数值分析插值与拟合实验(MATLAB)
matlab插值与曲线拟合实验报告

湖南大学电气与信息工程学院 《数值计算》课程 上机实验报告姓名: 班级: 学号: 日期:指导老师:本次实验题号:第 3 次实验1) 实验目的:1) 用MATLAB 实现拉格朗日插值和分段线性插值。
2) 了解matlab 实现曲线拟合方法的实际应用。
二. 实验内容:1) 插值算法的应用:题目:用拉格朗日插值程序,分段线形插值函数分别研究f (X )的数据表,计算f(0.472) X 0.46 0.47 0.48 0.49 Y0.48465550.49375420.50274980.51166832) 曲线拟合方法的实际应用用电压V=10V 的电池给电容器充电,电容器上t 时刻的电压v(t)=V-(V-V0)e^(-t/T),其中V0是电容器的初始电压,T 是充电常数。
实验测量了一组数据如下,请根据数据表确定V0和T 的大小。
t 0.5 1 2 3 4 5 7 9 V(t) 6.366.487.268.228.668.999.439.63三. 算法介绍或方法基础1.1 拉格朗日插值法对于已给定的点 00(,),...,(,)k k x y x y 和待估计的点的横坐标x ,如上述理论,将其值代入1100,011()()()()():......()()()()kj j i k j i i j j i j j j j j j kx x x x x x x x x x l x x x x x x x x x x x -+=≠-+-----==-----∏计算出插值基函数的值,然后根据公式:():()ki i j L x y l x ==∑计算出纵坐标的估计值,由此完成对该点的插值过程,其中k 为该点插值的阶数。
1.2 线性分段插值利用已给定的点 00(,),...,(,)k k x y x y 对插值区间分为1k -段,将每段的端点(,)i i x y 与 11(,)i i x y ++作为数据点利用公式100010()()()()()f x f x p x f x x x x x -=+--在所构成的区间进行线性插值。
MATLAB数值实验一(数据的插值运算及其应用完整版)

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 插值法与数据拟合 专业班级 机械工程 姓 名 余红杰 学 号 10 指导教师 陈剑 成 绩 日 期 月 日一、实验目的1、学会Lagrange 插值、牛顿插值和三次样条插值等基本插值方法;2、讨论插值的Runge 现象3、学会Matlab 提供的插值函数的使用方法,会用这些函数解决实际问题。
二、实验原理1、拉格朗日插值多项式2、牛顿插值多项式3、三次样条插值 三、实验步骤1、用MATLAB 编写独立的拉格朗日插值多项式函数2、用MATLAB 编写独立的牛顿插值多项式函数3、用MATLAB 编写独立的三次样条函数(边界条件为第一、二种情形)4、已知函数在下列各点的值为:根据步骤1,2,3编好的程序,试分别用4次拉格朗日多项式4()L x 、牛顿插值多项式4()P x 以及三次样条函数()S x (自然边界条件)对数据进行插值,并用图给出 {(,),0.20.08,0,1,2,,10i i i x y x i i =+=},4()L x 、4()P x 和()S x 。
5、在区间[-1,1]上分别取10,20n =用两组等距节点对龙格函数21(),(11)125f x x x=-≤≤+作多项式插值,对不同n 值,分别画出插值函数及()f x 的图形。
6、下列数据点的插值可以得到平方根函数的近似,在区间[0,64]上作图。
(1)用这9个点作8次多项式插值8()L x 。
(2)用三次样条(第一边界条件)程序求()S x 。
7、对于给函数21()125f x x =+在区间[-1,1]上取10.2(0,1,,10)i x i i =-+=,试求3次曲线拟合,试画出拟合曲线并打印出方程,与第5题的结果比较。
四、实验过程与结果:1、Lagrange 插值多项式源代码:function ya=lag(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 ya=0; mu=1; %初始化%循环方式求L 系数,并求和: for i = 1:length(y) for j = 1:length(x) if i ~= jmu = mu * (xa - x(j) ) / ( x(i) - x(j) ); else continue end endya = ya + y(i) * mu ; mu = 1; end2、Newton 源代码:function ya = newton(x,y,xa) %x 所有已知插值点 %y 插值点对应函数值 %xa 所求点,自变量 %ya 所求点插值估计量 %建立系数零矩阵D 及初始化:D = zeros(length(x)-1);ya = y(1);xi = 1;%求出矩阵D,该矩阵第一行为牛顿插值多项式系数:for i=1:(length(x)-1)D(i,1) = (y(i+1) -y(i))/(x(i+1) -x(i));endfor j=2:(length(x)-1)for i=1:(length(x)-j)D(i,j) = (D(i+1,j-1) - D(i,j-1)) / (x(i+j) - x(i)); endend%xi为单个多项式(x-x(1))(x-x(2))...的值for i=1:(length(x)-1)for j=1:ixi = xi*(xa - x(j));endya = ya + D(1,i)*xi;xi = 1;end3、三次样条插值多项式(1)(第一边界条件)源代码:function y=yt1(x0,y0,f_0,f_n,x) _____________(1)%第一类边界条件下三次样条插值;%xi 所求点;%yi 所求点函数值;%x 已知插值点;%y 已知插值点函数值;%f_0左端点一次导数值;%f_n右端点一次导数值;n = length(x0);z = length(y0);h = zeros(n-1,1);k=zeros(n-2,1);l=zeros(n-2,1);S=2*eye(n);for i=1:n-1h(i)= x0(i+1)-x0(i);endfor i=1:n-2k(i)= h(i+1)/(h(i+1)+h(i));l(i)= 1-k(i);end%对于第一种边界条件:k = [1;k]; _______________________(2)l = [l;1]; _______________________(3)%构建系数矩阵S:for i = 1:n-1S(i,i+1) = k(i);S(i+1,i) = l(i);end%建立均差表:F=zeros(n-1,2);for i = 1:n-1F(i,1) = (y0(i+1)-y0(i))/(x0(i+1)-x0(i));endD = zeros(n-2,1);for i = 1:n-2F(i,2) = (F(i+1,1)-F(i,1))/(x0(i+2)-x0(i));D(i,1) = 6 * F(i,2);end%构建函数D:d0 = 6*(F(1,2)-f_0)/h(1); ___________(4)dn = 6*(f_n-F(n-1,2))/h(n-1); ___________(5)D = [d0;D;dn]; ______________(6)m= S\D;%寻找x所在位置,并求出对应插值:for i = 1:length(x)for j = 1:n-1if (x(i)<=x0(j+1))&(x(i)>=x0(j))y(i) =( m(j)*(x0(j+1)-x(i))^3)/(6*h(j))+...(m(j+1)*(x(i)-x0(j))^3)/(6*h(j))+...(y0(j)-(m(j)*h(j)^2)/6)*(x0(j+1)-x(i))/h(j)+... (y0(j+1)-(m(j+1)*h(j)^2)/6)*(x(i)-x0(j))/h(j) ; break;else continue;endendend(2)(自然边界条件)源代码:仅仅需要对上面部分标注的位置做如下修改:__(1):function y=yt2(x0,y0,x)__(2):k=[0;k]__(3):l=[l;0]__(4)+(5):删除—(6):D=[0:D:0]4、——————————————PS:另建了一个f方程文件,后面有一题也有用到。
数据插值、拟合方法的MATLAB实现

hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
n=6;
p=polyfit(hours,temps,n)
t=linspace(0,23,100);
z=polyval(p,t); %多项式求值
plot(hours,temps,'o',t,z,'k:',hours,temps,'b',’r’,'linewidth',1.5)
legend('原始数据','6阶曲线')
2.3用8阶多项式拟合的命令
hours=0:1:23;
temps=[12 12 12 11 10 10 10 10 11 13 15 18 19 20 22 21 20 19 18 16 15 15 15 15]
实验结果:
1.一元插值图像
图1.1一元插值图
经分析三次样条插值法效果最好,以三次样条插值法得出每个0.5小时的温度值:
时间
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
温度
12
11.9
12
12.0
12
11.6
11
10.4
10
9.9
10
10.0
时间
6
6.5
7
7.5
8
8.5
9
9.5
10
10.5
11
11.5
拟合插值

一、实验目的用matlab测试数据的拟合与插值二、实验原理1 拟合(1)polyfit函数MATLAB的polyfit函数用于多项式拟合,其语法为:p = polyfit(x, y, k);其中,x,y分别是横纵坐标向量,它们不仅元素个数相同,而且同为行向量或同为列向量。
k为非负整数,是待拟合的多项式的最高次数。
p是输出项,为待拟合的多项式的系数向量(由高次到低次排列)。
在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
(2)polyval函数polyval,顾名思义就是“多项式的值”,该函数的功能是将已知数据代入拟合得的多项式求值。
语法格式:y = polyval(p, x);其中,p是已经拟合的多项式(比如说(1)中的p),x是自变量组成的向量,y是所求值组成的向量。
(3)计算多项式拟合的方差已知原始数据x和y,拟合得到多项式p,判断拟合效果好坏的一个重要指标是方差,方差的计算方法是e = sum((y - polyval(p, x)).^2).polyval(p, x)得到拟合值向量,y是真实值向量,两者相减得到真实值和拟合值的差值向量,“.^2”表示对矩阵中的每一个元素进行平方运算,于是得到差值向量中每一个元素的平方,sum是求和函数,显然就是求差值向量元素的平方和,而这就是方差。
2 插值法:插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f(x)的近似值,这种方法称为插值法。
三、实验设备、仪器及材料Windows7 ,matlab软件四、实验步骤(按照实际操作过程)(1)开启软件平台——MATLAB,开启MATLAB编辑窗口(2)根据各种数值解法步骤编写M文件(3)保存文件并运行(4)观察运行结果(数值或图形)(5)根据观察到的结果写出实验报告,并浅谈学习心得体会五、实验过程记录(程序)(1)在MATLAB的命令窗口输入以下代码:>> x = [1, 2, 3, 4];>> y = [3, 5, 7, 9];>> p = polyfit(x, y, 1)敲击回车键,得到输出结果:p =2.0000 1.0000所以拟合得的函数就是:y = 2.0000X + 1.0000.在进行多项式拟合时,必须注意的是,拟合的精度是有限的,一般而言,需要满足以下条件:记m为不重复的横坐标的数目,则拟合次数k <= m - 1,在此前提下尽量使用低次多项式进行拟合。
Matlab数据插值与拟合

