(完整word版)概率论与数理统计第八章假设检验

合集下载

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

概率论与数理统计课后习题答案 第八章

概率论与数理统计课后习题答案 第八章

有无显著差异(
).
解:检验假设
经计算
查表知
由于
故接受
即甲,乙两台车床加工的产品直径无显著差异.
8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布
的随机变量,其
中 为甲地发送的真实信号值.现甲地重复发送同一信号 5 次,乙地接受到的信号值为
8.05
8.15
8.2
8.1
8.25
设接收方有理由猜测甲地发送的信号值为 8.问能否接受这一猜测? (

该机正常工作与否的标志是检验 是否成立.一日
试问:在检验水平
下,该日自动机工作是否正
查表知
,由于
故拒绝 ,即该日自动机工作不正常.
2. 假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了 36 位考生的成绩,算的平均成绩为 分,标准差 S=15 分,问在显著性水平 0.05 下,是否可以认为这次考试全体考生的平均成绩为
问这两台机床的加工精度是否一致?
解:该题无 值,故省略.(用 F 检验)
4. 对两批同类电子元件的电阻进行测试,各抽 6 件,测得结果如下(单位:Ω )
A 批 0.140 0.138 0.143 0.141 0.144 0.137
B 批 0.135 0.140 0.142 0.136 0.138 0.141
态分布
(单位:公斤).现抽测了 9 包,其重量为:
99.3
98.7
100.5 101.2 98.3
99.7
99.5
102.0 100.5
问这天包装机工作是否正常?
将这一问题化为一个假设检验问题,写出假设检验的步骤,设
解: (1)作假设

概率论与数理统计教案第八章

概率论与数理统计教案第八章
其中, 是已知常数.试求拒绝域 .
例8为比较新老品种的肥料对作物的效用有无显著差别,选用了各方面条件差不多的10个地块种上此作物.随机选用其中5块施上新肥料,而剩下的5块施上老肥料.等到收获时观察到施新肥的地块,平均年产333(单位:千斤),样本方差为32,施老肥的地块平均年产330,样本方差为40.假设作物产量服从正态分布,检验新肥是否比老肥效用上有显著提高(显著性水平 ).
点面朝上
1
2
3
4
5
6
出现次数
23
26
21
20
15
15
在 水平下,请问,这颗骰子是否是均匀的
例2在某细纱机上进行断点率测定,测验锭子总数为440,测得断头次数记录如下表:
每锭断头数
0
1
2
34Βιβλιοθήκη 5678
锭数(实测)
269
112
38
19
3
1
0
0
3
试问在显著性水平 下能否认为锭子的断头数服从泊松分布
例3某高校研究在校学生的体重,现随机抽取了100位学生,测得他们的体重(单位:kg)为
检验参数
原假设与备择假设
检验统计量
拒绝域
方差
已知
;
当 时,

;
;
未知
;
当 时,

;
;
3、两个正态总体均值差的假设检验问题可汇总如下表
检验参数
抽样分布
检验统计量
拒绝域
均值差
已知
;
当 时,
;
;
未知
;
当 时,
;
;
4、两个正态总体方差比的假设检验问题可汇总如下表

概率论和数理统计假设检验

概率论和数理统计假设检验

05
非参数假设检验
Wilcoxon秩和检验
总结词
用于检验两个独立样本是否来自同一 分布,特别是当样本量较小或总体分 布未知时。
详细描述
Wilcoxon秩和检验通过将每个样本的 观测值替换为其在所有观测值中的秩, 然后比较两组的秩和来进行检验。如 果两个样本来自同一分布,则它们的 秩和应该接近相等。
THANKS
感谢观看
确定检验水准
根据研究目的和样本量等因素,确定检验 水准,如α和β。
计算统计量
根据数据和选择的统计方法,计算出相应 的统计量。
选择合适的统计方法
根据数据类型和假设,选择合适的统计方 法进行检验。
单侧与双侧检验
单侧检验
只考虑一个方向的假设检验,如只考虑增加或只考虑减少。
双侧检验
同时考虑两个方向的假设检验,即同时考虑增加和减少。
检验效能
检验效能是指假设检验能够正确拒绝一个错误假设的能力。在给定样本大小的情况下,提高检验效能 可以提高假设检验的准确性。
假设检验的误用与避免
误用
假设检验的误用通常包括不恰当的假设、错 误的解读、过度推断等。这些错误可能导致 错误的结论,影响科学研究的可靠性和有效 性。
避免方法
为了避免假设检验的误用,研究者应确保假 设合理、解读准确,并避免过度推断。同时, 应采用多种方法进行验证,以提高研究的可 靠性和准确性。
方差齐性检验
01
方差齐性检验
用于检验两组数据或多个组数据的方差是否具有齐性。常 见的方差齐性检验方法包括Bartlett检验、Levene检验等 。
02
总结词
方差齐性检验是假设检验中的重要步骤,它有助于判断不 同组数据之间是否存在显著差异。

(完整版)概率论与数理统计习题集及答案

(完整版)概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计课件 假设检验

H0:=0;H1:0
X 0 P u n
或 H0:=0;H1:0
拒绝域为
U u
X 0 P u 拒绝域为 n
U u
单个正态总体方差未知的均值检验
问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0
3、显示k1,k2,分析结果
MTB>Print k1 k2 否则,拒绝原假设。 如果 k1 k 2 ,则接受原假设;
P142例5的计算机实现步骤
1、输入样本数据,存入C2列 2、选择菜单Stat>Basic Statistics>1-Sample T 3、在Variables栏中,键入C2,在Test Mean栏中 键入750,打开Options选项,在Confidence level 栏中键入95,在Alternative中选择not equal,点击 每个对话框中的OK即可。


