三角函数的综合应用 专题训练

合集下载

人教版初3数学9年级下册 第28章(锐角三角函数)应用题综合训练(含解析)

人教版初3数学9年级下册 第28章(锐角三角函数)应用题综合训练(含解析)

初中三角函数应用题综合一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:19.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.2012.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 m.20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).参考答案与试题解析一.解直角三角形的应用(共10小题)1.如图,小明同学用仪器测量一棵大树AB的高度,在C处测得∠ADM=30°,在E处测得∠AFM =60°,CE=10米,仪器高度CD=1.5米,求这棵树AB的高度.(结果精确到0.1,参考数据:≈1.41,≈1.73,≈2.24)【解答】解:由题意知,四边形CDBM、CDEF、EFMB是矩形,∴BM=CD=1.5米,CE=DF=10米.在Rt△ADM中,∵tan∠ADM=,∴DM==AM.在Rt△AFM中,∵tan∠AFM=,∴FM==AM.∵DF=DM﹣FM,∴AM﹣AM=10.∴AM=10.AM=5.∴AB=AM+MB=5+1.5≈5×1.73+1.5=8.65+1.5=10.15=10.2(米).答:这棵树AB的高度为10.2米.2.如图,小明家A和地铁口B两地恰好处在东西方向上,且相距3km,学校C在他家A正北方向的4km处,公园D与地铁口B和学校C的距离分别5km和km.(1)若∠BDA=10°,求∠ADC的大小;(2)计算公园D与小明家A的距离.【解答】解:(1)由题意得:BD=5km,CD=5km,∠BAC=90°,AB=3km,CA=4km,∴BC===5(km),∴BC=BD,∵BC2+BD2=52+52=50,CD2=(5)2=50,∴BC2+BD2=CD2,∴△BCD是等腰直角三角形,∴∠CBD=90°,∴∠BDC=45°,∴∠ADC=∠BDC﹣∠BDA=45°﹣10°=35°;(2)过D作DE⊥AB,交AB的延长线于E,如图所示:则∠DEB=90°,∴∠BDE+∠DBE=90°,由(1)得:∠CBD=90°,∴∠DBE+∠CBA=90°,∴∠BDE=∠CBA,在△BDE和△CBA中,,∴△BDE≌△CBA(AAS),∴DE=BA=3km,BE=CA=4km,∴AE=BE+AB=7(km),∴AD===(km).∴公园D与小明家A的距离为km.3.如图,A、B两地间有一座山,汽车原来从A地到B地需要经折线ACB绕山行驶.为加快城乡对接,建立全域美丽乡村,某地区对A、B两地间的公路进行改建,在这座山打一条隧道,使汽车可以直接沿AB行驶.已知AC=80千米,∠A=30°,∠B=45°.求:(1)开通隧道前,汽车从A地到B地需要行驶多少千米;(2)开通隧道后汽车从A地到B地大约少行驶多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【解答】解:(1)如图,过点C作AB的垂线CD,垂足为D,∵AB⊥CD,sin30°=,AC=80千米,∴CD=AC•sin30°=80×=40(千米),BC===40(千米),∴AC+BC=80+40≈1.41×40+80=136.4(千米).∴开通隧道前,汽车从地到地大约要走136.4千米.(2)∵cos30°=,AC=80千米,∴AD=AC•cos30°=80×=40(千米),∵tan45°=,CD=40(千米),∴BD===40(千米),∴AB=BD+AD=40+40≈40+40×1.73=109.2(千米).∴汽车从A地到B地比原来少走的路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).∴开通隧道后,汽车从A地到B地大约可以少走27.2千米.4.如图,数学兴趣小组利用硬纸板自制的Rt△DEF来测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DE=1m,EF=0.6m,测得边DF离地面的高度AC=0.8m,CD=6m,求树高AB.【解答】解:方法一:在Rt△EDF中,DE=1m,EF=0.6m,∴tan∠EDF===,在Rt△BCD中,CD=6m,∵tan∠BDC=tan∠EDF,∴=,∴BC=3.6m,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m;方法二:由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴,∵DE=1m,EF=0.6m,CD=6m,∴=,解得:BC=3.6,∵AC=0.8m,∴AB=AC+BC=3.6+0.8=4.4(m),答:树高AB为4.4m.5.如图是小朋友玩的“滚铁环”游戏的示意图,⊙O向前滚动时,铁棒DE保持与OE垂直.⊙O与地面接触点为A,若⊙O的半径为25cm,∠AOE=53°.(1)求点E离地面AC的距离BE的长;(2)设人站立点C与点A的距离AC=53cm,DC⊥AC,求铁棒DE的长.(参考数据:sin53°≈0.8,cos53°≈0.6)【解答】解:过E作与AC平行的直线,与OA、FC分别相交于H、N.(1)在Rt△OHE中,∠OHE=90°,OE=25cm,∠AOE=53°,∴HO=OE×cos53°=15cm,EH=20cm,EB=HA=25﹣15=10(cm),所以铁环钩离地面的高度为10cm;(2)∵铁环钩与铁环相切,∴∠EOH+∠OEH=∠OEH+∠DEN=90°,∠DEN=∠EOH,∴DE==,在Rt△DEN中,∠DNE=90°,EN=BC=AC﹣AB=53﹣20=33(cm),DE===55(cm),∴铁环钩的长度DE为55cm.6.某中学数学活动小组设计了如图检测公路上行驶的校车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于30米,在l上点D的同侧取点A,B,使∠CAD=30°,∠CBD=45°.(1)求AB的长(精确到0.1米,参考数据:≈1.73,≈1.41);(2)已知本路段对校车限速为40千米/小时,若测得校车从A到B用时2秒,这辆校车是否超速?说明理由.【解答】解:(1)由题意得:在Rt△ADC中,AD==≈51.9(米),在Rt△BDC中,BD===30(米),∴AB=AD﹣BD≈51.9﹣30=21.9(米),答:AB的长为21.9米;(2)不超速,理由:∵汽车从A到B用时2秒,∴速度为21.9÷2=10.95(米/秒),∵10.95×3600=39420(米/时),∴该车速度为39.42千米/小时,∵39.42千米/小时<40千米/小时,∴这辆校车在AB路段不超速.7.为了测量旗杆AB的高度,小颖画了如下的示意图,其中CD,EF是两个长度为2m的标杆.(1)如果现在测得∠DEC=30°,EG=4m,求旗杆AB的高度;(参考数据:≈1.41,≈1.73)(2)如果CE的长为x,EG的长为y,请用含x,y的代数式表示旗杆AB的高度.【解答】解:(1)由题意得:∠ABC=∠DCE=∠FEG=90°,在Rt△DCE中,CE===2m,∵∠DEC=∠AEB,∴△DEC∽△AEB,∴=,∴=,∵∠FGE=∠AGB,∴△FGE∽△AGB,∴=,∴=,∴=,∴EB=(8+12)m,∴=,∴AB=8+4≈14.92m,答:旗杆AB的高度为14.92米;(2)由(1)得:△DEC∽△AEB,∴=,∴=,由(1)得:△FGE∽△AGB,∴=,∴=,∴=,∴EB=,∴=,∴AB=,答:旗杆AB的高度为m.二.解直角三角形的应用−坡度坡角问题(共7小题)8.如图所示,斜坡的坡比i=h:l=1:,则斜坡的坡度是( )A.30°B.60°C.1:D.:1【解答】解:∵斜坡的坡比i=h:l=1:,∴斜坡的坡度为1:,故选:C.9.如图,要测量山高CD,可以把山坡“化整为零”地划分为AB和BC两段,每一段上的山坡近似是“直”的.若量得坡长AB=600m,BC=800m,测得坡角∠BAD=30°,∠CBE=45°,则山高CD为( )A.(300+800)m B.700mC.(300+400)m D.(400+300)m【解答】解:由题意可知,四边形BFDE为矩形,∴DE=BF,在Rt△BAF中,∠BAF=30°,AB=600m,则BF=AB=300(m),∴DE=300m,在Rt△CBE中,∠CBE=45°,BC=800m,∴CE=BC=400(m),∴CD=CE+DE=(300+400)m,故选:C.10.如图,河坝横断面迎水坡AB的坡比为1:,坝高BC为4m,则AC的长度为( )A.8m B.4m C.8m D.m【解答】解:∵迎水坡AB的坡比为1:=,BC=4m,∴AC=BC=4(m),故选:B.11.如图所示,某拦水大坝的横断面为梯形ABCD,AE,DF为梯形的高,其中迎水坡AB的坡角α=45°,坡长AB=10米,背水坡CD的坡度i=1:,则背水坡的坡长CD为( )米.A.20B.20C.10D.20【解答】解:由题意得:四边形AEFD是矩形,∴DF=AE,∵迎水坡AB的坡角α=45°,坡长AB=10米,∴DF=AE=10×sin45°=10(米),∵背水坡CD的坡度i=1:,∴tan C=i===,∴∠C=30°,∴CD=2DF=2AE=20(米),故选:A.12.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形ABCD为矩形,DE =10m,其坡度为i1=1:,将步梯DE改造为斜坡AF,其坡度为i2=1:4,求斜坡AF的长度是 20.62 米.(结果精确到0.01m,参考数据:≈1.732,≈4.123)【解答】解:∵DE的坡度为i1=1:,∴tan∠DEC==,∴∠DEC=30°,∴DC=DE=5(m),∵四边形ABCD为矩形,∴AB=CD=5m,∵斜坡AF的坡度为i2=1:4,AB=5m,∴BF=4AB=20(m),在Rt△ABF中,AF==≈20.62(m),∴斜坡AF的长度约为20.62米,故答案为:20.62.13.某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.(1)求舞台的高AC(结果保留根号);(2)求DB的长度(结果保留根号).【解答】解:(1)在Rt△ABC中,AB=2m,∠ABC=45°,∴AC=BC=AB•sin45°=2×=(m),答:舞台的高AC为m;(2)在Rt△ADC中,∠ADC=30°,则CD===,∴BD=CD﹣BC=(﹣)m,答:DB的长度为(﹣)m.14.某居民楼MN后有一个坡度为i=1:2.4的小山坡,小区物业准备在小山坡上加装一广告牌PQ (如图所示),已知QA=5.2米,水平地面上居民楼MN距坡底A点的距离AN=1.2米.当太阳光线与水平线成53°角时,测得广告牌PQ落在居民楼上的影子EN长为3米,求广告牌PQ的高.(参考数据:sin53°≈,cos53°≈,tan53°≈)【解答】解:过点E作EF⊥PQ于点F,延长PQ交BA于点G,则QG⊥BA,∴设QG=x米,∵山坡的坡度为i=1:2.4,∴AG=2.4x米,由勾股定理得:x2+(2.4x)2=5.22,解得:x=2,则QG=2米,AG=2.4x=4.8米,∴EF=NG=4.8+1.2=6(m),在Rt△PEF中,∠PEF=53°,EF=6m,则PF=EF•tan∠PEF=6×tan53°≈6×=8(m),∵FQ=EN﹣QG=3﹣2=1(m),∴PQ=8+1=9(m).答:信号塔PQ的高约为9m.三.解直角三角形的应用−仰角俯角问题(共8小题)15.若从楼顶A点测得点C的俯角为31°,测得点D的俯角为42°,则∠ADC的度数为( )A.31°B.42°C.48°D.59°【解答】解:由题意得:∠ADB=42°,∠BDC=90°,∴∠ADC=∠BDC﹣∠ADB=90°﹣42°=48°,故选:C.16.如图,某建筑物的顶部有一块宣传牌CD,小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°,已知斜坡AB的坡角为30°,AB=10米,AE=15米,则宣传牌CD的高度是( )A.B.C.D.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,∠BAF=30°,AB=10米,∴BF=AB=5(米),AF=BF=5(米).∴BG=AF+AE=(5+15)(米),在Rt△BGC中,∠CBG=45°,∴△BGC是等腰直角三角形,∴CG=BG=(5+15)(米),在Rt△ADE中,∠DAE=60°,AE=15米,∴DE=AE=15(米),∴CD=CG+GE﹣DE=5+15+5﹣15=(20﹣10)(米),即宣传牌CD的高度是(20﹣10)米,故选:A.17.某通信公司准备逐步在歌乐山上建设5G基站.如图,某处斜坡CB的坡度(或坡比)为i=1:2.4,通讯塔AB垂直于水平地面,在C处测得塔顶A的仰角为45°,在D处测得塔顶A的仰角为53°,斜坡路段CD长26米,则通讯塔AB的高度为( )(参考数据:,,)A.米B.米C.56米D.66米【解答】如图,延长AB与水平线交于F,过D作DM⊥CF,M为垂足,过D作DE⊥AF,E为垂足,连接AC,AD,∵斜坡CB的坡度为i=1:2.4,∴==,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=26米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=262,解得k=2,∴DM=10(米),CM=24(米),∵斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,∵∠ACF=45°,∴AF=CF=CM+MF=(24+12a)米,∴AE=AF﹣EF=24+12a﹣10=(14+12a)米,在Rt△ADE中,DE=12a米,AE=(14+12a)米,∵tan∠ADE==tan53°≈,∴=,解得a=,∴DE=12a=42(米),AE=14+12a=56(米),BE=5a=(米),∴AB=AE﹣BE=56﹣=(米),答:基站塔AB的高为米.故选:B.18.某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,则建筑物的高度为 14.7 米.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)【解答】解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD,即6=AB﹣AB,解得:AB=≈14.7(米),∴建筑物的高度约为14.7米,故答案为:14.7.19.如图,某校数学兴趣小组要测量楼房DC的高度.在点A处测得楼顶D的仰角为30°,再往楼房的方向前进30m至B处,测得楼顶D的仰角为45°,则楼房DC的高度为 (15+15) m.【解答】解:设BC的长为x米.在Rt△CBD中,∠D=90°,∠CBD=45°,∴CD=BC=x米,在Rt△CAD中,∠ACD=90°,∠DAC=30°,∴tan∠CAD===,解得:x=15+15,答:楼房DC的高度为(15+15)米,故答案为:(15+15).20.如图,小马同学在数学综合实践活动中,利用所学的数学知识对山坡一棵树的高度进行测量,先测得小马同学离底部C的距离BC为10m,此时测得对树的顶端D的仰角为55°,已知山坡与水平线的夹角为20°,小马同学的观测点A距地面1.6m,求树木CD的高度(精确到0.1m).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).【解答】解:延长DC交BF于F,过A作AH⊥DC于H,则HF=AB=1.6m,AH=BF,在Rt△ACF中,∵∠CBF=20°,BC=10m,∴CF=BC•sin20°≈10×0.34=3.4(m),BF=BC•cos20°≈10×0.94=9.4(m),∴AH=BF=9.4m,在Rt△ADH中,∵∠DAH=55°,∴DH=AH•tan55°≈9.4×1.43≈13.4(m),∴DC=DH+HF﹣CF=13.4+1.6﹣3.4=11.6(m),答:树木CD的高度约为11.6m.21.如图,某中学数学活动小组在学习了“利用三角函数测高”后,选定测量小河对岸一幢建筑物BC 的高度,他们先在斜坡上的D处,测得建筑物顶端B的仰角为30°.且D离地面的高度DE=5m.坡底EA=30m,然后在A处测得建筑物顶端B的仰角是60°,点E,A,C在同一水平线上,求建筑物BC的高.(结果用含有根号的式子表示)【解答】解:过点D作DH⊥BC于点H,如图所示:则四边形DHCE是矩形,DH=EC,DE=HC=5,设建筑物BC的高度为xm,则BH=(x﹣5)m,在Rt△DHB中,∠BDH=30°,∴DH=(x﹣5),AC=EC﹣EA=(x﹣5)﹣30,在Rt△ACB中,∠BAC=60°,tan∠BAC=,∴=解得:x=,答:建筑物BC的高为m.四.解直角三角形的应用−仰角俯角问题(共1小题)22.如图,某人在D处测得山顶C的仰角为37°,向前走100米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度(不计测角仪的高度,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).【解答】解:设山高BC=x,则AB=x,由tan37°==0.75,得:=0.75,解得x=120,经检验,x=120是原方程的根.答:山的高度是120米.。

