相似三角形判定复习课
第12讲相似三角形的判定复习课件(共46张PPT)

大师导航 归类探究 自主招生交流平台 思维训练
4.如图4-12-5,AB是半圆O的直径, D,E是半圆上任意两点,连结AD,DE,AE 与BD相交于点C,要使△ADC与△ABD类似, 可以添加一个条件.下列添加的条件其中错误
的是 A.∠ACD=∠DAB B.AD=DE C.AD2=BD·CD D.AD·AB=AC·BD
大师导航 归类探究 自主招生交流平台 思维训练
第四章 类似三角形
第12讲 类似三角形的判定
全效优等生
全效优等生
大师导航 归类探究 自主招生交流平台 思维训练
部分数学符号的来历 数学运算中经常使用符号,如+,-,×,÷,=,>, <,∽,≌,(), 等,你知道它们都是谁首先使用,何时 被人们公认的吗? 加减号“+”“-”:1489 年德国数学家魏德曼在他的著 作中首先使用了这两个符号,但正式为大家公认是从 1514 年荷 兰数学家荷伊克开始.乘号“×”:英国数学家奥屈特于 1631 年提出用“×”表示相乘;另一乘号“·”是数学家赫锐奥特首 创的.除号“÷”:最初这个符号是作为减号在欧洲大陆流行, 奥屈特用“∶”表示除或比,也有人用分数线表示比,后来有 人把二者结合起来就变成了“÷”.瑞士的数学家拉哈的著作中 正式把“÷”作为除号.等号“=”:最初是 1540 年由英国牛
D.147
大师导航 归类探究 自主招生交流平台 思维训练
【解析】 ∵∠C=∠E,∠ADC=∠BDE, ∴△ADC∽△BDE,∴DDEC=ABDD, 又∵AD∶DE=3∶5,AE=8, ∴AD=3,DE=5, ∵BD=4,∴D5C=34,∴DC=145.
∵AC⊥BC,∴∠ACB=90°,
又∵BE是∠ABC的平分线, ∴FG=FC,
例2答图
冀教版九年级上册数学《相似三角形的判定》教学说课复习课件

相交,所构成的三角形与原三角形相似。
A DE
ED A
B
C
B
C
DE∥BC
△ADE∽△ ABC
思考:有没有其他更简单的办法判断两个三角形相似?
情景导入
学校举办活动,需要三个内角分别为90°,60°,30°的形状相同、大小 不同的三角纸板若干。 小明手上的测量工具只有一个量角器,他该怎 么做呢?
获取新知 一起探究 如图,在Rt△ABC中,∠C=90°,∠A=30°;在Rt△DEF
证明:在△A′B′C′的边A′B′上截取点D,使
A′D=AB.过点D作DE//B′C′,交A′C′于点E.
B
∵DE//B′C′,
∴△A′DE∽△A′B′C′.
∴
A' D A' B'
A' E A' C'
.
∵A′D=AB,
AB A' B'
AC . A' C'
∴A′E=AC.
又∠A′=∠A. ∴△A′DE≌△ABC, ∴△A′B′C′∽△ABC.
∠E=180°-∠3-∠AOE, ∠DOC =∠AOE(对顶角相等), ∴ ∠C= ∠E. ∴ △ABC∽△ADE.
A
1
3 O
E
2
BD
C
课堂小结
⑴.注意图形中的公共角、对顶角、直角. ⑵.两直线平行时的同位角、内错角. ⑶.等角的余角、等角的补角.
相似三角 形的判定
判定定理1
两角分别相等的两 个三角形相似.