统计假设——通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种 假设。 假设检验——根据问题的要求提出假设,构造适当的统 计量,按照样本提供的信息,以及一定的 规则,对假设的正确性进行判断。
基本原则——小概率事件在一次试验中是不可能发生的。
基本概念
引例:已知某班《应用数学》的期末考试成绩服从 正态分布。根据平时的学习情况及试卷的难易程度,估 计平均成绩为75分,考试后随机抽样5位同学的试卷, 得平均成绩为72分,试问所估计的75分是否正确? “全班平均成绩是75分”,这就是一个假设 根据样本均值为72分,和已有的定理结论,对EX=75 是否正确作出判断,这就是检验,对总体均值的检验。
T检验
双边检验
构造T统计量 T

概率论与数理统计习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

【精品】概率论与数理统计PPT课件第八章 假设检验

错误,我们记犯该错误的概率为。
16
假设检验的两类错误
所作判断 真实情况 H0 为真 H0 为假
接受 H0
拒绝 H0
正确
第一类错误
(弃真)
第二类错误
(取伪)
正确
犯第一类错误的概率通常记为
犯第二类错误的概率通常记为
17
如在例2中, 如果第一起交通事故发生后, 就 断定隧道南更容易发生交通事故, 犯第一类错 误的概率是0.35. 当第二起交通事故发生后, 断 定隧道南更容易发生交通事故, 犯第一类错误 的概率是0.352=0.1225. 如果第四起交通事故又 发生在隧道南, 否定p=0.35时犯第一类错误的概 率是0.354=0.015.
24
假设检验步骤(三部曲) 根据实际问题所关心的内容,建立H0与H1。
在H0为真时,选择合适的统计量T, 并确定
拒绝域。 根据样本值计算,并作出相应的判断.
25
提出 假设
总 结
抽取 样本
P(T W)=
-----犯第一 类错误的概率, W为拒绝域
根据统计调查的目的, 提出 原假设H0 和备择假设H1
P= 0.353 ≈ 0.043.
这是一个很小的概率, 一般不容易发生.
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
4
这是 小概率事件, 一般在一次试验中是不会发 生的, 现一次试验竟然发生, 故可认为原假设不 成立, 即该批产品次品率p>0.04 , 则该批产品不 能出厂.

概率论与数理统计参数假设检验


μ=μ0=70
显然统计量的值t = -1.4在接受域内,所以接受H0,即可以认 为全体考生平均分为70分.
《概率统计》
返回
下页
结束
例2. 一种元件,要求使用寿命不得低于1000小时,现在从一批这种元件中随 机抽取25件,测得其使用寿命的平均值为950小时,已知该元件寿命服从标准 差σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合 格.
| U |> u , U> uα , U<- uα
2
时拒绝H0,认为μ1与μ2有显著差异.
《概率统计》
返回
下页
结束
2、
2 1

2 2
均未知,但
2 1
=
2 2
时(t 检验)
当H0成立时,选统计量 t (n11)S12(X n2 Y1)S2 2(11)~t(n1n22)
n1n22
n1 n2
由样本计算出 t 值且对应于 α 查得临界值:
由样本观察值计 算统计量的值
第五步,作出统计推断.
统计量的值在接受域 内,则接受H0 ;在拒
绝域内,则拒绝H0
《概率统计》
返回
下页
结束
§8.2 正态总体均值的检验
一、单个正态总体均值μ的假设检验
设 X ~N(μ , σ2 ), X1,X2,…,Xn; μ0为已知数.
H0 : μ= μ0 ,
H1 : μ≠ μ0 (双侧)
结束
二、两个正态总体均值差的假设检验
设 X ~ N (μ1,σ12)
记 n X s2
1
1