专题复习:三角函数的综合应用题编

专题复习:三角函数的综合应用题编

专题复习:三角函数的综合应用题编(推荐时间:推荐时间:7070分钟分钟) )1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1)1),,b =(cos x ,3sin 2x ),x ∈R .(1)(1)若函数若函数f (x )=1-3,且x ∈ëêéûúù-π3,π3,求x 的值;的值;(2)(2)求函数求函数y =f (x )的单调增区间,的单调增区间,并在给出的坐标系中画出并在给出的坐标系中画出y =f (x )在区间[0[0,,π]上的图象.上的图象.解 (1)(1)依题设得依题设得f (x )=2cos 22x +3sin 2x =1+cos 2x +3sin 2x =2sin èçæø÷ö2x+π6+1.由2sin èçæø÷ö2x +π6+1=1-3,得sin èçæø÷ö2x +π6=-32.∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6, ∴2x +π6=-π3,即x =-π4. (2)(2)当-当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ), 即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为ëêéûúù-π3+k π,π6+k π(k ∈Z ),x 0 π6 π3 π2 2π3 5π6 π y232-122. 已知向量a =(cosx +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos 2x . (1)(1)求函数求函数f (x )的值域;的值域;(2)(2)若若f (θ)=15,θ∈ëêéûúùπ6,π3,求sin 2θ的值.的值.解 (1)f (x )=a ·b -cos 2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin èçæø÷ö2x +π6-1,f (x )的值域为的值域为[[-3,1]3,1]..(2)(2)由由(1)(1)知知f (θ)=2sin èçæø÷ö2θ+π6-1,由题设2sin èçæø÷ö2θ+π6-1=15,即sin èçæø÷ö2θ+π6=35,∵θ∈ëêéûúùπ6,π3,∴,∴22θ+π6∈ëêéûúùπ2,5π6, ∴cos èçæø÷ö2θ+π6=-45,∴sin 2θ=sin ëêéûúùèçæø÷ö2θ+π6-π6=sin èçæø÷ö2θ+π6cos π6-cos èçæø÷ö2θ+π6sinπ6=35×32-èçæø÷ö-45×12=33+410.3. 已知向量m =èçæø÷ösin A ,12与n =(3(3,,sin A +3cos A )共线,其中A 是△ABC的内角.的内角.(1)(1)求角求角A 的大小;的大小;(2)(2)若若BC =2,求△ABC 面积S 的最大值.的最大值.解 (1)(1)∵∵m ∥n ,∴,∴sin sin A ·(sin A +3cos A )-32=0.∴1-cos 2A 2+32sin 2A -32=0, 即32sin 2A -12cos 2A =1, 即sin èçæø÷ö2A -π6=1.∵A ∈(0(0,,π),∴,∴22A -π6∈èçæø÷ö-π6,11π6. 故2A -π6=π2,A =π3. (2)(2)∵∵BC =2,由余弦定理得b 22+c 22-bc =4,又b 22+c 22≥2bc ,∴bc ≤4(4(当且仅当当且仅当b =c 时等号成立时等号成立)), 从而S △ABC =12bc sin A =34bc ≤34×4= 3.即△ABC 面积S 的最大值为 3.4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c 已知cos A -3cos C cos B=3c -ab . (1)(1)求求sin Csin A的值;的值;(2)(2)若若B 为钝角,b =1010,求,求a 的取值范围.的取值范围. 解 (1)(1)由正弦定理,设由正弦定理,设asin A =bsin B =csin C=k ,则3c -a b =3k sin C -k sin A k sin B =3sin C -sin Asin B , 所以cos A -3cos C cos B =3sin C -sin Asin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin Csin A=3. (2)(2)由由sin C sin A =3得c =3a . 由题意知îíìa +c >ba 2+c 2<b2,又b =1010,所以,所以52<a <10.5. 已知函数f (x )=A sin(ωx +φ)èçæø÷ö其中x ∈R ,A >0>0,,ω>0>0,-,-π2<φ<π2的部分图象如图所示.图象如图所示.(1)(1)求函数求函数f (x )的解析式;的解析式;(2)(2)已知函数已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-的横坐标分别为-1,1,51,1,5,,求sin ∠MNP 的值.的值.解 (1)(1)由图可知,由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4.又f (1)(1)==sin èçæø÷öπ4+φ=1,且-π2<φ<π2,所以π4+φ=π2,解得φ=π4. 所以f (x )=sin èçæø÷öπ4x +π4. (2)(2)因为因为f (-1)1)==0,f (1)(1)==1,f (5)(5)==sin èçæø÷ö5π4+π4=-=-11, 所以M (-1,0)1,0),,N (1,1)(1,1),,P (5(5,-,-1)1)..所以所以||MN |=5,|PN |=2020,,|MP |=37. 由余弦定理得由余弦定理得cos cos∠∠MNP =5+2020--3725×20=-35. 因为∠MNP ∈(0(0,,π), 所以sin sin∠∠MNP =45.6. 已知向量a =(cos α,sin α),b =(cosx ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π. (1)(1)若若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;的值; (2)(2)若若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.的值.解 (1)(1)∵∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4, ∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).令t =sin x +cos x èçæø÷öπ4<x <π,则2sin x cos x =t 2-1,且-,且-1<1<t < 2.则y =t 2+2t -1=èçæø÷öt +222-32,-,-1<1<t <2,∴t =-22时,y min =-32,此时sin x +cos x =-22,即2sin èçæø÷öx +π4=-22,∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12. ∴函数f (x )的最小值为-32,相应x 的值为11π12.的夹角为,cos=a·b==π.ø÷ö+π3+∴52sin 2+32cos 2=-35.。

