MATLAB中插值拟合函数汇总和使用说明
MATLAB软件中软件拟合与插值运算的方法

MATLAB软件中软件拟合与插值运算的方法内容目录
1MATLAB中软件拟合与插值运算的方法1
1.1拟合函数的选择1
1.1.1线性拟合1
1.1.2非线性拟合2
1.2拟合函数的求解2
1.2.1直接法2
1.2.2迭代法3
1.3MATLAB插值函数4
1.3.1样条插值函数4
1.3.2拉格朗日插值函数5
1.3.3指数插值函数5
结论6
近来,随着科学技术的进步,数据采集技术的发展,大量的实验数据和实验结果越来越多,如何合理地分析处理数据,描绘实际趋势,就变得十分重要,MATLAB中的软件拟合与插值是目前应用最多的数据处理技术之一、本文介绍了MATLAB中软件拟合与插值运算的方法及其具体实现。
1.1拟合函数的选择
1.1.1线性拟合
线性拟合是指拟合函数可以用一元线性方程描述,MATLAB中的拟合
函数有polyfit、polyval和 polyconf等。
其中,polyfit函数用来根据
输入的拟合数据拟出一元多项式,polyval函数用来求出拟合后的拟合值,polyconf函数用来计算拟合的参数的置信范围。
例如,用polyfit函数
拟合下面的数据,输入x = [1 2 3 4 5]和y = [4.3 7.3 11.1 14.1
18.4],拟出的拟合函数为y = 4.1 + 2.3x,即拟合函数为y = 4.1 +
2.3x。
1.1.2非线性拟合。
matlab中插值函数

matlab中插值函数MATLAB 中提供了许多插值函数,这些函数可以用来生成曲线和曲面上丢失的值,或者将方法升级到高精度,使其在小区域内变得更加平稳。
这篇文章介绍了一些常见的MATLAB 插值函数及其用法。
1. interp1 函数interp1 函数是 MATLAB 中最常用的插值函数,可以用于一维向量的插值。
interp1 函数有五个输入参数,第一个是插值点的位置,第二个是原始数据的位置,第三个是原始数据的值,第四个是插值方法,第五个是插值结果的返回类型。
下面的代码演示了如何使用 interp1 对数据进行线性插值:```matlab% 原始数据的位置和值x = [0, 1, 2, 3, 4];y = sin(x);% 插值点的位置xx = 0:0.1:4;% 线性插值yy = interp1(x, y, xx, 'linear');这个代码将生成一条正弦曲线的插值曲线。
interp2 函数是 MATLAB 针对二维数据点的插值函数。
interp2 函数有六个输入参数:x 和 y 是原始数据点的 x 和 y 坐标,z 是原始数据点,xi 和 yi 是要插值的 x 和 y 坐标,method 是插值方法。
这个函数可以执行线性插值、三次插值和紧凑的差值。
% 创建一个有噪声的原始数据点Z = sinc(sqrt(X.^2 + Y.^2)) + 0.1*randn(size(X));% 定义插值点的位置xi = -3:0.05:3;yi = -3:0.05:3;% 绘制原始和插值曲线mesh(X, Y, Z);hold on;mesh(xi, yi, Zi);```3. griddedInterpolant 函数griddedInterpolant 函数可以生成二维、三维和多维插值函数,其中包括线性插值函数、三次插值函数和拟和插值函数。
该函数可以在网格点和非网格点之间进行插值。
matlab插值和拟合专题

4.散乱节点的插值:ZI = GRIDDATA(X,Y,Z,XI,YI)
注:F12设置断点,F5单步执行
5.多项式拟合:
用m 次多项式拟合给定数据,Matlab中有现成的函数:
a=polyfit(x0,y0,m)
其中输入参数x0,y0 为要拟合的数据,m 为拟合多项式的次数,输出参数a 为拟合多项
式y=amxm+…+a0]。
多项式在x 处的值y 可用下面的函数计算
y=polyval(a,x)
'spline' 逐段3 次样条插值
'cubic' 保凹凸性3 次插值。
3.二维插值:z=interp2(x0,y0,z0,x,y,'method'),method的用法同上
二维三次样条插值:pp=csape({x0,y0},z0,conds,valconds),z=fnval(pp,{x,y})
1.分段线性插值:y=interp1(x0,y0,x,'method');
2.三次样条插值:pp=csape(x0,y0,conds);以一个结构体pp的形式返回三次样条插值(边界条件由conds指定)的分段多项式函数,ppval返回值
'nearest' 最近项插值
'linear' 线性插值
matlab插值(详细 全面)

Matlab中插值函数汇总和使用说明MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,'method')其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,MATLAB提供的插值方法有几种: 'method'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。
例如:在一天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为12,9,9,10,18 ,24,28,27,25,20,18,15,13,推测中午12点(即13点)时的温度.x=0:2:24;y=[12 9 9 10 18 24 28 27 25 20 18 15 13];a=13;y1=interp1(x,y,a,'spline')结果为: 27.8725若要得到一天24小时的温度曲线,则:xi=0:1/3600:24;yi=interp1(x,y,xi, 'spline');plot(x,y,'o' ,xi,yi)命令1 interp1功能一维数据插值(表格查找)。