分段线性插值方法在速度和误差之间取得 了比较好的均衡,其插值函数具有连续性, 但在已知数据点处的斜率一般不会改变, 因此不是光滑的。分段线性插值方法是 MATLAB一维插值默认的方法。 MATLAB一维插值默认的方法。
2.Spline(样条插值) 2.Spline(样条插值)
样条插值是用分段低次多项式去逼近函数。样条函 样条插值是用分段低次多项式去逼近函数。样条函 数可以给出光滑 的插值曲线,只要在插值区间端 点提供某些导数信息,样条插值可以适应不同光滑 需求。三次样条是使用最为广泛的样条插值,它在 需求。三次样条是使用最为广泛的样条插值,它在 每个子区间[x 每个子区间[xi,xi+1]上都是有二阶连续导数的三次多 项式,即
4.1.1 一元插值函数
MATLAB中的一元插值函数为interp1( ),它的功能是一维 MATLAB中的一元插值函数为interp1( ),它的功能是一维 数据插值(表格查找)。该命令对数据点之间进行计算内 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 插值,它出一元函数f(x)在中间点的数值,其中函数f(x)由 所给数据决定。 一元插值函数interp1( )的几种调用格式如表4 一元插值函数interp1( )的几种调用格式如表4-1所示。 表4-1 一维插值插值函数interp1的语法格式 一维插值插值函数interp1的语法格式
例4-1 用interp1对sin函数进行分段线性插值。 interp1对sin函数进行分段线性插值 函数进行分段线性插值。
解:在MATLAB命令窗口中输入以下命令: 解:在MATLAB命令窗口中输入以下命令: >> x=0:2*pi; >> y=sin(x); >> xx=0:0.5:2*pi >> yy=interp1(x,y,xx); >> plot(x,y,'s',xx,yy) 注:例 注:例4-1中用默认的 (分段线性插值的linear) 分段线性插值的linear) 对已知的7 sin函数的 对已知的7个sin函数的 数据点进行插值,用 plot画出插值结果。从图中可以看出分段线性就是联结两个 plot画出插值结果。从图中可以看出分段线性就是联结两个 邻近的已知点的线性函数插值计算该区间内插值点上的函数 值。
matlab插值与拟合(命令与示例)

目录【一维插值】interp1 (1)yi = interp1(x,y,xi,method) (1)例1 (1)例2 (2)【二维插值】interp2 (4)ZI = interp2(X,Y,Z,XI,YI,method) (4)插值方式比较示例 (4)例3 (8)例4 (9)【三角测量和分散数据插值】 (13)【数据拟合】 (16)例5 (16)例6 (17)【一维插值】interp1yi = interp1(x,y,xi,method)例1在1-12的11小时内,每隔1小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。
试估计每隔1/10小时的温度值。
建立M文件temp.mhours=1:12;temps=[5 8 9 15 25 29 31 30 22 25 27 24];h=1:0.1:12;t=interp1(hours,temps,h,'spline');plot(hours,temps,'kp',h,t,'b');0246810125101520253035例2已知飞机下轮廓线上数据如下,求x 每改变0.1时的y 值。
X 0 3 5 7 9 11 12 13 14 15Y0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6建立M 文件plane.mx0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; x=0:0.1:15;y1=interp1(x0,y0,x,'nearest'); y2=interp1(x0,y0,x);y3=interp1(x0,y0,x,'spline'); plot(x0,y0,'kp',x,y1,'r')0510150.511.522.5plot(x0,y0,'kp',x,y2,'r')0510150.511.522.5plot(x0,y0,'kp',x,y3,'r')0510150.511.522.5【二维插值】interp2ZI = interp2(X,Y,Z,XI,YI,method)插值方式比较示例用较大间隔产生peaks 函数数据点[x,y] = meshgrid(-3:1:3); z = peaks(x,y); surf(x,y,z)-4-224-4-224-6-4-20246● 产生一个较好的网格[xi,yi] = meshgrid(-3:0.25:3);● 利用最近邻方式插值zi1 = interp2(x,y,z,xi,yi,'nearest');surf(xi,yi,zi1)● 双线性插值方式zi2 = interp2(x,y,z,xi,yi,'bilinear');surf(xi,yi,zi2)●双立方插值方式zi3 = interp2(x,y,z,xi,yi,'bicubic');surf(xi,yi,zi3)●不同插值方式构造的等高线图对比contour(xi,yi,zi1)-3-2-10123-3-2-1123contour(xi,yi,zi2)-3-2-10123-3-2-1123contour(xi,yi,zi3)-3-2-10123-3-2-1123例3测得平板表面3*5网格点处的温度分别为: 82 81 80 82 84 79 63 61 65 81 84 84 82 85 86试作出平板表面的温度分布曲面z=f(x,y)的图形。
在Matlab中如何进行数据插值与拟合

