约数就是能整除 25200 的整数 , 所以本题就是分别求能整除 25200 的整数和奇约数的个数 .由于 25200=24×32×52×7(1) 25200的每个约数都可以写成2l 3 j5k7l的形式,其中0 i 4,0 j 2,0 k 2,l 1于是 , 要确定 25200 的一个约数 , 可分四步完成 , 即i, j, k,l分别在各自的范围内任取一个值, 这样i有 5 种取法 , j有 3 种取法 ,k有 3 种取法 ,l有 2 种取法 , 根据分步计数原理得约数的个数为 5×3× 3× 2=90 个.(2)奇约数中步不含有 2 的因数 , 因此 25200 的每个奇约数都可以写成3j5k7l的形式 , 同上奇约数的个数为 3× 3×2=18 个 .十、染色问题:1.如图一 , 要给① , ②, ③, ④四块区域分别涂上五种颜色中的某一种 , 允许同一种颜色使用多次 , 但相邻区域必须涂不同颜色 , 则不同涂色方法种数为 ( )A. 180B. 160C. 96D. 60②①①④③③④③④①②②图一图二图三若变为图二 , 图三呢 ?2.某班宣传小组一期国庆专刊,现有红、BA黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A、 B、C、D(如图)每一C D部分只写一种颜色,相邻两块颜色不同,则不同颜色粉笔书写的方法共有种(用具体数字作答)。