中考数学专题 初中三角函数应用题10道-含答案

中考数学专题 初中三角函数应用题10道-含答案

初中三角函数应用题10道(1)求步道AC 的长度(结果保留根号);(2)游客中心Q 在点A 的正东方向,步道AC 与步道BQ 交于点P 小明和爸爸分别从B 处和A 处同时出发去游客中心,小明跑步的速度是每分钟请计算说明爸爸的速度要达到每分钟多少米,他俩可同时到达游客中心.0.1)(参考数据:2 1.414≈,3 1.732≈,6 2.449≈)2.(2023春·重庆沙坪坝·九年级重庆八中校考阶段练习)下图是儿童游乐场里的一个娱乐项目转飞椅的简图,该设施上面有一个大圆盘(圆盘的半径是 3.5OA =米),圆盘离地面的高度1 6.5OO =米,且1OO ⊥地面l ,圆盘的圆周上等间距固定了一些长度相等的绳子,绳子的另一端系着椅子(将椅子看作一个点,比如图中的点B 和1B ),当旋转飞椅静止时绳子是竖直向下的,如图中的线段AB ,绳长为4.8米固定不变.当旋转飞椅启动时,圆盘开始旋转从而带动绳子和飞椅一起旋转,旋转速度越大,飞椅转得越高,当圆盘旋转速度达到最大时,飞椅也旋转到最高点,此时绳子与竖直方向所成的夹角为57α=︒.(参考数据:sin 570.84︒≈,cos570.55︒≈,tan 57 1.54︒≈)(1)求飞椅离地面的最大距离(结果保留一位小数);(2)根据有关部门要求,必须在娱乐设施周围安装安全围栏,而且任何时候围栏和飞椅的水平距离必须超过2米.已知该旋转飞椅左侧安装有围栏EF ,且EF l ⊥,19.8O E =米,请问圆盘最大旋转速度的设置是否合规?并说明理由.3.(2023春·重庆渝北·九年级校联考阶段练习)如图,某大楼的顶部竖有一块宣传牌AB ,小明在斜坡的坡脚D 处测得宣传牌底部B 的仰角为45︒,沿斜坡DE 向上走到E 处测得宣传牌顶部A 的仰角为31︒,已知斜坡DE 的坡度3:4,10DE =米,22DC =米,求宣传牌AB 的高度.(测角器的高度忽略不计,参考数据:sin 310.52︒≈,cos310.86︒≈,tan 310.6)︒≈。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题一、选择题(每小题5分,共70分)1. sin2100 =A .23 B . -23 C .21 D . -21 2.α是第四象限角,5tan 12α=-,则sin α= A .15 B .15- C .513 D .513-3. )12sin12(cos ππ- )12sin12(cosππ+=A .-23 B .-21 C . 21 D .234. 已知sinθ=53,sin2θ<0,则tanθ等于A .-43 B .43 C .-43或43 D .545.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移3π个单位,得到的图象对应的僻析式是 A .1sin 2y x = B .1sin()22y x π=-C .1sin()26y x π=-D .sin(2)6y x π=-6. ()2tan cot cos x x x +=A .tan xB . sin xC . c o s xD . cot x7.函数y =x x sin sin -的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ] 8.已知sin αcos 81=α,且)2,0(πα∈,则sin α+cos α的值为A.25 B. -25 C. ±25 D. 239. 2(sin cos )1y x x =--是A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数10.在)2,0(π内,使x x cos sin >成立的x 取值范围为 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 11.已知,函数y =2sin(ωx +θ)为偶函数(0<θ<π) 其图象与直线y =2的交点的横坐标为x 1,x 2,若| x 1-x 2|的最小值为π,则 A .ω=2,θ=2πB .ω=21,θ=2π C .ω=21,θ=4π D .ω=2,θ=4π12. 设5sin7a π=,2cos 7b π=,2tan 7c π=,则 A .a b c << B .a c b << C .b c a << D .b a c <<13.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是A .2π B .4π- C .4π D .34π14. 函数f (x )=xxcos 2cos 1- A .在⎪⎭⎫⎢⎣⎡20π, 、⎥⎦⎤ ⎝⎛ππ,2上递增,在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递减 B .在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ,上递增,在⎥⎦⎤ ⎝⎛ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递减 C .在⎪⎭⎫⎢⎣⎡ππ,2、⎥⎦⎤ ⎝⎛ππ223,上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛23ππ, 上递减D .在⎪⎭⎫⎢⎣⎡23,ππ、⎥⎦⎤ ⎝⎛ππ2,23上递增,在⎪⎭⎫⎢⎣⎡20π,、⎥⎦⎤ ⎝⎛ππ,2上递减 二.填空题(每小题5分,共20分,)15. 已知⎪⎭⎫⎝⎛-∈2,2ππα,求使sin α=32成立的α=16.sin15°cos75°+cos15°sin105°=_________ 17.函数y=Asin(ωx+ϕ)(ω>0,|ϕ|<2π,x ∈R )的部分图象如图,则函数表达式为18.已知βα,为锐角,且cos α=71 cos )(βα+= 1411-, 则cos β=_________ 19.给出下列命题:(1)存在实数α,使1cos sin =αα (2)存在实数α,使23cos sin =+αα (3)函数)23sin(x y +=π是偶函数 (4)若βα、是第一象限的角,且βα>,则βαsin sin >.其中正确命题的序号是________________________________三.解答题(每小题12分,共60分,) 20.已知函数y =3sin )421(π-x (1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.21.已知)cos(2-)sin(πθπθk k +=+Z k ∈ 求:(1)θθθθsin 3cos 5cos 2sin 4+-; (2)θθ22cos 52sin 41+22.设0≥a ,若b x a x y +-=sin cos 2的最大值为0,最小值为-4,试求a 与b 的值,并求y 的最大、最小值及相应的x 值.23.已知21)tan(=-βα,71tan -=β,且),0(,πβα∈,求βα-2的值.24.设函数a x x x x f ++=ωωωcos sin cos 3)(2(其中ω>0,R a ∈),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[ππ-的最小值为3,求a 的值.测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin32 1 y=)48sin(4-ππ+x 21(3) 三、解答题:20.已知函数y=3sin )421(π-x(1)用五点法作出函数的图象; (2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解 (1)列表:x2π π23 π25 π27 π29421π-x 02π ππ232π 3sin )421(π-x 03 0 -3 0描点、连线,如图所示:…………………………………………………………………………………………5 (2)周期T=ωπ2=212π=4π,振幅A=3,初相是-4π. ………………………………………………………….8 (3)令421π-x =2π+k π(k ∈Z ), 得x=2k π+23π(k ∈Z ),此为对称轴方程. 令21x-4π=k π(k ∈Z )得x=2π+2k π(k ∈Z ). 对称中心为)0,22(ππ+k(k ∈Z )…………………………………………………………………………..12 21.已知sin(θ+k π)=-2cos(θ+k π) (k ∈Z ). 求:(1)θθθθsin 3cos 5cos 2sin 4+-;(2)41sin 2θ+52cos 2θ.解:由已知得cos(θ+k π)≠0, ∴tan(θ+k π)=-2(k ∈Z ),即tan θ=-2..................................................................................................2 (1)10tan 352tan 4sin 3cos 5cos 2sin 4=+-=+-θθθθθθ (7)(2)41sin 2θ+52cos 2θ=θθθθ2222cos sin cos 52sin 41++=2571tan 52tan 4122=++θθ (12)22.设a≥0,若y =cos 2x -asinx +b 的最大值为0,最小值为-4,试求a 与b 的值,并求出使y 取得最大、最小值时的x 值.解:原函数变形为y =-41)2(sin 22a b a x ++++………………………………………2 ∵-1≤sin x ≤1,a ≥0∴若0≤a ≤2,当sinx =-2a 时 y max =1+b +42a =0 ①当sinx =1时,y min =-41)21(22a b a ++++=-a +b =-4 ②联立①②式解得a =2,b =-2…………………………………………………………7 y 取得最大、小值时的x 值分别为: x =2kπ-2π(k ∈Z),x =2kπ+2π(k ∈Z)若a >2时,2a ∈(1,+∞)∴y max =-b a a b a +=+++-41)21(22=0 ③y min =-441)21(22-=+-=++++b a a b a ④ 由③④得a =2时,而2a =1 (1,+∞)舍去.............................................11 故只有一组解a =2,b =-2.. (12)23.已知tan(α-β)=21,tan β=-71,且α、β∈(0,π),求2α-β的值. 解:由tanβ=-71 β∈(0,π) 得β∈(2π, π) ① (2)由tanα=tan[(α-β)+β]=31 α∈(0,π) ∴ 0<α<2π (6)∴ 0<2α<π由tan2α=43>0 ∴知0<2α<2π ②∵tan(2α-β)=βαβαtan 2tan 1tan 2tan +-=1 (10)由①②知 2α-β∈(-π,0)∴2α-β=-43π (12)24.设函数a x x x x f ++=ϖϖϖcos sin cos 3)(2(其中ω>0,a ∈R ),且f(x)的图象在y 轴右侧的第一个最高点的横坐标为6π. (1)求ω的值; (2)如果)(x f 在区间]65,3[xπ-的最小值为3,求a 的值.解:(1) f(x)=23cos2ωx +21sin2ωx +23+a (2)=sin(2ωx +3π)+23+a …………………………………………………..4 依题意得2ω·6π+3π=2π解得ω=21………………………………….6 (2) 由(1)知f(x)=sin(2ωx +3π)+23+a 又当x ∈⎥⎦⎤⎢⎣⎡-65,3ππ时,x +3π∈⎥⎦⎤⎢⎣⎡67,0π…………………………………8 故-21≤sin(x +3π)≤1……………………………………………..10 从而f(x)在⎥⎦⎤⎢⎣⎡-65,3ππ上取得最小值-21+23+a 因此,由题设知-21+23+a =3故a =213+ (12)。