2
X
~
N(1 ,
1
n
)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章假设检验第一节概述统计推断中的另一类重要问题是假设检验(Hypothesis testing).当总体的分布函数未知,或只知其形式而不知道它的参数的情况时,我们常需要判断总体是否具有我们所感兴趣的某些特性.这样,我们就提出某些关于总体分布或关于总体参数的假设,然后根据样本对所提出的假设作出判断:是接受还是拒绝.这就是本章所要讨论的假设检验问题.我们先从下面的例子来说明假设检验的一般提法.例8.1某工厂用包装机包装奶粉,额定标准为每袋净重0.5kg.设包装机称得奶粉重量X服从正态分布N(μ,σ2).根据长期的经验知其标准差σ=0.015(kg).为检验某台包装机的工作是否正常;随机抽取包装的奶粉9袋,称得净重(单位:kg)为0.499 0.515 0.508 0.512 0.4980.515 0.516 0.513 0.524问该包装机的工作是否正常?由于长期实践表明标准差比较稳定,于是我们假设X~N(μ,0.0152).如果奶粉重量X 的均值μ等于0.5kg,我们说包装机的工作是正常的.于是提出假设:H0:μ=μ0=0.5;H1:μ≠μ0=0.5.这样的假设叫统计假设.1.统计假设关于总体X的分布(或随机事件之概率)的各种论断叫统计假设,简称假设,用“H”表示,例如:(1)对于检验某个总体X的分布,可以提出假设:H0:X服从正态分布,H1: X不服从正态分布.H0:X服从泊松分布,H1: X不服从泊松分布.(2)对于总体X的分布的参数,若检验均值,可以提出假设:H0:μ=μ0;H1:μ≠μ0.H0:μ≤μ0;H1:μ>μ0.若检验标准差,可提出假设:H0:σ=σ0;H1:σ≠σ0.H0:σ≥σ0;H1:σ<σ0.这里μ0,σ0是已知数,而μ=E(X),σ2=D(X)是未知参数.上面对于总体X的每个论断,我们都提出了两个互相对立的(统计)假设:H0和H1,显然,H0与H1只有一个成立,或H0真H1假,或H0假H1真,其中假设H0,称为原假设(Original hypothesis)(又叫零假设、基本假设),而H1称为H0的对立假设(又叫备择假设).在处理实际问题时,通常把希望得到的陈述视为备择假设,而把这一陈述的否定作为原假设.例如在上例中,H0:μ=μ0=0.5为原假设,它的对立假设是H1:μ≠μ0=0.5.统计假设提出之后,我们关心的是它的真伪.所谓对假设H0的检验,就是根据来自总体的样本,按照一定的规则对H0作出判断:是接受,还是拒绝,这个用来对假设作出判断的规则叫做检验准则,简称检验,如何对统计假设进行检验呢?我们结合上例来说明假设检验的基本思想和做法.2.假设检验的基本思想 在例8.1中所提假设是H 0:μ=μ0=0.5(备择假设H 1:μ≠μ0).由于要检验的假设涉及总体均值μ,故首先想到是否可借助样本均值这一统计量来进行判断.从抽样的结果来看,样本均值x =19(0.499+0.515+0.508+0.512+0.498+0.515+0.516+0.513+0.524)=0.5110,与μ=0.5之间有差异.对于与μ0之间的差异可以有两种不同的解释.(1) 统计假设H 0是正确的,即μ=μ0=0.5,只是由于抽样的随机性造成了与μ0之间的差异;(2) 统计假设H 0是不正确的,即μ≠μ0=0.5,由于系统误差,也就是包装机工作不正常,造成了与μ0之间的差异.对于这两种解释到底哪一种比较合理呢?为了回答这个问题,我们适当选择一个小正数α(α=0.1,0.05等),叫做显著性水平(Level of significance).在假设H0成立的条件下,确定统计量X -μ0的临界值αλ,使得事件{|X -μ0|>αλ}为小概率事件,即P{|X -μ0|>αλ}=α.(8.1)例如,取定显著性水平α=0.05.现在来确定临界值λ0.05.因为X ~N (μ,σ2),当H 0:μ=μ0=0.5为真时,有X ~N (μ0,σ2),于是2011~,ni i X X N n n σμ=⎛⎫= ⎪⎝⎭∑,ZX X =~N (0,1),所以 P {|Z |>z α/2}=α. 由(8.1)式,有P Z ⎧>⎨⎩=α,因此22,z z αααλ==λ0.05=z 0.0250.015/3=0.0098. 故有P {|X -μ0|>0.0098}=0.05.因为α=0.05很小,根据实际推断原理,即“小概率事件在一次试验中几乎是不可能发生的”原理,我们认为当H 0为真时,事件{|X -μ0|>0.0098}是小概率事件,实际上是不可能发生的.现在抽样的结果是|x -μ0|=|0.5110-0.5|=0.0110>0.0098.也就是说,小概率事件{|X -μ0|>0.0098}居然在一次抽样中发生了,这说明抽样得到的结果与假设H 0不相符,因而不能不使人怀疑假设H 0的正确性,所以在显著性水平α=0.05下, 我们拒绝H 0,接受H 1,即认为这一天包装机的工作是不正常的.通过上例的分析,我们知道假设检验的基本思想是小概率事件原理,检验的基本步骤是: (1) 根据实际问题的要求,提出原假设H 0及备择假设H 1;(2) 选取适当的显著性水平α(通常α=0.10,0.05等)以及样本容量n ;(3) 构造检验用的统计量U ,当H 0为真时,U 的分布要已知,找出临界值αλ使P {|U |>αλ}=α.我们称|U |>αλ所确定的区域为H 0的拒绝域(Rejection region),记作W ; (4) 取样,根据样本观察值,计算统计量U 的观察值U 0;(5) 作出判断,将U 的观察值U 0与临界值αλ比较,若U 0落入拒绝域W 内,则拒绝H 0接受H 1;否则就说H 0相容(接受H 0).3.两类错误由于我们是根据样本作出接受H 0或拒绝H 0的决定,而样本具有随机性,因此在进行判断时,我们可能会犯两个方面的错误:一类错误是,当H 0为真时,而样本的观察值U 0落入拒绝域W 中,按给定的法则,我们拒绝了H 0,这种错误称为第一类错误.