在Matlab中如何进行数据插值与拟合引言:数据处理是科学研究与工程开发中不可或缺的环节之一。
而数据插值和拟合则是数据处理中常用的技术手段。
在Matlab这一强大的数值分析工具中,提供了丰富的函数与工具箱,使得数据插值与拟合变得更加便捷高效。
本文将详细阐述在Matlab中如何进行数据插值与拟合,并介绍几个常用的插值与拟合方法。
一、数据插值数据插值是通过已知的有限个数据点,推导出数据点之间未知位置上的数值。
在Matlab中,可以利用interp1函数进行数据插值。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据插值:1. 调用interp1函数,并传入x和y作为输入参数。
```matlabxi = linspace(min(x), max(x), n);yi = interp1(x, y, xi, '方法');```其中,xi是插值点的位置,min和max分别是x向量的最小值和最大值,n是插值点的数量。
'方法'是要使用的插值方法,可以选择线性插值(method='linear')、样条插值(method='spline')等。
2. 绘制插值结果曲线。
```matlabplot(x, y, 'o', xi, yi)legend('原始数据','插值结果')```使用plot函数可以绘制原始数据点和插值结果的曲线。
通过设置不同的插值方法和插值点的数量,可以探索不同的插值效果。
二、数据拟合数据拟合是通过已知的一组数据点,找到一个符合数据趋势的函数模型。
在Matlab中,可以利用polyfit函数进行多项式拟合。
假设我们有一组离散的数据点,存储为两个向量x和y。
那么,可以通过以下步骤进行数据拟合:1. 调用polyfit函数,并传入x和y作为输入参数。
```matlabp = polyfit(x, y, n);```其中,n是多项式的次数,p是拟合多项式的系数。
插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。
插值是通过已知数据点之间的数值来估计未知位置的数值。
而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。
插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。
interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。
2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。
lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。
3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。
spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。
函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。
拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。
polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。
函数返回一个多项式的系数向量p,从高次到低次排列。
通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。
2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。
fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太原工业学院数值分析实验报告
系部名称:理学系
姓名:卢瀚
学号:172085338 日期:2019.6.2
太原工业学院理学系实验报告
注:题中所给的离散数据点是3个,本该牛顿插值多项式是1个二次多项式,但因给出的3个点三点共线,所以差值多项式是1个一次多项式。
注:由图中可以看出,应用三次样条插值得出的插值十分逼近理论值,所以三次样条函数在一维数据插值拟合中还是很有效的。
2).二维一般分布数据的插值问题
调用格式为:(,,,,,'')z griddata x y z x y method =
四.样条插值
注:该图像中的原函数f(x)图像是一条直线,是因为区间分割太大的缘故,但同时也能够看出,高次拉格朗日插值多项式近似
六.最小二乘拟合
1.多项式最小二乘法
调用格式为:(,,)
p polyfit x y n
其中x和y为原始的样本点构成的向量
n为选定的多项式阶次
得出的p为多项式系数按降幂排列得出的行向量,可以用符号运算工具箱中的poly2sym(p)函数将其转化成真正的多项式形式,也可以使用
求取多项式的值。
例:已知函数表求其拟合曲线,并求该函数在
2.非线性最小二乘拟合
调用格式为:0[,](,,,)m a J lsqcurvefit Fun a x y =
其中Fun 为原型函数的MATLAB 表示,可以是M-函数或inline() 0a 为最优化的初值
x 和y 为原始输入输出向量 得出的a 为待定系数向量
得出的m J 为在此待定系数下的目标函数的值
说明:非线性问题一般采用迭代法进行求解,所以提供一个初值
注:由图可知,二者还是很接近的,说明拟合效果较好。