三角函数的应用专项训练

三角函数的应用专项训练

三角函数的应用专项训练姓名:__________班级:__________评价:__________一、单选题(共8小题)1. 已知α是第四象限角,且3sin2α=8cosα,则cos等于( )A. -B. -C.D.2. 已知α∈,sinα=,则tanα等于( )A. -B. 2C.D. -23. 若α∈(0,π),sin(π-α)+cosα=,则sinα-cosα的值为( )A. B. - C. D. -4. 函数f(x)=(0<x<π)的大致图象是( )A. B. C. D.5. 为了得到函数y=sin的图象,可以将函数y=sin的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度6. 下列函数中,以为周期且在区间上单调递增的是( )A. f(x)=|cos 2x|B. f(x)=|sin 2x|C. f(x)=cos|x|D. f(x)=sin|x|7. 已知函数f(x)=cosωx+sinωx,ω>0,x∈R.若曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,则y=f(x)的最小正周期为( )A. B. π C. 2π D. 3π8. 已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)的图象的对称轴,且f(x)在上单调,则ω的最大值为( )A. 11B. 9C. 7D. 5二、多选题(共5小题)9. 函数f(x)=A sin(ωx+φ)(A>0,ω>0,0≤φ≤2π)的部分图象如图所示,则下列说法正确的是( )A. ω=B. ω=C. φ=D. A=510. 已知函数f(x)=A sin(ωx+φ)的部分图象如图所示,则下列说法错误的是( )A. 函数y=f(x)的图象关于直线x=-对称B. 函数y=f(x)的图象关于点对称C. 函数y=f(x)在上单调递减D. 该图象对应的函数解析式为f(x)=2sin11. 将曲线y=sin2x-sin(π-x)sin上每个点的横坐标伸长为原来的2倍(纵坐标不变),得到g(x)的图象,则下列说法正确的是( )A. g(x)的图象关于直线x=对称B. g(x)在[0,π]上的值域为C. g(x)的图象关于点对称D. g(x)的图象可由y=cos x+的图象向右平移个单位长度得到12. 函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,则下列结论中正确的是( )A. f(x)的一个周期为-2πB. y=f(x)的图象关于直线x=-对称C. x=是f(x)的一个零点D. f(x)在上单调递减13. 对于函数f(x)=给出下列四个命题,其中为真命题的是( )A. 该函数是以π为最小正周期的周期函数B. 当且仅当x=π+kπ(k∈Z)时,该函数取得最小值-1C. 该函数的图象关于直线x=π+2kπ(k∈Z)对称D. 当且仅当2kπ<x<+2kπ(k∈Z)时,0<f(x)≤三、填空题(共4小题)14. y=tan(2x+θ)图象的一个对称中心为,若-<θ<,则θ=________.15. 设函数f(x)=A sin(ωx+φ),A>0,ω>0,-<φ<,x∈R的部分图象如图所示,则A+ω+φ=________.16. 要得到函数y=sin的图象,只需将函数y=cos 2x的图象向________平移________个单位长度.17. 在如图所示的矩形ABCD中,点E,P分别在边AB,BC上,以PE为折痕将△PEB翻折为△PEB′,点B′恰好落在边AD上,若sin∠EPB=,AB=2,则折痕PE的长为________.四、解答题(共4小题)18. 已知函数f(x)=2sin·cos-sin(x+π).(1)求f(x)的最小正周期;(2)将f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求函数g(x)在区间[0,π]上的最大值和最小值.19. 已知f(x)=(sin x+cos x)2-cos2x.(1)求函数f(x)的最小正周期及单调递增区间;(2)若θ∈,f=,求sin的值.20. 如图为电流强度I与时间t的关系式I=A sin(ωt+φ)的图象.(1)试根据图象写出I=A sin(ωt+φ)的解析式;(2)为了使I=A sin(ωx+φ)中t在任意一段秒的时间内电流强度I能同时取得最大值|A|与最小值-|A|,那么正整数ω的最小值是多少?21. 如图,某城市拟在矩形区域ABCD内修建儿童乐园,已知AB=200米,BC=400米,点E,N分别在AD,BC上,梯形DENC为水上乐园;将梯形EABN分成三个活动区域,M在AB上,且点B,E关于MN对称.现需要修建两道栅栏ME,MN将三个活动区域隔开.设∠BNM=θ,两道栅栏的总长度L(θ)=ME+MN.(1)求L(θ)的函数表达式,并求出函数L(θ)的定义域;(2)求L(θ)的最小值及此时θ的值.1. 【答案】A【解析】∵3sin2α=8cosα,∴sin2α+2=1,整理可得9sin4α+64sin2α-64=0,解得sin2α=或sin2α=-8(舍去).∵α是第四象限角,∴sinα=-,∴cos=cos=-cos=sinα=-.2. 【答案】A【解析】因为α∈,sinα=,所以cosα=-1-sin2α=-=-,所以tanα==-.3. 【答案】C【解析】由诱导公式得sin(π-α)+cosα=sinα+cosα=,平方得(sinα+cosα)2=1+2sinαcosα=,则2sinαcosα=-<0,所以(sinα-cosα)2=1-2sinαcosα=,又因为α∈(0,π),所以sinα-cosα>0,所以sinα-cosα=.4. 【答案】B【解析】因为f(x)=,====|cos x|,所以,其在(0,π)上的大致图象为B选项中的图象.5. 【答案】B【解析】将函数y=sin的图象向右平移个单位长度,得y=sin=sin 的图象.6. 【答案】A【解析】选项A中,函数f(x)=|cos 2x|的周期为,当x∈时,2x∈,函数f(x)单调递增,故选项A正确;选项B中,函数f(x)=|sin 2x|的周期为,当x∈时,2x∈,函数f(x)单调递减,故选项B不正确;选项C中,函数f(x)=cos|x|=cos x的周期为2π,故选项C不正确;选项D中,f(x)=sin|x|=由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个定义域上f(x)不是周期函数,故选项D不正确.7. 【答案】D【解析】将函数f(x)=cosωx+sinωx,ω>0,x∈R化简,可得f(x)=sin.曲线y=f(x)与直线y=1相交,令f(x)=1,则ωx+=+2kπ或ωx+=+2kπ,k∈Z.设距离最小的相邻交点的横坐标分别为x1,x2,∴-=ω(x2-x1),∴x2-x1==,解得ω=,∴y=f(x)的最小正周期T==3π.8. 【答案】B【解析】因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)在上单调,所以-=≤=,即ω≤12,由此得ω的最大值为9.9. 【答案】ACD【解析】由函数的图象可得A=5,周期T==11-(-1)=12,∴ω=.再由“五点法”作图可得×(-1)+φ=2kπ,k∈Z,∴φ=2kπ+,k∈Z,∵0≤φ≤2π,∴φ=.故选ACD.10. 【答案】ABC【解析】由函数的图象可得A=2,由·=-,得ω=2.再由最值得2×+φ=2kπ+,k∈Z,又|φ|<,得φ=,得函数f(x)=2sin,故选项D正确;当x=-时,f(x)=0,不是最值,故选项A错误;当x=-时,f(x)=-2,不等于零,故选项B错误;由+2kπ≤2x+≤+2kπ,k∈Z,得+kπ≤x≤+kπ,k∈Z,故选项C错误.11. 【答案】ABD【解析】y=sin2x-sin(π-x)sin=+sin x cos x=sin 2x-cos 2x+=sin+,∴g(x)=sin+,对于选项A,当x=时,x-=,∴g(x)关于直线x=对称,故选项A正确;对于选项B,当x∈[0,π]时,x-∈,∴sin∈,∴g(x)∈,故选项B正确;对于选项C,当x=时,x-=0,g=,∴g(x)关于点对称,故选项C错误;对于选项D,y=cos x+的图象向右平移个单位长度得到y=cos+=cos +=sin+=g(x)的图象,故选项D正确.12. 【答案】ABC【解析】∵函数y=sin的图象向右平移个单位长度后与函数f(x)的图象重合,∴f(x)=sin=sin,∴f(x)的一个周期为-2π,故选项A正确;∵y=f(x)=sin,∴y=f(x)的图象的对称轴方程满足2x-=kπ+(k∈Z),∴当k=-2时,y=f(x)的图象关于直线x=-对称,故选项B正确;由f(x)=sin=0,得2x-=kπ(k∈Z),得x=+(k∈Z),∴x=是f(x)的一个零点,故选项C正确;当x∈时,2x-∈,∴f(x)在上单调递增,故选项D错误.13. 【答案】CD【解析】由题意知函数f(x)=画出f(x)在x∈[0,2π]上的图象,如图所示,由图象知,函数f(x)的最小正周期为2π,故A选项错误;在x=π+2kπ(k∈Z)和x=+2kπ(k∈Z)时,该函数都取得最小值-1,故B选项错误;由图象知,函数图象关于直线x=+2kπ(k∈Z)对称,故C选项正确;在2kπ<x<+2kπ(k∈Z)时,0<f(x)≤,故D选项正确.14. 【答案】-或【解析】函数y=tan x图象的对称中心是,其中k∈Z,则令2x+θ=,k∈Z,其中x=,即θ=-,k∈Z.又-<θ<,所以当k=1时,θ=-.当k=2时,θ=,所以θ=-或.15. 【答案】3+【解析】由图可知A=2,=-=,所以T=2π,所以ω=1.再根据f=2得sin =1,所以+φ=+2kπ(k∈Z),即φ=+2kπ(k∈Z).又因为-<φ<,所以φ=,因此A+ω+φ=3+.16. 【答案】左【解析】方法一:y=sin=cos=cos=cos.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.方法二:y=cos 2x=sin=-sin=-sin2,y=sin=-sin2.因此要得到函数y=sin的图象,只需将函数y=cos 2x的图象向左平移个单位长度.17. 【答案】【解析】根据题意,设BE=m,由sin∠EPB=,得PE=3m,cos∠PEB=,从而得到cos∠B′EA=cos(π-2∠PEB)=-cos 2∠PEB=1-2cos2∠PEB=,由翻折特点可得B′E=BE=m.又AE=2-m,在Rt△B′AE中,cos∠B′EA==,解得m=,所以PE=3m=.18. 【答案】解(1)f(x)=2sin·cos-sin(x+π)=cos x+sin x=232cosx+12sinx=2sin,∴f(x)的最小正周期T==2π.(2)由已知得g(x)=f=2sin.∵x∈[0,π],∴x+∈,∴sin∈,∴g(x)=2sin∈[-1,2],∴函数g(x)在区间[0,π]上的最大值为2,最小值为-1.19. 【答案】解(1)f(x)=(sin x+cos x)2-cos2x=(1+2sin x cos x)-cos2x=sin 2x-+=sin+.所以函数f(x)的最小正周期T==π.由2kπ-≤2x-≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z,所以函数f(x)的单调递增区间为(k∈Z).(2)由(1)得f=sin+=sin+=cosθ+=,所以cosθ=,因为θ∈,所以sinθ=-√1−cos2θ1-cos2θ=-,所以sin 2θ=2sinθcosθ=-,cos 2θ=2cos2θ-1=-,所以sin=sin 2θcos-cos 2θsin=-.20. 【答案】解(1)由题图知,A=300,T=-=,∴ω==100π.∵-=-,∴φ==,∴I=300sin(t≥0).(2)问题等价于T≤,即≤,∴ω≥200π,∴正整数ω的最小值为629.21. 【答案】解(1)在矩形ABCD中,∵B,E关于MN对称,∠BNM=θ,∴∠AME =2θ,∠MEN=,且BM=ME.在Rt△AEM中,AM=ME cos 2θ=BM cos 2θ.又∵AM+BM=200(米),∴BM cos 2θ+BM=200,∴BM=ME==,∴Rt△EMN中,MN==.∴L(θ)=ME+MN=+在Rt△BMN中,BN=MN cosθ=,∵0<BM<200,0<BN<400,∴函数L(θ)的定义域为.(2)L(θ)=ME+MN=+==.令t=sinθ,∵θ∈,∴t∈,令φ(t)=-t2+t=-2+,当t=时,φ(t)取最大值,最大值为,此时θ=,L(θ)取最小值.∴L(θ)的最小值为400 米,此时θ=.第11页共11页。