画两个△ABC和 △A′B′C′,使∠A=∠A′,∠B=∠B′, 探究下列问题:
A′ A
B
C
B′
相似三角形复习课件

相似三角形的面积比等于其相似比的平方,即S1:S2=(a1:a2)^2。
相似三角形的判定条件
定义法
根据相似三角形的定义,如果两个三 角形的对应角相等,对应边成比例, 则这两个三角形相似。
SAS判定
如果两个三角形有两个角相等,且这 两个角所对的边成比例,则这两个三 角形相似。
平行线法
在数学竞赛的最优化问题中,可以 利用相似三角形来找到最优解。
04
相似三角形的变式与拓展
相似三角形的特殊情况
等腰三角形
等腰三角形两腰之间的角相等,可以 利用这一性质来证明两个三角形相似 。
直角三角形
等边三角形
等边三角形的三个角都相等,因此任 意两个等边三角形都是相似的。
直角三角形中,如果一个锐角相等, 则两个三角形相似。
详细描述
如果一个三角形的两个对应角和一个对应边与另一个三角形的对应角和对应边 相等,则这两个三角形相似。
边角判定
总结词
通过比较一个三角形的对应边和一个角的度数与另一个三角 形的对应边和角的度数是否相等来判断三角形是否相似。
详细描述
如果一个三角形的三组对应边和一个对应角与另一个三角形 的三组对应边和对应角相等,则这两个三角形相似。
如果两个三角形分别位于两条平行线 之间,且一个三角形的顶点与另一个 三角形的对应顶点连线与平行线垂直 ,则这两个三角形相似。
ASA判定
如果两个三角形有两个角相等,且其 中一个角的对边成比例,则这两个三 角形相似。
02
相似三角形的判定方法
角角判定
总结词
通过比较两个三角形的对应角是 否相等来判断三角形是否相似。
03
相似三角形的应用
在几何图形中的应用
相似三角形精彩复习课

第一课时
知识要点1
1. 成比例的数(线段):
叫做四个数成比例。
那么
或
若
,
:
:
c
b
a
d
d
c
b
a
d
c
b
a
=
=
,
,
,
若 a、b、c、d 为四条线段 ,如果 (或a:b=c:d),那么这四条线段a、b、 c 、 d 叫做成比例的线段,简称比例线段.
那么线段 b 叫做a 和 c 的比例中项.
2
ac
b
=
即:
一.比例线段
3.黄金分割:
A
C
知识要点2
定义:
对应角相等、对应边成比例的三角形叫做相似三角形。
相似比:
相似三角形的对应边的比,叫做相似三角形的相似比。
∽
ABC A’B’C’,如果BC=3,B’C’=1.5,那么 A’B’C’与 ABC的相似比为_________.
P
B
C
A
9、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
A
E
B
D
C
若AE=2,AC=4,则BC是DE的 倍.
练一练
练一练
A
P
B
C
10、若△ ACP∽△ABC,AP=4,BP=5,则AC=_______,△ ACP与△ABC的相似比是_______,周长之比是_______,面积之比是_______。
分析:要证明 EA2 = EF· EG , 即 证明 成 立,而EA、EG、EF三条线段在同一直线上,无法构成两个三角形,此时应采用换线段、换比例的方法。可证明:△AED∽△FEB, △AEB ∽ △GED.
九年级数学《相似三角形的判定-总复习课》课件

(2)若∠A=∠A′,可添加条件____
复习目标
1 熟练掌握三角形相似的判定方法,理解各判定 方法的区别与联系。
2 能够从题目的条件和结论出发,选取合适的判 定方法解决三角形相似问题。
尝试思考题
1 你能记得多少种判定三角形相似的方法? 2 三1 定义: 对应角相等,对应边成比例。 2 平行线法 :平行于三角形一边的直线和其他两边(或 两边的延长线)相交,所构成的三角形与原三角形相似。 3 两角法:两角对应相等,两三角形相似。 4 两边一夹角法 :两边对应成比例且夹角相等,两三角 形相似。 5三边法:三边对应成比例,两三角形相似。 6直角三角形相似的判定定理: 斜边和一条直角边对应成比例的两直角三角形相似。
相似三角形的判定
导新定向
1.如图1,在□ABCD中,G是BC延长线上一点,AG与BD交
于点E,与DC交于点F,则图中相似三角形共有(
)
A 3对 B 4对 C 5对 D 6对
A
D
EF
B
图1 C
G
AB BC
2.要判定△ABC∽△A'B'C',已知条件, A,B,= B,C, (1)还要添加条件____或____.