其发生的概率称为犯第一类错误的概率或称弃真概率,通常记为α,即P {拒绝H 0|H 0为真}=α;另一种错误是,当H 0不真时,而样本的观察值落入拒绝域W 之外,按给定的检验法则,我们却接受了H 0.这种错误称为第二类错误,其发生的概率称为犯第二类错误的概率或取伪概率,通常记为β,即P {接受H 0|H 0不真}=β.显然这里的α就是检验的显著性水平.总体与样本各种情况的搭配见表8-1.表8-1对给定的一对H 0和H 1,总可以找到许多拒绝域W .当然我们希望寻找这样的拒绝域W ,使得犯两类错误的概率α与β都很小.但是在样本容量n 固定时,要使α与β都很小是不可能的,一般情形下,减小犯其中一类错误的概率,会增加犯另一类错误的概率,它们之间的关系犹如区间估计问题中置信水平与置信区间的长度的关系那样.通常的做法是控制犯第一类错误的概率不超过某个事先指定的显著性水平α(0<α<1),而使犯第二类错误的概率也尽可能地小.具体实行这个原则会有许多困难,因而有时把这个原则简化成只要求犯第一类错误的概率等于α,称这类假设检验问题为显著性检验问题,相应的检验为显著性检验.在一般情况下,显著性检验法则是较容易找到的,我们将在以下各节中详细讨论.在实际问题中,要确定一个检验问题的原假设,一方面要根据问题要求检验的是什么,另一方面要使原假设尽量简单,这是因为在下面将讲到的检验法中,必须要了解某统计量在原假设成立时的精确分布或渐近分布.下面各节中,我们先介绍正态总体下参数的几种显著性检验,再介绍总体分布函数的假设检验.第二节 单个正态总体的假设检验1.单个正态总体数学期望的假设检验(1) σ2已知关于μ的假设检验(Z 检验法(Z -test)) 设总体X ~N (μ,σ2),方差σ2已知,检验假设H 0:μ=μ0;H 1:μ≠μ0 (μ0为已知常数) 由X ~N (μ,n σ)X N (0,1), 我们选取ZX (8.2)作为此假设检验的统计量,显然当假设H 0为真(即μ=μ0正确)时,Z ~N (0,1),所以对于给定的显著性水平α,可求z α/2使P {|Z |>z α/2}=α,见图8-1,即P {Z <-z α/2}+P {Z >z α/2}=α.从而有P {Z >z α/2}=α/2, P {Z ≤z α/2}=1-α/2.图8-1利用概率1-α/2,反查标准正态分布函数表,得双侧α分位点(即临界值)z α/2. 另一方面,利用样本观察值x 1,x 2,…,x n 计算统计量Z 的观察值z 0x . (8.3)如果:(a )|z 0|>z α/2,则在显著性水平α下,拒绝原假设H 0(接受备择假设H 1),所以|z 0|>z α/2便是H0的拒绝域.(b ) |z 0|≤z α/2,则在显著性水平α下,接受原假设H 0,认为H 0正确.这里我们是利用H0为真时服从N (0,1)分布的统计量Z 来确定拒绝域的,这种检验法称为Z 检验法(或称U 检验法).例8.1中所用的方法就是Z 检验法.为了熟悉这类假设检验的具体作法,现在我们再举一例.例8.2 根据长期经验和资料的分析,某砖厂生产的砖的“抗断强度”X 服从正态分布,方差σ2=1.21.从该厂产品中随机抽取6块,测得抗断强度如下(单位:kg ·cm -2):32.56 29.66 31.64 30.00 31.87 31.03检验这批砖的平均抗断强度为32.50kg ·cm -2是否成立(取α=0.05,并假设砖的抗断强度的方差不会有什么变化)?解 ① 提出假设H 0:μ=μ0=32.50;H 1:μ≠μ0. ② 选取统计量ZX ,若H 0为真,则Z ~N (0,1).③ 对给定的显著性水平α=0.05,求z α/2使P {|Z |>z α/2}=α,这里z σ/2=z 0.025=1.96.④ 计算统计量Z 的观察值:|z 0| ≈3.05.⑤ 判断:由于|z 0|=3.05>z 0.025=1.96,所以在显著性水平α=0.05下否定H 0,即不能认为这批产品的平均抗断强度是32.50 kg ·cm -2.把上面的检验过程加以概括,得到了关于方差已知的正态总体期望值μ的检验步骤: (a ) 提出待检验的假设H 0:μ=μ0;H 1:μ≠μ0. (b ) 构造统计量Z ,并计算其观察值z 0:ZX ,z 0x(c ) 对给定的显著性水平α,根据P {|Z |>z α/2}=α,P {Z >z α/2}=α/2,P {Z ≤z α/2}=1-α/2查标准正态分布表,得双侧α分位点z α/2. (d ) 作出判断:根据H 0的拒绝域 若|z 0|>z α/2,则拒绝H 0,接受H 1; 若|z 0|≤z α/2,则接受H 0.(2) 方差σ2未知,检验μ(t 检验法(t -test)) 设总体X ~N (μ,σ2),方差σ2未知,检验H 0:μ=μ0;H 1:μ≠μ0.由于σ2X 便不是统计量,这时我们自然想到用σ2的无偏估计量——样本方差S 2代替σ2,由于X t (n -1),故选取样本的函数tX (8.4)图8-2作为统计量,当H 0为真(μ=μ0)时t ~t (n -1),对给定的检验显著性水平α,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2,见图8-2,直接查t 分布表,得t 分布分位点t α/2(n -1).利用样本观察值,计算统计量t 的观察值t 0x , 因而原假设H0的拒绝域为|t 0|t α/2(n -1). (8.5)所以,若|t 0|>t α/2(n -1),则拒绝H 0,接受H 1;若|t 0|≤t α/2(n -1),则接受原假设H 0.上述利用t 统计量得出的检验法称为t 检验法.在实际中,正态总体的方差常为未知,所以我们常用t 检验法来检验关于正态总体均值的问题.例8.3 用某仪器间接测量温度,重复5次,所得的数据是1250°,1265°,1245°,1260°,1275°,而用别的精确办法测得温度为1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?这里假设测量值X 服从N (μ,σ2)分布. 解 问题是要检验H 0:μ=μ0=1277;H 1:μ≠μ0.由于σ2未知(即仪器的精度不知道),我们选取统计量t =X .