三角函数综合应用50题

三角函数综合应用50题
A.5 米B.10米C.15米D.10 米
【答案】A.
三、解答题
1.(2010安徽省中中考) 若河岸的两边平行,河宽为900米,一只船由河岸的A处沿直线方向开往对岸的B处,AB与河岸的夹角是600,船的速度为5米/秒,求船从A到B处约需时间几分。(参考数据: )
【答案】
2.(2010安徽芜湖)(本小题满分8分)图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16cm,求塔吊的高CH的长.
(1)求新传送带AC的长度;
(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据: ≈1.41, ≈1.73, ≈2.24, ≈2.45)
5.(2010江苏南京)(7分)如图,小明欲利用测角仪测量树的高度。已知他离树的水平距离BC为10m,测角仪的高度CD为1.5m,测得树顶A的仰角为33°.求树的高度AB。
距灯塔S的最近距离是海里(不作近似计算)。
【答案】
5.(2010广东深圳)如图5,某渔船在海面上朝正方方向匀速航行,在A处观测到灯塔M在北偏东60°方向上,航行半小时后到达B处,此时观测到灯塔M在北偏东30°方向上,那么该船继续航行 分钟可使渔船到达离灯塔距离最近的位置。
【答案】15
6.(2010广东佛山)如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的政务时刻阳光刚好不能射入窗户,则AB的长度是米。(假设夏至的政务时刻阳光与地平面夹角为60°)
解:
3.(2010广东广州,22,12分)目前世界上最高的电视塔是广州新电视塔.如图8所示,新电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.

九年级数学上册 第2章《三角函数的应用综合性解答题》优生辅导专题提升训练(附答案)

九年级数学上册 第2章《三角函数的应用综合性解答题》优生辅导专题提升训练(附答案)