(3)如图③,在矩形ABCD中,已知AB= 2 3 ,BC=3,
M是AD边上一点,将矩形ABCD沿CM折叠,点D落在AB边上 的点E处,求证:点E恰好是四边形ABCM的边AB上的一个
“强相似点”。
(4)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上 的点E处,若点E恰好是四边形ABCM的边AB上的一个强相 似点,试确定E点位置.
(1)如图①, ∠A=∠B=∠DEC=45°, 试判断点E是否是四 边形ABCD的边AB上 的相似点,并说明理由; (2)如图②,在矩形ABCD中,A、B、C、D四点均在正方 形网格(网格中每个小正方形的边长为1)的格点(即每 个小正方形的顶点)上,试在图②中画出矩形ABCD的边 AB上的强相似点;
相似三角形 复习课教案

相似三角形复习课教案一、教学目标1、使学生理解相似三角形的概念,掌握相似三角形的判定定理和性质定理。
2、能够熟练运用相似三角形的知识解决实际问题,提高学生的逻辑推理和综合运用能力。
3、通过复习,培养学生的数学思维和创新意识,激发学生学习数学的兴趣。
二、教学重难点1、重点(1)相似三角形的判定定理和性质定理。
(2)相似三角形的应用。
2、难点(1)相似三角形的判定定理的灵活运用。
(2)相似三角形在实际问题中的建模。
三、教学方法讲授法、练习法、讨论法四、教学过程(一)知识回顾1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似比:相似三角形对应边的比叫做相似比。
2、相似三角形的判定定理两角对应相等的两个三角形相似。
两边对应成比例且夹角相等的两个三角形相似。
三边对应成比例的两个三角形相似。
3、相似三角形的性质定理相似三角形对应角相等,对应边成比例。
相似三角形的周长比等于相似比,面积比等于相似比的平方。
(二)例题讲解例 1:如图,在△ABC 中,DE∥BC,AD = 3,BD = 2,AE = 4,求 CE 的长。
解:因为 DE∥BC,所以△ADE∽△ABC所以\(\frac{AD}{AB} =\frac{AE}{AC}\)因为 AD = 3,BD = 2,所以 AB = AD + BD = 5所以\(\frac{3}{5} =\frac{4}{AC}\)解得 AC =\(\frac{20}{3}\)所以 CE = AC AE =\(\frac{20}{3} 4 =\frac{8}{3}\)例 2:如图,在△ABC 中,∠BAC = 90°,AD⊥BC 于 D,E 为AC 的中点,ED 的延长线交 AB 的延长线于点 F。
求证:\(\frac{AB}{AC} =\frac{DF}{AF}\)证明:因为 AD⊥BC,∠BAC = 90°所以∠ADB =∠ADC = 90°,∠BAD +∠DAC = 90°,∠DAC+∠C = 90°所以∠BAD =∠C又因为 E 为 AC 的中点,所以 DE = EC所以∠EDC =∠C所以∠BAD =∠EDC又因为∠FDB =∠FDA +∠ADB =∠FDA + 90°,∠FAD =∠FDA +∠BAD所以∠FDB =∠FAD所以△FDB∽△FAD所以\(\frac{AB}{AC} =\frac{BD}{AD} =\frac{DF}{AF}\)(三)课堂练习1、如图,在△ABC 中,点 D、E 分别在边 AB、AC 上,且\(\frac{AD}{BD} =\frac{AE}{EC}\),求证:DE∥BC。
相似三角形复习课课件(浙教版)

2、类似三角形的对应边的比叫做________,
一般用k表示.
3、对应角平分线、对应中线、对应高线、对应
周长的比都等于
。
4、类似三角形面积的比等于
。
〖范例讲授〗
例1.(2007年杭州)如图,用放大镜将图形 放大,应该属于( ) A.类似变换 B.平移变换 C.对称变换 D.旋转变换 例2.(2007年南昌市)在△ABC中,AB=6,AC=8, 在△DEF中,DE=4,DF=3,要使△ABC与△DEF 类似,需添加的一个条件是 (写出一种情况即 可).