该命令对数据点之间计算内插值。
它找出一元函数f(x)在中间点的数值。
其中函数f(x)由所给数据决定。
x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi = interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。
参量x 指定数据Y 的点。
若Y 为一矩阵,则按Y 的每列计算。
yi是阶数为length(xi)*size(Y,2)的输出矩阵。
matlab插值与拟合(命令与示例)

目录【一维插值】interp1 (1)yi = interp1(x,y,xi,method) (1)例1 (1)例2 (2)【二维插值】interp2 (4)ZI = interp2(X,Y,Z,XI,YI,method) (4)插值方式比较示例 (4)例3 (8)例4 (9)【三角测量和分散数据插值】 (13)【数据拟合】 (17)例5 (17)例6 (18)【一维插值】interp1yi = interp1(x,y,xi,method)例1在1-12 的11 小时内,每隔1 小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。
试估计每隔1/10 小时的温度值。
建立M文件temp.mhours=1:12;temps=[5 8 9 15 25 29 31 30 22 25 27 24];h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'kp',h,t,'b');35302520151050 2 4 6 8 10 12例2已知飞机下轮廓线上数据如下,求x每改变0.1时的y值。
X0357911 12131415 Y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6建立M文件plane.mx0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y1=interp1(x0,y0,x,'nearest');y2=interp1(x0,y0,x);y3=interp1(x0,y0,x,'spline');plot(x0,y0,'kp',x,y1,'r')2.521.510.50 5 10 15 plot(x0,y0,'kp',x,y2,'r')2.521.510.50 5 10 15 plot(x0,y0,'kp',x,y3,'r')2.521.510.50 5 10 15 【二维插值】interp2ZI = interp2(X,Y,Z,XI,YI,method)插值方式比较示例用较大间隔产生peaks 函数数据点[x,y] = meshgrid(-3:1:3);z = peaks(x,y);surf(x,y,z)642-2-4-642 40 2-2 -2-4 -4●产生一个较好的网格[xi,yi] = meshgrid(-3:0.25:3);●利用最近邻方式插值zi1 = interp2(x,y,z,xi,yi,'nearest');surf(xi,yi,zi1)●双线性插值方式zi2 = interp2(x,y,z,xi,yi,'bilinear');surf(xi,yi,zi2)●双立方插值方式zi3 = interp2(x,y,z,xi,yi,'bicubic');surf(xi,yi,zi3)●不同插值方式构造的等高线图对比contour(xi,yi,zi1)321-1-2-3-3 -2 -1 0 1 2 3 contour(xi,yi,zi2)321-1-2-3-3 -2 -1 0 1 2 3 contour(xi,yi,zi3)321-1-2-3-3 -2 -1 0 1 2 3例3测得平板表面3*5 网格点处的温度分别为:82 81 80 82 8479 63 61 65 8184 84 82 85 86试作出平板表面的温度分布曲面z=f(x,y)的图形。
matlab 插值拟合

MATLAB 插值拟合介绍MATLAB是一种用于科学计算和工程应用的高级编程语言和环境。
它提供了许多功能强大的工具箱,可以用于各种数学计算、数据分析和图形绘制任务。
其中之一是插值拟合,它可以通过已知数据点之间的数学插值来估计未知数据点的值。
在本文中,我们将深入探讨MATLAB中的插值拟合方法以及如何使用它们来解决实际问题。
一、插值的概念插值是一种通过已知数据点之间的数学插值来估计未知数据点的值的方法。
它在许多领域中都有广泛的应用,如信号处理、图像处理、数据分析等。
插值的目标是在已知数据点之间建立一个连续的函数,以便可以在这些点之外对函数进行求值。
二、MATLAB中的插值方法MATLAB提供了多种插值方法,可以根据需要选择合适的方法。
下面介绍几种常用的插值方法:1. 线性插值线性插值是一种简单而直观的插值方法。
它假设在两个已知数据点之间的值是线性变化的,并使用直线来连接这些点。
MATLAB中的interp1函数可以实现线性插值。
2. 多项式插值多项式插值是一种更高阶的插值方法,它通过在已知数据点上构造一个多项式函数来逼近未知数据点。
MATLAB中的polyfit函数可以用于拟合多项式,并使用polyval函数进行插值。
3. 三次样条插值三次样条插值是一种更加平滑的插值方法,它通过在每个已知数据点附近构造一个三次多项式函数来逼近未知数据点。
MATLAB中的spline函数可以实现三次样条插值。
4. 二维插值除了在一维数据上进行插值外,MATLAB还提供了在二维数据上进行插值的方法。
例如,interp2函数可以用于二维线性插值,griddata函数可以用于二维三次插值。
三、插值拟合的实际应用插值拟合在许多实际问题中都有广泛的应用。
下面介绍几个常见的应用场景:1. 曲线拟合插值拟合可以用于拟合实验数据或观测数据的曲线。
通过选择适当的插值方法,可以找到最佳拟合曲线,从而更好地理解数据的趋势和规律。