当H 0为真时,t ~t (n -1),t 的观察值为|t 0|185.399-==>3.对于给定的检验水平α=0.05,由P {|t |>t α/2(n -1)}=α, P {t >t α/2(n -1)}=α/2, P {t >t 0.025(4)}=0.025,查t 分布表得双侧α分位点t α/2(n -1)=t 0.025(4)=2.776.因为|t 0|>3>t 0.025(4)=2.776,故应拒绝H 0,认为该仪器间接测量有系统偏差.(3) 双边检验与单边检验上面讨论的假设检验中,H 0为μ=μ0,而备择假设H 1:μ≠μ0意思是μ可能大于μ0,也可能小于μ0,称为双边备择假设,而称形如H 0:μ=μ0,H 1:μ≠μ0的假设检验为双边检验.有时我们只关心总体均值是否增大,例如,试验新工艺以提高材料的强度,这时所考虑的总体的均值应该越大越好,如果我们能判断在新工艺下总体均值较以往正常生产的大,则可考虑采用新工艺.此时,我们需要检验假设H 0:μ=μ0;H 1:μ>μ0. (8.6)(我们在这里作了不言而喻的假定,即新工艺不可能比旧的更差),形如(8.6)的假设检验,称为右边检验,类似地,有时我们需要检验假设H 0:μ=μ0;H 1:μ<μ0. (8.7)形如(8.7)的假设检验,称为左边检验,右边检验与左边检验统称为单边检验.下面来讨论单边检验的拒绝域. 设总体X ~N (μ,σ2),σ2为已知,x 1,x 2,…,x n 是来自X 的样本观察值.给定显著性水平α,我们先求检验问题H 0:μ=μ0;H 1:μ>μ0.的拒绝域.取检验统计量ZX ,当H 0为真时,Z 不应太大,而在H 1为真时,由于X 是μ的无偏估计,当μ偏大时,X 也偏大,从而Z 往往偏大,因此拒绝域的形式为ZX ≥k ,k 待定.因为当H 0X ~N (0,1),由P {拒绝H 0|H 0为真}=PX k ⎫≥⎬⎭=α得k =z α,故拒绝域为ZX ≥z α. (8.8)类似地,左边检验问题H 0:μ=μ0;H 1:μ<μ0.的拒绝域为ZX ≤-z α. 8.9)例8.4 从甲地发送一个信号到乙地,设发送的信号值为μ,由于信号传送时有噪声迭加到信号上,这个噪声是随机的,它服从正态分布N (0,22),从而乙地接到的信号值是一个服从正态分布N (μ,22)的随机变量.设甲地发送某信号5次,乙地收到的信号值为: 8.4 10.5 9.1 9.6 9.9由以往经验,信号值为8,于是乙方猜测甲地发送的信号值为8,能否接受这种猜测?取α=0.05.解 按题意需检验假设H 0:μ=8;H 1:μ>8.这是右边检验问题,其拒绝域如(8.8)式所示, 即 Z =X ≥z 0.05=1.645.而现在z 0=1.68>1.645,所以拒绝H 0,认为发出的信号值μ>8.2.单个正态总体方差的假设检验(2χ检验法(2χ-test)) (1) 双边检验设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2=σ02;H 1:σ2≠σ2.其中σ02为已知常数.由于样本方差S 2是σ2的无偏估计,当H 0为真时,比值22S σ一般来说应在1附近摆动,而不应过分大于1或过分小于1,由第六章知当H 0为真时2χ=220(1)n S σ-~2χ(n -1). (8.10)所以对于给定的显著性水平α有(图8-3)图8-3P {21/2αχ-(n -1)≤2χ≤2/2αχ(n -1)}=1-α. (8.11)对于给定的α,查2χ分布表可求得2χ分布分位点21/2αχ-(n -1)与2/2αχ(n -1).由(8.11)知,H 0的接受域是21/2αχ- (n -1)≤2χ≤2/2αχ (n -1); (8.12) H 0的拒绝域为2χ<21/2αχ-(n -1)或2χ>2/2αχ(n -1). (8.13)这种用服从2χ分布的统计量对个单正态总体方差进行假设检验的方法,称为2χ检验法. 例8.5 某厂生产的某种型号的电池,其寿命长期以来服从方差σ2=5000(小时2)的正态分布,现有一批这种电池,从它的生产情况来看,寿命的波动性有所改变,现随机抽取26只电池,测得其寿命的样本方差s 2=9200(小时2).问根据这一数据能否推断这批电池的寿命的波动性较以往有显著的变化(取α=0.02)?解 本题要求在α=0.02下检验假设H 0:σ2=5000;H 1:σ2≠5000.现在n =26,2/2αχ(n -1)=20.01(25)χ=44.314,21/2αχ- (n -1)= 20.99(25)χ=11.524,σ02=5000.由(8.13)拒绝域为2σ>44.314或220(1)n s σ-<11.524由观察值s 2=9200得22(1)n s σ-=46>44.314,所以拒绝H 0,认为这批电池寿命的波动性较以往有显著的变化.(2) 单边检验(右检验或左检验) 设总体X ~N (μ,σ2),μ未知,检验假设H 0:σ2≤σ02;H 1:σ2>σ02.(右检验)由于X ~N (μ,σ2),故随机变量*2χ=22(1)n S σ-~2χ(n -1).当H 0为真时,统计量2χ=22(1)n S σ-≤*2χ.对于显著性水平α,有P {*2χ>2αχ(n -1)}=α图8-4(图8-4).于是有P {2χ>2αχ(n -1)}≤P {*2χ>2αχ(n -1)}=α.可见,当α很小时,{2χ>2αχ(n -1)}是小概率事件,在一次的抽样中认为不可能发生,所以H 0的拒绝域是:2χ=22(1)n S σ->2αχ(n -1)(右检验). (8.14)类似地,可得左检验假设H 0:σ2≥σ02,H 1:σ2<σ2的拒绝域为2χ<21αχ-(n -1)(左检验). (8.15)例8.6 今进行某项工艺革新,从革新后的产品中抽取25个零件,测量其直径,计算得样本方差为s 2=0.00066,已知革新前零件直径的方差σ2=0.0012,设零件直径服从正态分布,问革新后生产的零件直径的方差是否显著减小?(α=0.05)解 (1) 提出假设H 0:σ2≥σ02=0.0012;H 1:σ2<σ02. (2) 选取统计量2χ=22(1)n S σ-.