2021-2022学年鲁教版九年级数学上册第2章《三角函数的应用综合性解答题》优生辅导专题提升训练(附答案)1.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行若干千米,到达E 处,测得灯塔C在北偏东45°方向上.(1)若BD=30km,问E处距离港口A有多远?(2)若DE=8km,问E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)2.如图为某景区五个景点A,B,C,D,E的平面示意图,B,A在C的正东方向,D在C 的正北方向,D,E在B的北偏西30°方向上,E在A的西北方向上,C,D相距1000m,E在BD的中点处.(1)求景点B,E之间的距离;(2)求景点B,A之间的距离.(结果保留根号)3.如图,一次军事演习中,蓝方在﹣条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截.红方行驶2000米到达C后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同距离,刚好在D处成功拦截蓝方.(1)求点C到公路的距离;(2)求红蓝双方最初的距离.(结果保留根号)4.川西某高原上有一条笔直的公路,在紧靠公路相距40千米的A、B两地,分别有甲、乙两个医疗站,如图,在A地北偏东45°,B地北偏西60°方向上有一牧民区C,过点C 作CH⊥AB于H.(1)求牧民区C到B地的距离(结果用根式表示);(2)一天,乙医疗队的医生要到牧民区C.若C、D两地距离是B、C两地距离的倍,求∠ADC的度数及B、D两地的距离(结果保留根号).5.黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).(结果精确到1m,参考数据:≈1.4,≈1.7)6.如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号,已知A、B两船相距100()海里,船C在船A的北偏东60°方向上,船C 在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.(1)求出A与C间的距离AC;(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救故障船C,在去营救的途中触暗礁危险.(填“有”或“无”,不必说明理由,参考数据:)7.某公园有一座雕塑D,在北门B的正南方向,BD为100米,小树林A在北门的南偏西60°方向,荷花池C在北门B的东南方向,已知A,D,C三点在同一条直线上且BD⊥AC:(1)分别求线段AB、BC、AC的长(结果中保留根号,下同);(2)若有一颗银杏树E恰好位于∠BAD的平分线与BD的交点,求BE的距离.8.如图,港口B在港口A的东北方向,上午9时,一艘轮船从港口A出发,以16海里/时的速度向正东方向航行,同时一艘快艇从港口B出发也向正东方向航行.上午11时轮船到达C处,同时快艇到达D处,测得D处在C处的北偏东60°的方向上,且C、D两地相距80海里,求快艇每小时航行多少海里?(结果精确到0.1海里/时,参考数据:,,)9.如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=70°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=km.(1)判断线段AB与AE的数量关系,并说明理由;(2)求两个岛屿A和B之间的距离.(sin70°≈,cos70°≈)10.综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)11.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC 的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.12.如图,我国南海巡逻艇在A处执行任务时,发现在A处的北偏东30°方向有一岛屿C,在A处的北偏东75°方向、相距60海里的B处有一不明船只正以15海里/时的速度向B 处西北方向的C岛航行,于是巡逻艇马上以20海里/时的速度开向C岛去拦截,问巡逻艇与不明船只谁先到达C岛?(参考数据:≈1.4,≈1.7)13.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B 的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C 在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)14.一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).15.如图所示,A,B两地之间有条河,原来从A地到B地需要经过桥DC,沿折线A⇒D⇒C⇒B 到达.现在新建了桥EF,可直接沿直线AB从A地到达B地.已知BC=11km,∠A=45°,∠B=37°,桥DC和AB平行,则现在从A地到B地可比原来少走多少路程(结果精确到0.1km.参考数据:≈1.41,sin37°≈0.60,cos37°≈0.80)16.重庆市某校数学兴趣小组在水库某段CD的附近借助无人机进行实物测量的社会实践活动.如图所示,兴趣小组在水库正面左岸的C处测得水库右岸D处某标志物DE顶端的仰角为α.在C处一架无人飞机以北偏西90°﹣β方向飞行100米到达点A处,无人机沿水平线AF方向继续飞行30米至B处,测得正前方水库右岸D处的俯角为30°.线段AM的长为无人机距地面的铅直高度,点M、C、D在同一条直线上.(1)求无人机的飞行高度AM;(2)求标志物DE的高度.(结果精确到0.1米)(已知数据:sinα=,cosα=,tanα=,sinβ=,cosβ=,tanβ=2,≈1.732)17.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)18.如图,我南海某海域A处有一艘捕鱼船在作业时突遇特大风浪,船长马上向我国渔政搜救中心发出求救信号,此时一艘渔政船正巡航到捕鱼船正西方向的B处,该渔政船收到渔政求救中心指令后前去救援,但两船之间有大片暗礁,无法直线到达,于是决定马上调整方向,先向北偏东60°方向以每小时30海里的速度航行半小时到达C处,同时捕鱼船低速航行到A点的正北1.5海里D处,渔政船航行到点C处时测得点D在南偏东53°方向上.(1)求CD两点的距离;(2)渔政船决定再次调整航向前去救援,若两船航速不变,并且在点E处相会合,求∠ECD的正弦值.(参考数据:sin53°≈,cos53°≈,tan53°≈)19.如图,有A,B,C三个港口,都位于南北方向的海岸线上,P、Q是两个度银小岛,某游船从小岛P出发,向西航行到达港口A,再从港口A向北航行,到达港口B,在港口B 看到小岛P在南偏东60°处,游船由港口B出发40分钟后到达港口C,看到小岛P在南偏东30°处,这时游船的航向改为北偏东60°继续航行80分钟到达小岛Q.从港口A 到小岛Q,该游船航行的速度都有30海里/小时.(1)求港口C与小岛P之间的距离;(2)求P,Q两个小岛之间的距离.(≈2.646,结果精确到十分位).20.如图,一艘货轮由港口A出发向正东方向行驶,在港口A处时,测得灯塔B在港口A 的南偏东30°方向,小岛C在港口A的南偏东60°方向,当这艘货轮行驶60海里到点D处时,小岛C恰好在点D处的正南方向,此时测得灯塔B在南偏西60°的方向,求:(1)港口A与小岛C之间的距离;(2)灯塔B与小岛C之间的距离.21.2016年1月6日,我国南沙永暑礁新建港口、机场完成试航试飞,将为岛礁物资运输、人员往来、通信导航、救援补给提供便捷支持,使航行和飞行更为安全可靠.如图所示,永暑礁新建港口在A处,位于港口A的正西方的有一小岛B,小岛C在小岛B的北偏东60°方向,小岛C在A的北偏西45°方向;小岛D在小岛B的北偏东38°方向且满足∠BCD=37°,港口A和小岛C的距离是23km.(参考数据:sin38°≈,tan22°≈,tan37°≈)(1)求BC的距离.(2)求CD的距离.参考答案1.解:(1)作CF⊥AD于F,由题意得,∠D=90°,∴FC∥BD,又AC=CB,∴FC=BD=15,∵∠EFC=90°,∠FEC=45°,∴EF=FC=15,在Rt△AFC中,AF=≈=20,∴AE=AF+FE=35(km),答:BD=30km,E处距离港口A约为35km;(2)设FC=xkm,则EF=FC=x,AF≈=x,由(1)得,AF=FD,即x=x+8,解得,x=24,则x=32,∴AE=AF+FE=32+24=56,答:DE=8km,E处距离港口A约为56km.2.解:(1)由题意得,∠C=90°,∠CBD=60°,∠CAE=45°,∵CD=1000,∴BC==1000,∴BD=2BC=2000,∵E在BD的中点处,∴BE=BD=1000(米);(2)过E作EF⊥AB与F,在Rt△AEF中,EF=AF=BE•sin60°=1000×=500,在Rt△BEF中,BF=BE•cos60°=500,∴AB=AF﹣BF=500(﹣1)(米).3.解:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D 作AB的平行线,两线交于点F,则∠E=∠F=90°,(1)点C到公路的距离就是BE的长,在Rt△BCE中,∵BC=2000米,∠EBC=60°,∴BE=BC•cos60°=2000×=1000米.答:点C到公路的距离就是BE的长是1000米.(2)红蓝双方相距AB=DF+CE.在Rt△BCE中,∵BC=2000米,∠EBC=60°,∴CE=BC•sin60°=2000×=1000米.在Rt△CDF中,∵∠F=90°,CD=2000米,∠DCF=45°,∴DF=CD•sin45°=2000×=1000米,∴AB=DF+CE=(1000+500)米.答:红蓝双方最初相距(1000+1000)米.4.解:(1)设CH为x千米,由题意得,∠CBH=30°,∠CAH=45°,∴AH=CH=x,在Rt△BCH中,tan30°==,∴BH=x,∵AH+HB=AB=40,∴x+x=40,解得x=20﹣20,∴CB=2CH=40﹣40.答:牧民区C到B地的距离为(40﹣40)千米;(2)∵C、D两地距离是B、C两地距离的倍,CH=BC,∴sin∠ADC===,∴∠ADC=60°.在Rt△CHD中,DH=CH•cot∠CDH=CH,∵BH=CH,CH=20﹣20,∴BD=BH﹣DH=CH﹣CH=(20﹣20)=40﹣.答:BD之间的距离为40﹣千米.5.解:延长AD交BC的延长线于G,作DH⊥BG于H,如图所示:在Rt△DHC中,∠DCH=60°,CD=4,则CH=CD•cos∠DCH=4×cos60°=2,DH=CD•sin∠DCH=4×sin60°=2,∵DH⊥BG,∠G=30°,∴HG===6,∴CG=CH+HG=2+6=8,设AB=xm,∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x,BG===x,∵BG﹣BC=CG,∴x﹣x=8,解得:x≈11(m);答:电线杆的高为11m.6.解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.则AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.答:A与C之间的距离AC为200海里.(2)过点D作DF⊥AC于点F,在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1),∴DF=AF=×100(﹣1)≈127海里,∵127>100,∴巡逻船A沿直线AC航线,在去营救的途中无触暗礁危险.故答案为:无.7.解:(1)∵在Rt△ABD中,∠ADB=90°,∠ABD=60°,BD=100米,∴AB==200米,AD=BD•tan60°=100米.∵在Rt△CBD中,∠CDB=90°,∠CBD=45°,BD=100米,∴DC=BD=100米,BC=BD=100米,∴AC=AD+DC=(100+100)米;(2)作EF⊥AB于F,∵AE平分∠BAD,ED⊥AD于D,EF⊥AB于F,∴EF=ED.在Rt△AEF与Rt△AED中,,∴△AEF≌△AED(HL),∴AF=AD=100米,∴BF=AB﹣AF=(200﹣100)米.∵在Rt△BEF中,∠EFB=90°,∠BEF=90°﹣60°=30°,∴BE=2BF=(400﹣200)米.8.解:分别过点B、D作AC的垂线,交AC的延长线于点E、F,在Rt△DCF中,∠DFC=90°,∠DCF=90°﹣60°=30°,则DF=CD=40海里,CF=CD cos∠DCF=40海里,故可得AF=AC+CF=16×2+40=32+40海里,∵DF⊥AF,BE⊥AF,BE⊥BD,∴四边形BEFD是矩形.∴BE=DF=40海里,在Rt△BAE中,∠BEA=90°,∠BAE=90°﹣45°=45°,∴AE=BE=40海里,∴EF=AF﹣AE=32+40﹣40=(40﹣8)海里,∴BD=EF=40﹣8(海里),故可求得快艇的速度=(40﹣8)÷2=20﹣4≈30.6(海里/小时).答:快艇的速度约为30.6海里/时.9.解:(1)相等.∵∠BEQ=30°,∠BFQ=60°,∴∠EBF=∠BEQ=30°,∴EF=BF,又∵∠AFP=60°,∴∠BF A=60°.在△AEF与△ABF中,∵,∴△AEF≌△ABF(SAS),∴AB=AE;(2)过点A作AH⊥PQ,垂足为H.设AE=xkm,则AH=x sin70°km,HE=x cos70°km,∴HF=HE+EF=x cos70°+4﹣5(km),Rt△AHF中,AH=HF•tan60°,∴x sin70°=(x cos70°+4﹣5)•tan60°,即:x=(x+4﹣5)×,解得:x≈13,即AB=AE=13km.答:两个岛屿A与B之间的距离约为13km.10.解:过点F作FG∥EM交CD于G,则MG=EF=10米.∵∠FGN=∠α=36°.∴∠GFN=∠β﹣∠FGN=72°﹣36°=36°.∴∠FGN=∠GFN,∴FN=GN=50﹣10=40(米).在Rt△FNR中,FR=FN×sinβ=40×sin72°=40×0.95≈38(米).答:河宽FR约为38米.11.解:(1)如图,由题意得,∠EAD=45°,∠FBD=30°,∴∠EAC=∠EAD+∠DAC=45°+15°=60°.∵AE∥BF∥CD,∴∠FBC=∠EAC=60°.∵∠FBD=30°∴∠DBC=∠FBC﹣∠FBD=30°.(2分)又∵∠DBC=∠DAB+∠ADB,∴∠ADB=15°.∴∠DAB=∠ADB.∴△ABD为等腰三角形,∴BD=AB=2.即BD之间的距离为2km.(4分)(2)过B作BO⊥DC,交其延长线于点O,在Rt△DBO中,BD=2,∠DBO=60°,∴DO=2×sin60°=,BO=2×cos60°=1.(6分)在Rt△CBO中,∠CBO=30°,CO=BO tan30°=,∴CD=DO﹣CO=(km).即C,D之间的距离km.(8分)12.解:如图,过C作CH⊥AB于H,由题可得,∠DAB=75°,∠DAC=30°,∠CBF=45°,∴∠BAC=45°,∠BAE=∠ABF=15°,∴∠ABC=60°,设BH=x,则CH=AH=x,BC=2x,∵AB=60,∴x+x=60,解得x=30(﹣1),∴AH=30(3﹣),∴Rt△ACH中,AC=AH=×30(3﹣)=30(3﹣),Rt△BCH中,BC=2BH=60(﹣1),∴巡逻艇到达C岛的时间为30(3﹣)÷20≈2.7小时,不明船只到达C岛的时间为60(﹣1)÷15≈2.8小时,∴巡逻艇先到达C岛.13.解:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A到岛礁C的距离为40海里;(2)如图所示:过点A′作A′N⊥BC于点N,可得∠1=30°,∠BA′A=45°,则∠2=15°,即A′B平分∠CBA,设AA′=x,则A′E=x,故CA′=2A′N=2×x=x,∵x+x=40,∴解得:x=60﹣20(,答:此时“中国海监50”的航行距离为(60﹣20)海里.14.解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10海里,∴CD=BC•cos45°=10×≈7.0(海里),∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9(海里).∴AC=AD+CD=11.9+7.0=18.9≈19(海里).答:小船到码头的距离约为19海里.15.解:如图,过点D作DH⊥AB于H,DG∥CB交AB于G.∵DC∥AB,∴四边形DCBG为平行四边形.∴DC=GB,GD=BC=11.∴两条路线路程之差为AD+DG﹣AG.在Rt△DGH中,DH=DG•sin37°≈11×0.60=6.60,GH=DG•cos37°≈11×0.80≈8.80.在Rt△ADH中,AD=DH≈1.41×6.60≈9.31.AH=DH≈6.60.∴AD+DG﹣AG=(9.31+11)﹣(6.60+8.80)≈4.9(km).即现在从A地到B地可比原来少走约4.9km.16.解:(1)根据题意可知:∠ACM=β,AC=100米,∴AM=AC•sinβ=100×=200(米),答:无人机的飞行高度AM为200米;(2)根据题意可知:∠ECD=α,AB=30米,∠FBD=30°,如图,作BG⊥MC于点G交AC于点H,∵AB∥CM,∴∠BAH=∠ACM=β,∴BH=AB•tanβ=30×2=60(米),∴HG=BG﹣BH=200﹣60=140(米),∵AB∥CM,∴△HBA∽△HGC,∴AB:GC=BH:HG,∴30:GC=60:140,解得GC=70(米),∵∠GBD=90°﹣30°=60°,∴GD=BG•tan∠GBD=200×=200(米),∴CD=GD﹣GC=(200﹣70)米,∴DE=CD•tanα=(200﹣70)×≈207.3(米).答:标志物DE的高度为207.3米.17.解:由题意可知∠DCA=180°﹣75°﹣45°=60°,∵BC=CD,∴△BCD是等边三角形.过点B作BE⊥AD,垂足为E,如图所示:由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60°BD=BC=CD=20km,∴∠ADB=∠DBC﹣∠DAC=15°,∴BE=sin15°BD≈0.25×20≈5km,∴AB==≈7km,∴AB+BC+CD≈7+20+20≈47km.答:从A地跑到D地的路程约为47km.18.解:(1)过点C、D分别作CG⊥AB,DF⊥CG,垂足分别为G,F,∵在Rt△CGB中,∠CBG=90°﹣60°=30°,∴CG=BC=×(30×)=7.5海里,∵∠DAG=90°,∴四边形ADFG是矩形,∴GF=AD=1.5海里,∴CF=CG﹣GF=7.5﹣1.5=6海里,在Rt△CDF中,∠CFD=90°,∵∠DCF=53°,∴COS∠DCF=,∴CD===10海里.答:CD两点的距离是10;(2)如图,设渔政船调整方向后t小时能与捕渔船相会合,由题意知CE=30t海里,DE=1.5×2×t=3t海里,∠EDC=53°,过点E作EH⊥CD于点H,则∠EHD=∠CHE=90°,∴sin∠EDH=,∴EH=ED sin53°=3t×=t,∴在Rt△EHC中,sin∠ECD===.答:sin∠ECD=.19.解:(1)由题意得,BC=30×=20海里,∠ABP=60°,∠ACP=30°,∴∠BPC=30°,∴BP=BC=20海里,∴AP=BP•sin∠ABP=20×=10,∵∠ACP=30°,∴PC=2AP=20海里,答:港口C与小岛P之间的距离为20海里;(2)∵在港口C看到小岛P在南偏东30°处,游船的航向改为北偏东60°,∴∠PCQ=90°,又CQ=30×=40海里,由勾股定理得,PQ==20≈52.9海里,答:P,Q两个小岛之间的距离约为52.9海里.20.解:(1)∵∠EAC=60°,∴∠DAC=30°,在Rt△ADC中,AC=60÷Cos30°=40海里,CD=AC=20海里.故港口A与小岛C之间的距离是40海里;(2)过B点作BE∥AD,交AE于E,CD于F,∵∠BAD=60°,∴∠BDA=30°,∴∠ABD=90°,∴△ABD是直角三角形,∴AB=30海里;在Rt△ABE中,AE=15海里,BE=15海里,∴BF=60﹣15=45海里,CF=20﹣15=5海里,在Rt△BCF中,BC==10海里.即灯塔B与小岛C之间的距离是10海里.21.解:(1)作CE⊥AB于E,由题意得,∠CAE=45°,∠CBE=30°,∴AE=CE=AC•sin∠CAE=23×=23km,∴BC=2CE=46km,答:BC的距离为46km;(2)作DF⊥BC于F,设DF=xkm,∴CF==x,BF==x,则x+x=46,解得,x=12,∴DF=12,CF=16,由勾股定理得,CD==20km.答:CD的距离约为20km.。