2. 图像处理图像处理中经常需要对像素之间的值进行插值,以便进行放大、缩小或平滑处理。
在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。
在Matlab 中,有许多工具和函数可用于处理这些技术。
本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。
一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。
在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。
1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。
它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。
例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。
可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。
polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。
2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。
与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。
例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab中插值拟合函数汇总和使用说明命令1interp1功能一维数据插值(表格查找)。
该命令对数据点之间计算内插值。
它找出一元函数f(x)在中间点的数值。
其中函数f(x)由所给数据决定。
x:原始数据点Y:原始数据点xi:插值点Yi:插值点格式(1)yi=interp1(x,Y,xi)返回插值向量yi,每一元素对应于参量xi,同时由向量x与Y的内插值决定。
参量x指定数据Y的点。
若Y为一矩阵,则按Y的每列计算。
yi是阶数为length(xi)*size(Y,2)的输出矩阵。
(2)yi=interp1(Y,xi)假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。
(3)yi=interp1(x,Y,xi,method)用指定的算法计算插值:’nearest’:最近邻点插值,直接完成计算;’linear’:线性插值(缺省方式),直接完成计算;’spline’:三次样条函数插值。
对于该方法,命令interp1调用函数spline、ppval、mkpp、umkpp。
这些命令生成一系列用于分段多项式操作的函数。
命令spline用它们执行三次样条函数插值;’pchip’:分段三次Hermite插值。
对于该方法,命令interp1调用函数pchip,用于对向量x与y执行分段三次内插值。
该方法保留单调性与数据的外形;’cubic’:与’pchip’操作相同;’v5cubic’:在MATLAB5.0中的三次插值。
对于超出x范围的xi的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。
对其他的方法,interp1将对超出的分量执行外插值算法。
(4)yi=interp1(x,Y,xi,method,'extrap')对于超出x范围的xi中的分量将执行特殊的外插值法extrap。
(5)yi=interp1(x,Y,xi,method,extrapval)确定超出x范围的xi中的分量的外插值extrapval,其值通常取NaN 或0。
例11.2.>>x=0:10;y=x.*sin(x);3.>>xx=0:.25:10;yy=interp1(x,y,xx);4.>>plot(x,y,'kd',xx,yy)例21.2.>>year=1900:10:2010;3.>>product=[75.99591.972105.711123.203131.669150.697179.323203.212226.5054.249.633256.344267.893];5.>>p1995=interp1(year,product,1995)6.>>x=1900:1:2010;7.>>y=interp1(year,product,x,'pchip');8.>>plot(year,product,'o',x,y)插值结果为:1.2.p1995=3.252.9885命令2interp2功能二维数据内插值(表格查找)格式(1)ZI=interp2(X,Y,Z,XI,YI)返回矩阵ZI,其元素包含对应于参量XI与YI(可以是向量、或同型矩阵)的元素,即Zi(i,j)←[Xi(i,j),yi(i,j)]。
用户可以输入行向量和列向量Xi与Yi,此时,输出向量Zi与矩阵meshgrid(xi,yi)是同型的。
同时取决于由输入矩阵X、Y与Z确定的二维函数Z=f(X,Y)。
参量X与Y必须是单调的,且相同的划分格式,就像由命令meshgrid生成的一样。
若Xi与Yi中有在X与Y范围之外的点,则相应地返回nan(Not a Number)。
(2)ZI=interp2(Z,XI,YI)缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。
再按第一种情形进行计算。
(3)ZI=interp2(Z,n)作n次递归计算,在Z的每两个元素之间插入它们的二维插值,这样,Z的阶数将不断增加。
interp2(Z)等价于interp2(z,1)。
(4)ZI=interp2(X,Y,Z,XI,YI,method)用指定的算法method计算二维插值:’linear’:双线性插值算法(缺省算法);’nearest’:最临近插值;’spline’:三次样条插值;’cubic’:双三次插值。