*2χ=22(1)n S σ-~2χ(n -1),且当H 0为真时,*2χ≤2χ(3) 对于显著性水平α=0.05,查2χ分布表得21αχ-(n -1)=20.95(24)χ=13.848,当H 0为真时,P {2χ<21αχ- (n -1)}≤P 2212(1)(1)n S n αχσ-⎧⎫-<-⎨⎬⎩⎭=α. 故拒绝域为2χ<21αχ- (n -1)=13.848.(4) 根据样本观察值计算2χ的观察值2χ=220(1)240.000660.0012n s σ-⨯==13.2.(5) 作判断:由于2χ=13.2<21αχ- (n -1)=13.848,即2χ落入拒绝域中,所以拒绝H 0:σ2≥σ02,即认为革新后生产的零件直径的方差小于革新前生产的零件直径的方差.最后我们指出,以上讨论的是在均值未知的情况下,对方差的假设检验,这种情况在实际问题中较多.至于均值已知的情况下,对方差的假设检验,其方法类似,只是所选的统计量为2χ=212()nii Xμσ=-∑.当σ2=σ2为真时,2χ~2χ(n ).关于单个正态总体的假设检验可列表8-2.表8-2注:上表中H0中的不等号改成等号,所得的拒绝域不变.第三节两个正态总体的假设检验上一节介绍了单个正态总体的数学期望与方差的检验问题,在实际工作中还常碰到两个正态总体的比较问题.1.两正态总体数学期望假设检验(1)方差已知,关于数学期望的假设检验(Z检验法)设X~N(μ1,σ12),Y~N(μ2,σ22),且X,Y相互独立,σ12与σ22已知,要检验的是H0:μ1=μ2;H1:μ1≠μ2.(双边检验)怎样寻找检验用的统计量呢?从总体X 与Y 中分别抽取容量为n 1,n 2的样本X 1,X 2,…,1n X 及Y 1,Y 2,…,2n Y ,由于2111~,X N n σμ⎛⎫ ⎪⎝⎭,2222~,Y N n σμ⎛⎫⎪⎝⎭,E (X -Y )=E (X )-E (Y )=μ1-μ2, D (X -Y )=D (X )+D (Y )=221212n n σσ+,故随机变量X -Y 也服从正态分布,即X -Y ~N (μ1-μ2,221212n n σσ+).从而X Y ~N (0,1).于是我们按如下步骤判断.(a ) 选取统计量 ZX Y , (8.16)当H 0为真时,Z ~N (0,1).(b ) 对于给定的显著性水平α,查标准正态分布表求z α/2使P {|Z |>z α/2}=α,或P {Z ≤z α/2}=1-α/2. (8.17) (c ) 由两个样本观察值计算Z 的观察值z 0:z 0x y .(d ) 作出判断:若|z 0|>z α/2,则拒绝假设H 0,接受H 1; 若|z 0|≤z α/2,则与H 0相容,可以接受H 0.例8.7 A ,B 两台车床加工同一种轴,现在要测量轴的椭圆度.设A 车床加工的轴的椭圆度X ~N (μ1,σ12),B 车床加工的轴的椭圆度Y ~N (μ2,σ22),且σ12=0.0006(mm 2),σ22=0.0038(mm 2),现从A ,B 两台车床加工的轴中分别测量了n 1=200,n 2=150根轴的椭圆度,并计算得样本均值分别为=0.081(mm),=0.060(mm).试问这两台车床加工的轴的椭圆度是否有显著性差异?(给定α=0.05)解 ① 提出假设H 0:μ1=μ2;H 1:μ1≠μ2. ② 选取统计量ZX Y ,在H 0为真时,Z ~N (0,1).③ 给定α=0.05,因为是双边检验,α/2=0.025.P {|Z |>z α/2}=0.05, P {Z >z α/2}=0.025,P {Z ≤z α/2}=1-0.025=0.975.查标准正态分布表,得z α/2=z 0.025=1.96.④ 计算统计量Z 的观察值zz 0x y ==3.95.⑤ 作判断:由于|z 0|=3.95>1.96=z α/2,故拒绝H 0,即在显著性水平α=0.05下,认为两台车床加工的轴的椭圆度有显著差异.用Z 检验法对两正态总体的均值作假设检验时,必须知道总体的方差,但在许多实际问题中总体方差σ12与σ22往往是未知的,这时只能用如下的t 检验法.(2) 方差σ12,σ22未知,关于均值的假设检验(t 检验法) 设两正态总体X 与Y 相互独立,X ~N (μ1,σ12),Y ~N (μ2,σ22),σ12,σ22未知,但知σ12=σ22,检验假设H 0:μ1=μ2;H 1:μ1≠μ2.(双边检验) 从总体X ,Y 中分别抽取样本X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y ,则随机变量t()X Y μμ---~t (n 1+n 2-2),式中S w 2=22112212(1)(1)2n S n S n n -+-+-,S 12,S 22分别是X 与Y 的样本方差.当假设H 0为真时,统计量t ~t (n 1+n 2-2). (8.18)对给定的显著性水平α,查t 分布得t α/2(n 1+n 2-2),使得P {|t |>t α/2(n 1+n 2-2)}=α. (8.19)再由样本观察值计算t 的观察值t 0x y, (8.20)最后作出判断:若|t 0|>t α/2(n 1+n 2-2),则拒绝H 0; 若|t 0|≤t α/2(n 1+n 2-2),则接受H 0.例8.8 在一台自动车床上加工直径为2.050毫米的轴,现在每相隔两小时,各取容量都为10的样本,所得数据列表如表8-3所示.12是未知常数.问这台自动车床的工作是否稳定?(取α=0.01)解 这里实际上是已知σ12=σ22=σ2,但σ2未知的情况下检验假设H 0:μ1=μ2;H 1:μ1≠μ2.我们用t 检验法,由样本观察值算得:x =2.063, y =2.059,s 12=0.00000956, s 22=0.00000489,s w 2=2212990.0000860.0000441010218s s ⨯+⨯+=+-=0.0000072.由(8.20)式计算得t 0.对于α=0.01,查自由度为18的t 分布表得t 0.005(18)=2.878.