(2) ∵ AB=2 , BC= 2 2,
DE= 2, EF=2, ∴ AB BC 2
DE EF
又∵∠ABC= ∠DEF=135 °
∴ △ABC∽△DEF
〖巩固训练〗
1.判断题:
①所有的等腰三角形都类似.
(×)
②所有的直角三角形都类似.
(×)
③所有的等边三角形都类似.
(√)
④所有的等腰直角三角形都类似.
〖范例讲授〗
例3. (2007清流)如图在4×4的正方形方格中,
△ABC和△DEF的顶点都在长为1的小正方形顶点上.
(1)填空:∠ABC=_____,BC=_______.
(2)判定△ABC与△DEF是否类似?
分析:
(1)把问题转化到Rt △PBC中解决
p
(2)易知∠ABC= ∠DEF= 135 °,可用
6.如图,DE∥BC, AD:DB=2:3, 求△ AED
和△ ABC 的面积比.
解: ∵DE∥BC
∴△ADE∽△ABC
∵AD:DB=2:3 ∴AD:AB=2:5
B
即△ADE与△ABC的类似比为2:5
第二十四章-相似三角形-复习ppt课件

1
一、本章知识结构图
放缩与相似形
比例线段
相
比例线段
似
三角形一边的平行线
相似三角形
判定 性质
平面向量
实数与向量相乘
向量的线性运算
2
回顾与思考
一、相似形
1. 各角对应相等,各边对应成比例的两个多边形叫相 似多边形. 2. 三个角对应相等,三条边对应成比例的两个三角形 叫相似三角形.两个相似三角形用“∽”表示,读做 “相似于”.
(2) 以连接后的这两个向量为邻边向量 构造平行四边形
(3) 这个平行四边形的对角线向量就是 这两个向量的和向量与差向量
3.向量加法和减法的三角形法则 加法: 一终二起,一起二终 减法: 共起点指向被减
9
五、典例精析,复习新知
2.如图,在△ABC中,AB=AC=27,D在AC上,且 BD=BC=18,DE//BC交AB于E,则DE= 分析:由△ABC∽△BCD,列出比例式,求出CD,再用 △ABC∽△AED A答案:10
称比例线段.此时也称这四条线段成比例.
4
➢ 线段的比要注意以下几点: • 线段的比是正数 • 单位要统一 • 线段的比与线段的长度无关
如果 (b=d=f≠0),
那么
如果,
,那么ad=bc.
如果ad=bc(a、b、c、d都不等于0),那么
.
5
三、相似三角形的判定与性质 方法1:通过定义(不常用)
方法2:平行于三角形一边的直线与其他两边(或延 长线)相交,所构成的三角形与原三角形相似; 方法3:两对应角相等的,两三角形相似. 方法4:两边对应成比例且夹角相等,两三角形相似. 方法5:三边对应成比例的,两三角形相似.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
E A E B
D
D
C
B 方法一:用“∥”
C
若DE∥ BC,
则△ADE∽△ABC
A
A/
B
C B/ C/
方法二: “三边对应成比例”
AB BC CA 若 / / = / / = / /,则 ∆ABC ∽ AB BC C A
∆ A/B/C/
方法三:
“两边对应成比例且夹角相等”
AB BC 若 A/ B / = B / C /且∠B= ∠B/ ,则
AF 1 求证: AC 2
G
H
14. 一条直线与△ABC的三边BC,CA,AB
(或它们的延长线)分别交于点D,E,F,并
且∠AEF= ∠ AFE.
A F E B C
G
求证:BD:CD=BF:CE.
D
如图,CE交△ABC的高线AD于点O,交AB于E, 且OC·BD=AB·OD,求证:CE⊥AB. A A D E O
y
B
P C
A x
问:C点在什么位置时,分割得到的 三角形与原△OAB相似? O (注:在图上画出所有符合要求的 线段,并求出相应的点的坐标).