例3:1.2.>>[X,Y]=meshgrid(-3:.25:3);3.>>Z=peaks(X,Y);4.>>[XI,YI]=meshgrid(-3:.125:3);5.>>ZZ=interp2(X,Y,Z,XI,YI);6.>>surfl(X,Y,Z);hold on;7.>>surfl(XI,YI,ZZ+15)8.>>axis([-33-33-520]);shading flat9.>>hold off例4:1.2.>>years=1950:10:1990;3.>>service=10:10:30;4.>>wage=[150.697199.592187.6255.179.323195.072250.2876.203.212179.092322.7677.226.505153.706426.7308.249.633120.281598.243];9.>>w=interp2(service,years,wage,15,1975)插值结果为:1.2.w=3.190.6288命令3interp3功能三维数据插值(查表)格式(1)VI=interp3(X,Y,Z,V,XI,YI,ZI)找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。
参量XI,YI,ZI是同型阵列或向量。
若向量参量XI,YI,ZI是不同长度,不同方向(行或列)的向量,这时输出参量VI与Y1,Y2,Y3为同型矩阵。
其中Y1,Y2,Y3为用命令meshgrid(XI,YI,ZI)生成的同型阵列。
若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。
(2)VI=interp3(V,XI,YI,ZI)缺省地,X=1:N,Y=1:M,Z=1:P,其中,[M,N,P]=size(V),再按上面的情形计算。
(3)VI=interp3(V,n)作n次递归计算,在V的每两个元素之间插入它们的三维插值。
这样,V的阶数将不断增加。
interp3(V)等价于interp3(V,1)。
(4)VI=interp3(......,method)%用指定的算法method作插值计算:‘linear’:线性插值(缺省算法);‘cubic’:三次插值;‘spline’:三次样条插值;‘nearest’:最邻近插值。
说明在所有的算法中,都要求X,Y,Z是单调且有相同的格点形式。
当X,Y,Z是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。
例51.2.>>[x,y,z,v]=flow(20);3.>>[xx,yy,zz]=meshgrid(.1:.25:10,-3:.25:3,-3:.25:3);4.>>vv=interp3(x,y,z,v,xx,yy,zz);5.>>slice(xx,yy,zz,vv,[69.5],[12],[-2.2]);shadinginterp;colormap cool命令4interpft功能用快速Fourier算法作一维插值格式(1)y=interpft(x,n)返回包含周期函数x在重采样的n个等距的点的插值y。
若length(x)=m,且x有采样间隔dx,则新的y的采样间隔dy=dx*m/n。
注意的是必须n≥m。
若x为一矩阵,则按x的列进行计算。
返回的矩阵y有与x相同的列数,但有n行。
(2)y=interpft(x,n,dim)沿着指定的方向dim进行计算命令5griddata功能数据格点格式(1)ZI=griddata(x,y,z,XI,YI)用二元函数z=f(x,y)的曲面拟合有不规则的数据向量x,y,z。
griddata将返回曲面z在点(XI,YI)处的插值。
曲面总是经过这些数据点(x,y,z)的。
输入参量(XI,YI)通常是规则的格点(像用命令meshgrid生成的一样)。
XI可以是一行向量,这时XI指定一有常数列向量的矩阵。
类似地,YI可以是一列向量,它指定一有常数行向量的矩阵。
(2)[XI,YI,ZI]=griddata(x,y,z,xi,yi)返回的矩阵ZI含义同上,同时,返回的矩阵XI,YI是由行向量xi与列向量yi用命令meshgrid生成的。
(3)[XI,YI,ZI]=griddata(.......,method)用指定的算法method计算:‘linear’:基于三角形的线性插值(缺省算法);‘cubic’:基于三角形的三次插值;‘nearest’:最邻近插值法;‘v4’:MATLAB4中的griddata算法。
命令6spline功能三次样条数据插值格式(1)yy=spline(x,y,xx)对于给定的离散的测量数据x,y(称为断点),要寻找一个三项多项式y=p(x),以逼近每对数据(x,y)点间的曲线。
过两点(xi,yi)和(xi+1,yi+1)只能确定一条直线,而通过一点的三次多项式曲线有无穷多条。
为使通过中间断点的三次多项式曲线具有唯一性,要增加两个条件(因为三次多项式有4个系数):a.三次多项式在点(xi,yi)处有:p¢i(xi)=p¢i(xi);b.三次多项式在点(xi+1,yi+1)处有:p¢i(xi+1)=pi¢(xi+1);c.p(x)在点(xi,yi)处的斜率是连续的(为了使三次多项式具有良好的解析性,加上的条件);d.p(x)在点(xi,yi)处的曲率是连续的;对于第一个和最后一个多项式,人为地规定如下条件:①.p¢1¢(x)=p¢2¢(x)②.p¢n¢(x)=p¢n¢-1(x)上述两个条件称为非结点(not-a-knot)条件。
综合上述内容,可知对数据拟合的三次样条函数p(x)是一个分段的三次多项式:ïïîïïí죣££££=n n n+1223112p(x)x x xp(x)x x xp(x)x x xp(x)L L L L其中每段pi(x)都是三次多项式。