由于|t 0|=3.3>t 0.005(18)=2.878,于是拒绝原假设H 0:μ1=μ2.这说明两个样本在生产上是有差异的,可能这台自动车床受时间的影响而生产不稳定.2. 两正态总体方差的假设检验(F 检验法(F -test )) (1) 双边检验设两正态总体X ~N (μ1,σ12),Y ~N (μ2,σ22),X 与Y 独立,X 1,X 2,…,1n X 与Y 1,Y 2,…,2n Y 分别是来自这两个总体的样本,且μ1与μ2未知.现在要检验假设H 0:σ12=σ22;H 1:σ12≠σ22.在原假设H 0成立下,两个样本方差的比应该在1附近随机地摆动,所以这个比不能太大又不能太小.于是我们选取统计量F =2122S S . (8.21) 显然,只有当F 接近1时,才认为有σ12=σ22.由于随机变量F *=22112222//S S σσ ~F (n 1-1,n 2-1),所以当假设H 0:σ12=σ22成立时,统计量F =2122S S ~F (n 1-1,n 2-1). 对于给定的显著性水平α,可以由F 分布表求得临界值12a F-(n 1-1,n 2-1)与F α/2(n 1-1,n 2-1)使得 P { 12a F-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1)}=1-α(图8-5),由此可知H 0的接受区域是12aF-(n 1-1,n 2-1)≤F ≤F α/2(n 1-1,n 2-1);而H 0的拒绝域为F <12a F-(n 1-1,n 2-1),或 F >F α/2(n 1-1,n 2-1).然后,根据样本观察值计算统计量F 的观察值,若F 的观察值落在拒绝域中,则拒绝H 0,接受H 1;若F 的观察值落在接受域中,则接受H 0.图8-5例8.9 在例8.8中我们认为两个总体的方差σ12=σ22,它们是否真的相等呢?为此我们来检验假设H 0:σ12=σ22(给定α=0.1).解 这里n 1=n 2=10,s 12=0.00000956,s 22=0.00000489,于是统计量F 的观察值为F =0.00000956/0.00000489=1.95.查F 分布表得F α/2(n 1-1,n 2-1)=F 0.05(9,9)=3.18,F 1-α/2(n 1-1,n 2-1)=F 0.95(9,9)=1/F 0.05(9,9)=1/3.18.由样本观察值算出的F 满足F 0.95(9,9)=1/3.18<F =1.95<3.18=F 0.05(9,9).可见它不落入拒绝域,因此不能拒绝原假设H 0:σ12=σ22,从而认为两个总体的方差无显著差异.注意:在μ1与μ2已知时,要检验假设H 0:σ12=σ22,其检验方法类同均值未知的情况,此时所采用的检验统计量是:F =12211122121()1()n i i n i i X n Y n μμ==--∑∑~F (n 1,n 2).其拒绝域参看表8-4.表8-4(2) 单边检验可作类似的讨论,限于篇幅,这里不作介绍了.第四节总体分布函数的假设检验上两节中,我们在总体分布形式为已知的前提下,讨论了参数的检验问题.然而在实际问题中,有时不能确知总体服从什么类型的分布,此时就要根据样本来检验关于总体分布的χ检验法.假设.例如检验假设:“总体服从正态分布”等.本节仅介绍2χ检验法是在总体的分布为未知时,根据样本值x1,x2,…,x n来检验关于总体所谓2分布的假设H0:总体X的分布函数为F(x);H1:总体X的分布函数不是F(x)(8.22)的一种方法(这里的备择假设H1可不必写出).注意,若总体X为离散型,则假设(8.22)相当于H0:总体X的分布律为P{X=x i}=p i,i=1,2,…;(8.23)若总体X为连续型,则假设(8.22)相当于H0:总体X的概率密度为f(x). (8.24)χ检验法检验假设H0时,若在假设H0下F(x)的形式已知,而其参数值未知,在用2此时需先用极大似然估计法估计参数,然后再作检验.2χ检验法的基本思想与方法如下:(1) 将随机试验可能结果的全体Ω分为k 个互不相容的事件A 1,A 2,…,A k (1ki i A ==Ω,A i A j =∅,i ≠j ;i ,j =1,2,…,k ),于是在H 0为真时,可以计算概率ˆi p =P (A i )(i =1,2,…,k ).(2) 寻找用于检验的统计量及相应的分布,在n 次试验中,事件A i 出现的频率if n与概率ˆi p往往有差异,但由大数定律可以知道,如果样本容量n 较大(一般要求n 至少为50,最好在100以上),在H 0成立条件下ˆii f p n-的值应该比较小,基于这种想法,皮尔逊使用 2χ=21ˆ()ˆki i i i f npnp =-∑ (8.25)作为检验H 0的统计量,并证明了如下的定理.定理8.1 若n 充分大(n ≥50),则当H 0为真时(不论H 0中的分布属什么分布),统计量(8.25)总是近似地服从自由度为k -r -1的2χ分布,其中r 是被估计的参数的个数.(3) 对于给定的检验水平α,查表确定临界值2(1)k r αχ--使P {2χ>2(1)k r αχ--)}=α,从而得到H 0的拒绝域为2χ>2(1)k r αχ--).(4)由样本值x 1,x 2,…,x n 计算2χ的值,并与2(1)k r αχ--比较.(5) 作结论:若2χ>2(1)k r αχ--,则拒绝H 0,即不能认为总体分布函数为F (x );否则接受H 0.例8.10 一本书的一页中印刷错误的个数X 是一个随机变量,现检查了一本书的100页,记录每页中印刷错误的个数,其结果如表8-5所示.其中f i 是观察到有i 个错误的页数.问能否认为一页书中的错误个数X 服从泊松分布(取α=0.05)?解 由题意首先提出假设:H 0:总体X 服从泊松分布.P {X =i }=!e ii λλ-,i =0,1,2,…,这里H 0中参数λ为未知,所以需先来估计参数.由最大似然估计法得03614061ˆ+70100x λ⨯+⨯++⨯⨯===1.将试验结果的全体分为A 0,A 1,…,A 7两两不相容的事件.