例 如图,已知⊿ABC ,求作⊿A´B´C´, 使 ,且 ⊿ABC ∽⊿A´B´C ⊿ABC 与⊿A´B´C ´ ´3 的相似比为
C
E
作法: 使AD=
2 3
C
A
D
B
5.已知: E D是△ABC 的边BC上一点, 过D点的直线交 AC于Q,交AB A 延长线于P, AE//BC,交PQ于E, PD:PE=DQ:QE。 求证:(1)D是BC的中点; (2)QA· PB=PA· QC。
C D B P
6.已知:AB//CD,AC、BD交于点O, OE//AB交BC于点E。
A
A/
B
C
B/
定义:“三边对应成比例,三角对应相等的三角 形叫相似三角形” 若 且∠A= ∠A/ ,
C/
∠B=∠B/ , ∠C= ∠C/ ,则 ∆ABC∽∆A/B/C/ 性质: “三边对应成比例,三角对应相等” 若 ∆ABC∽∆ A/B/C/,则∠A= ∠A/ ,
∠B=∠B/ , ∠C= ∠C/ ,
9.已知:梯形ABCD中,AD//BC,AC、BD交于 点O,E是BC延长线上一点,点F在DE上,且。 求证:OF//BC。
10.梯形ABCD中,DC∥AB,AC、BD交于O,
过O直线交AD、BC于E、F.
求证:OE=OF
D E O B C F
A
11. F是△ABC中线AD上的中点,CF交AB于E,
AE 1 = 求证: EB 2
A E F
G M
B
D
C
12. 一直线分别交△ABC的边AB,AC和BC的 延长线于D,E,F,且BD=CE.
求证:AC· EF=AB· DF.
A D E
B
G
C
F
13.已知:D是△ABC的边AB的中点,点E在BC 边上,且BE:EC=1:3,ED的延长线与CA的延 长线交于F。
B E
C D B C 1.找出左图中的各对相似的直角三角形。 2 .如图, ∠DEB= ∠ACB=Rt ∠,DE=2, AB=5,BC=3,BD=2.5,求证:AB平分∠DBC。
练一练 3、已知:在直角坐标系中的位置如 图所示,P为OB的中点,C点为折线 OAB上的动点,线段PC把△OAB分 割成两部分.
1 1 1 求证: AB DC OE
A O
。
D
B
E
C
7.△ PQR是等边三角形,A,Q,R,B同在一 直线上,∠APB=1200. 求证:(1) △PAQ∽ △BPR, (2)AQ · =QR2. RB
P
A
Q
R
B
8. 已知:E为ABCD的边BC延长线上一点,
AE交BD于G,交DC于F。
AG 2 EG FG 求证:
A
E F B D C
3. 在Rt△ABC中, ∠ACB=Rt ∠,
C
CD⊥AB于D,
A
D
B
求证: (1) △ACD∽ △CBD∽ △ABC; (2)CD2=AD · DB;(3) BC2=BD · BA; (4) AC2=AD · AB。
4. 在Rt△ABC中,∠ACB=Rt ∠, CD⊥AB于D, (1)若BD=9/5,AD=16/5, 求CD的长? (2)BC=6,AC=8, 求BD的长?
2Байду номын сангаас
A D
C'
B
1、在⊿ABC的边AB上取一点D,
AB。
A'
2、过点D作DE‖BC,交AC与点E。
3、作⊿A´B´C´⊿ADE。
∴ ⊿A´B´C´就是所求三角形
B'
方法四:
∆ABC∽∆A/B/C/ “两角对应相等”
若∠A=∠A/, ∠B= ∠B/ , 则∆ABC∽∆A/B/C/
例题与练习
1.
在△ABC中,AB=AC,
A E B C
E是AB的中点,延长AB至D, 使BD=AB. 求证:CD=2CE.
D
2. △ABC的中线AD,CE相交于点F,
DF EF 1 求证: = = FA FC 2