三角函数与解三角形的综合应用(解析版)

 三角函数与解三角形的综合应用(解析版)

专题05 三角函数与解三角形的综合应用【例1】(三种三角函数间的综合)已知函数()sin()4f x x π=π+和函数()cos()4g x x π=π+在区间57[,]44-上的图象交于A ,B ,C 三点,则△ABC 的面积是A B C D 【答案】C 由已知,得sin()cos()44x x πππ+=π+,即tan()14x ππ+=,所以44x k πππ+=π+,即x k =(Z k ∈),又57[,]44x ∈-,所以1x =-,0,1.于是两函数图象的交点为(1,A -,B ,(1,2C -,则△ABC 的面积为12(222⨯⨯+=【例2】(三角函数性质的综合)已知函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,f (x )的图象向左平移π3个单位后所得图象对应的函数为偶函数,则f (x +π12)+f (x −π6)的最大值为 A .√2 B .√3 C .1D .2【答案】A 因为函数f (x )=sin⁡(ωx +φ)(ω>0,|φ|<π2)的最小正周期为π,所以ω=2,f (x )=sin⁡(2x +φ),且其图象向左平移π3个单位后得到的f (x )=sin⁡(2x +2π3+φ)为偶函数,则2π3+φ=π2+kπ,k ∈Z ,又因为|φ|<π2,所以φ=−π6,f (x )=sin⁡(2x −π6),则f (x +π12)+f (x −π6)=sin2x +sin (2x −π2)=sin2x −cos2x =√2sin⁡(2x −π4)≤√2.故选A . 【例3】(三角函数型图象问题)函数cos ()2([π,π])xf x x =∈-的图象大致为A .B .C .D .【答案】C []cos()cos π,π,()22()()x x x f x f x f x -∈--===∴,为偶函数,则图象关于y 轴对称,排除A 、D ,把πx =代入得1(π)20.5f -==,故图象过点(π0.5),,C 选项适合,故选C . 【例4】(三角函数与平面几何的综合)已知函数()cos (0)f x x x ωωω=+>. (1)若2ω=,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,再向右平移π3个单位后得到函数()g x 的图象,求()g x 在区间ππ[,]22-上的值域; (2)若函数()f x 的图象上有如图所示的,,A B C 三点,且满足AB BC ⊥,求ω的值.【解析】()cos f x x x ωω=+1cos )22x x ωω=+π2sin()6x ω=+. (1)若2ω=,则π()2sin(2)6f x x =+,把函数()f x 的图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数π2sin()6y x =+的图象,再向右平移π3个单位后得到函数π()2sin()6g x x =-的图象.由ππ22x -≤≤,得2πππ363x -≤-≤,所以π1sin()6x -≤-≤所以π22sin()6x -≤-≤()g x 在区间ππ[,]22-上的值域为[-. (2)由图知点B 是函数()f x 图象的最高点,设0(,2)B x ,函数()f x 的最小正周期为, 则003(,0),(,0)44T T A x C x -+,所以(,2)4T AB =,3(,2)4T BC =-,因为AB BC ⊥, 所以234016T AB BC ⋅=-=,解得264,3T T ==2π2π8T ω===.【例5】(三角函数与解三角形的综合)已知2()cos 2cos 1f x x x x =-+. (1)求函数()f x 的单调递增区间;T(2)ABC △中,角,,A B C 的对边分别为,,a b c ,若()2f A =,且3b =,ABC △的面积S =,求a .【解析】(1)2()cos 2cos 1f x x x x =-+2cos 2x x =-2(sin 2cos sin cos 2)66x x ππ=- 2sin(2)6x π=-. 由222262k x k ππππ-≤-≤π+(k ∈Z ),解得63k x k πππ-≤≤π+(k ∈Z ).故函数()f x 的单调递增区间为[,]63k k πππ-π+(k ∈Z ).(2)由()2f A =,即2sin(2)26A π-=,得sin(2)16A π-=. 所以2262A k ππ-=π+(k ∈Z ),解得3A k π=π+(k ∈Z ). 因为(0,)A ∈π,所以3A π=.由已知ABC △的面积11sin 3sin 603322S bc A c ==⨯⨯⨯=4c =.由余弦定理可得2222cos a b c bc A =+-2234234cos60=+-⨯⨯13=. 所以a =【例6】(三角恒等变换与解三角形的综合)已知ABC △中,,,a b c 分别为角,,A B C 所对的边,且4a =,5b c +=B ,则ABC △的面积为A B C D 【答案】C 根据两角和的正切公式有()()tan tan tan 1tan tan A B A B A B +=+-,依题意有()tan A B +=故2ππ,33A B C +==.由余弦定理得222π2cos 3c a b ab =+-,即22164c b b =+-,联立5b c +=,解得32b =,故面积为13π4sin 223⋅⋅⋅=. 【例7】(解三角形与向量的综合)已知在ABC △中,角,,A B C 的对边分别为,,a b c ,向量()cos ,cos C C =-n ,且12⋅=-m n .(1)求角C 的大小; (2,求ABC △的面积.【解析】(1)由已知得21cos cos 2C C C =-,由倍角公式和降幂公式得1cos 212,sin 21226C C C +π⎛⎫=-∴-= ⎪⎝⎭. ()0,,C ∈π2,62C C πππ∴-=∴=.(2解得b =或b =当b =时,11sin 322ABC S ab C ==⨯⨯=△当b =时,11sin 22ABC S ab C ==⨯⨯=△.综上所述,3ABC S =△或ABC S =△.【例8】(三角函数与向量、函数与方程的综合)已知向量2,1),(cos ,cos 1)x x x ωωω==+m n ,设函数()f x b =⋅+m n .(1)若函数()f x 的图象关于直线6x π=对称,且[0,3]ω∈时,求函数()f x 的单调增区间; (2)在(1)的条件下,当[0,]12x 7π∈时,函数()f x 有且只有一个零点,求实数b 的取值范围.【解析】2()cos cos 1f x b x x x b ωωω=⋅+=+++m n1332cos 2sin(2)2262x x b x b ωωωπ=+++=+++. (1)∵函数()f x 的图象关于直线6x π=对称, ∴2,662k k ωπππ⋅+=π+∈Z ,解得31,k k ω=+∈Z , ∵[0,3]ω∈, ∴1ω=,∴3()sin(2)62f x x b π=+++,由222,262k x k k ππππ-≤+≤π+∈Z ,得2,366k x k k ππππ-≤+≤π+∈Z ,所以函数()f x 的单调增区间为[,],36k k k πππ-π+∈Z .(2)由(1)知3()sin(2)62f x x b π=+++,∵[0,]12x 7π∈,∴2[,]663x ππ4π+∈,∴2[,]662x πππ+∈,即[0,]6x π∈时,函数()f x 单调递增; 2[,]623x ππ4π+∈,即[,]612x π7π∈时,函数()f x 单调递减.又(0)()3f f π=,∴当()0()312f f π7π>≥或()06f π=时()f x 有且只有一个零点.即32022b b +>≥-++或3102b ++=,所以满足条件的5({}2b ∈--.备考指南(1)在解决已知三角函数()sin()f x A x ωϕ=+的图象关于某条直线0x x =(或某点0(,0)x )对称的问题时,常用的解决方法是将横坐标代入原式中,让其等于正弦函数的对称轴(或对称中心),即0ππ2x k ωϕ+=+(或0πx k ωϕ+=),k ∈Z ,再解出参数即可;(2)在解决已知函数()()f x g x b =+的零点个数求参数,或者讨论函数的零点个数问题时,常用分离参数的方法,将问题转化为()g x b =-,画出()g x 的图象,通过对直线y b =-进行上下平移,从而得到参数b 的取值范围或零点个数的不同情况.【例9】(三角函数与导数的综合)已知函数()y f x =对任意的ππ(,)22x ∈-满足()cos ()sin f x x f x x '+0>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ππ()()34f -<-B ππ()()34f <C .π(0)2()3f f >D .π(0)()4f >【答案】A 【解析】令()()()()()()()()22cos cos cos sin ,cos cos cos f x f x x f x x f x x f x x g x g xxx x'''-+'===则,由对任意的ππ(,)22x ∈-满足()cos ()sin 0f x x f x x '+>可得()0g x '>,所以函数()x g 在ππ,22⎛⎫- ⎪⎝⎭上为增函数,所以ππ34g g ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,即ππ34ππcos cos 34f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ππ34f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故选A .考点三 平面几何中的解三角形问题【例10】△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2sin sin 2sin cos A C B C +=. (1)求B 的大小;(2)若3a =,且AC边上的中线长为2,求△ABC 的面积. 【解析】(1)由△ABC 中πA B C ++=可得()sin sin A B C =+, 因为2sin sin 2sin cos A C B C +=,所以()2sin 2sin cos sin 0B C B C C +-+=,即2cos sin sin 0B C C +=,即()sin 2cos 10C B +=, 因为0π,sin 0C C <<≠, 所以2cos 10B +=,12πcos ,23B B =-=. (2)由2π3B =得, ,① 在△ABC 中,取中点,连接.所以在△CBD 中,222cos 2BC CD BD C BC CD+-=⋅=221944b a ab+-, ② 把①代入②,化简得,解得,或(舍去), 所以.所以△ABC 的面积112πsin 35sin 223S ac B ==⨯⨯⨯=. 222239b a c ac c c =++=++AC D BD 23100c c --=5c =2c =-5c =备考指南几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.考点四 三角函数的应用问题【例11】(解三角形的应用)某观察站C 与两灯塔A ,B 的距离分别为a 米和b 米,测得灯塔A 在观察站C 北偏西60︒,灯塔B 在观察站C 北偏东60︒,则两灯塔A ,B 间的距离为AB 米CD【答案】C【解析】依题意,作出示意图(图略),因为6060120ACB ∠=︒+︒=︒,AC a =,BC b =,所以由余弦C .【例12】(三角函数、解三角形的应用)如图,某小区准备将闲置的一直角三角形地块开发成公共绿地,图中π,,2AB a B BC =∠==.设计时要求绿地部分(如图中阴影部分所示)有公共绿地走道MN ,且两边是两个关于走道MN 对称的三角形(AMN △和A MN '△).现考虑绿地最大化原则,要求点M 与点,A B 均不重合,A '落在边BC 上且不与端点,B C 重合,设AMN θ∠=.(1)若π3θ=,求此时公共绿地的面积; (2)为方便小区居民的行走,设计时要求,AN A N '的长度最短,求此时绿地公共走道MN 的长度. 