若H 0为真,则P {X =i }有估计111ˆˆ{}!!e e i p P X i i i --====,i =0,1,2,…. 例如10ˆˆ{0},e pP X -=== 11ˆˆ{1},e pP X -=== 12ˆˆ{2},2e pP X -=== ………………166701ˆˆˆ{7}11.!e i i i pP X p i -===≥=-=-∑∑ 计算结果如表8-6所示.将其中有些np i <5的组予以适当合并,使新的每一组内有np i ≥5,如表8-6所示,此处并组后k =4,但因在计算概率时,估计了一个未知参数λ,故24221ˆ()~(411).ˆi i i i f npnp χχ=-=--∑计算结果为2χ=1.460(表8-6).因为220.05(411)(2)αχχ--==5.991>1.46,所以在显著性水平为0.05下接受H 0,即认为总体服从泊松分布.表8-6例8.11 研究混凝土抗压强度的分布.200件混凝土制件的抗压强度以分组形式列出(表8-7).n =61ii f=∑=200.要求在给定的检验水平α=0.05下检验假设H 0:抗压强度X ~N (μ,σ2).表8-7解 原假设所定的正态分布的参数是未知的,我们需先求μ与σ的极大似然估计值.由第七章知,μ与σ2的极大似然估计值为ˆx μ=, 2211ˆ()ni i x x n σ==-∑. 设*i x 为第i 组的组中值,我们有*1195102052624514200i ii x x f n ⨯+⨯++⨯==∑=221,{}2*222211ˆ()(26)10(16)262414200i ii x x f n σ=-=-⨯+-⨯++⨯∑=152,ˆσ=12.33. 原假设H 0改写成X 是正态N (221,12.332)分布,计算每个区间的理论概率值{}11ˆ()()i i i i i pP a X a μμΦΦ--=≤<=-, i =1,2,…,6, 其中ˆi i a xμσ-=, 22()it i t μμ--∞=e d Φ.为了计算出统计量2χ之值,我们把需要进行的计算列表如下(表8-8).表8-8从上面计算得出2χ的观察值为1.35.在检验水平α=0.05下,查自由度m=6-2-1=3的2χ分布表,得到临界值20.05(3)χ=7.815.由于2χ=1.35<7.815=20.05(3)χ,不能拒绝原假设,所以认为混凝土制件的抗压强度的分布是正态分布N(221,152).小结有关总体分布的未知参数或未知分布形式的种种论断叫做统计假设.一般统计假设分为原假设H0(在实际问题中至关重要的假设)及与原假设H0对立假设即是备择假设H1.假设检验就是人们根据样本提供的信息作出“接受H0、拒绝H1”或“拒绝H0、接受H1”的判断.假设检验的思想是小概率原理,即小概率事件在一次试验中几乎不会发生.这种原理是人们处理实际问题中公认的原则.由于样本的随机性,当H0为真时,我们可能会作出拒绝H0、接受H1的错误判断(弃真错误)或当H不真时,我们可能会作出接受H、拒绝H的错误判断(取伪错误).会增大犯第二类错误的概率,反之亦然.在假设检验中我们主要控制(减小)犯第一类错误的概率.使P{拒绝H0|H0为真}≤α,其中α很小.(0<α<1),α称为检验的显著性水平,这种只对犯第一类错误的概率加以控制而不考虑犯第二类错误的概率的检验称为显著性假设检验.单个、两个正态总体的均值、方差的假设检验是本章重点问题,读者需掌握Z检验法、2χ检验法、t检验法等.这些检验法中原假设H0备择假设H1及H0的拒绝域分别见表8-2、表8-4.重要术语及主题原假设备择假设检验统计量单边检验双边检验显著性水平拒绝域显著性检验一个正态总体的参数的检验两个正态总体均值差、方差比的检验总体分布函数的假设检验习 题 八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N (4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)? 2.某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25. 3.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s 2=0.1(克2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05).5.测量某种溶液中的水分,从它的10个测定值得出x =0.452(%),s =0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验. (1) H 0:μ=0.5(%);H 1:μ<0.5(%).(2)0H ':σ=0.04(%);1H ':σ<0.04(%). 6.某种导线的电阻服从正态分布N (μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s =0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005? 7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到: 第一批棉纱样本:n 1=200,x =0.532kg, s 1=0.218kg ; 第二批棉纱样本:n 2=200,x =0.57kg, s 2=0.176kg .设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设H 0:σA 2=σB 2; H 1:σA 2≠σB 2.9.在π的前800位小数的数字中,0,1,…,9相应的出现了74,92,83,79,80,73,77,75,76,91次.试用2χ检验法检验假设H 0:P (X =0)=P (X =1)=P (X =2)=…=P (X =9)=1/10,其中X 为π的小数中所出现的数字,α=0.10.10.在一副扑克牌(52张)中任意抽3张,记录3张牌中含红桃的张数,放回,然后再任抽试在水平α=0.01下检验H 0:Y 服从二项分布,。

相关文档
最新文档