【解析】(1)由图得:ππ23BMA θ∠=-=', ∴1122BM A M AM ='=, 又BM AM a AB +==,∴32AM a =, ∴23AM a =,∴公共绿地的面积2221π422sin 239AMN S S AM a ==⋅⋅⋅==△. (2)由图得:()cos π2AM A M AB a θ+-=='且AM A M =', ∴()21cos π21cos 22sin a a a AM A M θθθ====+--',在AMN △中,由正弦定理可得:πsin sin π3AN AMθθ=⎛⎫-- ⎪⎝⎭,∴sin 2π2πsin 2sin sin 33AM aAN θθθθ==⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭, 记2π2π2π2sin sin 2sin sin cos cos sin 333t θθθθθ⎛⎫⎛⎫=-=⋅-⎪ ⎪⎝⎭⎝⎭21cos 2π1cos sin sin 2sin 22262θθθθθθ-⎛⎫=+=+=-+ ⎪⎝⎭, 又ππ,42θ⎛⎫∈ ⎪⎝⎭, ∴ππ262θ-=, ∴π3θ=时,t 取最大,AN 最短,则此时23MN AM a ==.能力突破1.已知命题p :函数()sin f x x x =图象的一条对称轴是7π6x =;命题(): cos cos cos q αβαβαβ∀∈-≥-R ,,,则下列命题中的真命题为 A .()p q ⌝∧ B .()p q ∧⌝ C .()p q ⌝∨D .()p q ⌝∨【答案】B【解析】7π7π7π7ππ:sin2sin 266663p f ⎛⎫⎛⎫==+=- ⎪ ⎪⎝⎭⎝⎭,∴p 为真命题. :q 当2π,παβ==时,παβ-=,()cos 1αβ-=-,cos cos 2αβ-=,∴()cos cos cos αβαβ-<-,∴q 为假命题,∴()p q ∧⌝为真命题.故选B . 2.已知函数()log a f x x =(0a >且1a ≠)和函数π()sin 2g x x =,若()f x 与()g x 两图象只有3个交点,则a 的取值范围是A .19(,1)(1,)52 B .19(0,)(1,)72 C .11(,)(3,9)72D .11(,)(5,9)73【答案】D【解析】作出函数()f x 与()g x 的图象如图所示,当1a >时,()f x 与()g x 两图象只有3个交点,可得59a <<,当01a <<时,()f x 与()g x 两图象只有3个交点,可得1173a <<,所以a 的取值范围是11(,)(5,9)73,故选D .3.存在实数ϕ,使得圆面224x y +≤恰好覆盖函数πsin()y x kϕ=+图象的最高点或最低点共三个,则正数k 的取值范围是___________.【答案】 【解析】由题意,知函数πsin()y x k ϕ=+图象的最高点或最低一定在直线1y =±上,则由2214y x y =±⎧⎨+≤⎩,得x ≤≤2π2πT k k==,2T T ≤,解得正数k的取值范围为.4.在△ABC 中,角A , B , C 所对的边分别为a , b , c ,已知AB ⃗⃗⃗⃗⃗ ∙AC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ ,53sin =A . (1)求C sin 的值;(2)设D 为AC 的中点,若BD 的长为√1532,求△ABC 的面积.【解析】(1)由AB AC BA BC ⋅=⋅得()0AB AC BC ⋅+=, 即22()()||||0AC BC AC BC AC BC -⋅+=-=, 故|AC⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |, 从而A B =,A 与B 都是锐角, 则cosA =√1−sin 2A =45.sinC =sin (A +B )=sin2A =2sinAcosA =2425,即sinC =2425. (2)由(1),得cosC =cos (π−2A )=−cos2A =2sin 2A −1=−725, 设BC =AC =x ,在BCD △中,由余弦定理得BD 2=CD 2+BC 2−2CD ∙BC ∙cosC =x 24+x 2−2×x 22×(−725)=1534,解得x =5,则S ∆ABC =12×5×5×2425=12.5π. (1)求函数()f x 的解析式,并写出()f x 的最小正周期; (2,若在[]0,πx ∈内,方程2[12()]3()20a g x ag x -+-=有且仅有两解,求a 的取值范围.【解析】(1,∴πT =,∴2ω=.()f x 图象上,∴ππ2π32k ϕ+=+, π最小正周期πT =.(2 ∴原方程可化为()213sin 2sin 2a x x +-=,则0a ≠. ∵[]0,πx ∈,∴[]sin 0,1x ∈,213sin 2sin 0x x +->,∴2221732sin 3sin 12sin 84x x x a ⎛⎫=-++=-- ⎪⎝⎭,令sin t x =,则[]0,1t ∈,作出()2173284f t t ⎛⎫=-- ⎪⎝⎭及2y a =的图象,当21a ≤2<或2178a =时,两图象在[]0,1内有且仅有一解,即方程221732sin 84x a ⎛⎫=-- ⎪⎝⎭在[]0,π内有且仅有两解,此时a 的取值范围为16|12 17a a a ⎧⎫<≤=⎨⎬⎩⎭或. 高考通关1.【2020年高考北京】2020年3月14日是全球首个国际圆周率日(π Day ).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是A. 30303sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭B. 30306sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭C. 60603sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ D. 60606sin tan n n n ︒︒⎛⎫+ ⎪⎝⎭ 【答案】A【解析】单位圆内接正6n 边形的每条边所对应的圆周角为360606n n ︒︒=⨯,每条边长为302sin n︒, 所以,单位圆的内接正6n 边形的周长为3012sin n n︒, 单位圆的外切正6n 边形的每条边长为302tann ︒,其周长为3012tan n n︒, 303012sin12tan 303026sin tan 2n n n n n n n π︒︒+︒︒⎛⎫∴==+ ⎪⎝⎭,则30303sin tan n n n π︒︒⎛⎫=+ ⎪⎝⎭. 故选:A.【点睛】本题考查圆周率π的近似值的计算,根据题意计算出单位圆内接正6n 边形和外切正6n 边形的周长是解答的关键,考查计算能力,属于中等题.2.【2019年高考北京卷文数】如图,A ,B 是半径为2的圆周上的定点,P 为圆周上的动点,APB ∠是锐角,大小为β.图中阴影区域的面积的最大值为A .4β+4cos βB .4β+4sin βC .2β+2cos βD .2β+2sin β【答案】B所以当ABP S △最大时,阴影部分面积最大.观察图象可知,当P 为弧AB 的中点时(如图2),阴影部分的面积S 取最大值,此时∠BOP =∠AOP =π−β,面积S 的最大值为ABP AOB OAB S S S S =+-△△阴影扇形=4β+S △POB + S △POA =4β+12|OP ||OB |sin (π−β)+12|OP ||OA |sin (π−β)=4β+2sin β+2sin β=4β+4 sin β,故选B. 【名师点睛】本题主要考查阅读理解能力、数学应用意识、数形结合思想及数学式子变形和运算求解能力,有一定的难度.关键是观察分析区域面积最大时的状态,并将面积用边角等表示. 3.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④D .①③【答案】C 【解析】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴为偶函数,故①正确.当ππ2x <<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误. 当0πx ≤≤时,()2sin f x x =,它有两个零点:0,π;当π0x -≤<时,()()sin sin f x x x =--2sin x =-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④正确,故选C .【名师点睛】本题也可画出函数()sin sin f x x x =+的图象(如下图),由图象可得①④正确.4.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5x ωπ+)(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增 ④ω的取值范围是[1229510,)其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④【答案】D【解析】①若()f x 在[0,2π]上有5个零点,可画出大致图象,由图1可知,()f x 在(0,2π)有且仅有3个极大值点.故①正确;②由图1、2可知,()f x 在(0,2π)有且仅有2个或3个极小值点.故②错误;π所以结论正确的有①③④.故本题正确答案为D.【名师点睛】本题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理解深度高,考查数形结合思想.注意本题中极小值点个数是动态的,易错,正确性考查需认真计算,易出错. 5.【2018年高考北京卷理数】设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________. 【答案】23【解析】因为()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值, 所以()()ππ22π 8463k k k k -=∈∴=+∈Z Z ,ωω, 因为0>ω,所以当0k =时,ω取最小值为23.【名师点睛】本题主要考查三角函数的图象和性质,考查考生的逻辑推理能力以及运算求解能力,考查的核心素养是逻辑推理、数学运算.6.【2018年高考全国Ⅲ理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【答案】3【解析】0πx ≤≤,ππ19π3666x ∴≤+≤,由题可知πππ3π336262x x +=+=,,或π5π362x +=,解得π4π,99x =,或7π9,故有3个零点.【名师点睛】本题主要考查三角函数的图象与性质,考查数形结合思想和考生的运算求解能力,考查的核心素养是数学运算.7.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC的面积是______,cos ∠BDC =_______.【答案】24【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos BDC ∠=或cos BDC ∠=(舍去).综上可得,△BCD cos BDC ∠=.8.【2020年高考全国Ⅰ卷理数】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】AB AC ⊥,AB =1AC =,由勾股定理得2BC ==,同理得BD =BF BD ∴==在ACE △中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos30132112CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF 中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-. 【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.9.(2017江苏)已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【解析】(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,所以3sin x x =.若cos 0x =,则sin 0x =,与22sin cos 1x x +=矛盾,故cos 0x ≠.于是tan x =. 又x ∈[0,π], 所以5π6x =.(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为x ∈[0,π], 所以ππ7π[,]666x +∈,从而π1cos()6x -≤+≤. 于是,当ππ66x +=,即0x =时,f (x )取到最大值3;当π6x +=π,即5π6x =时,f (x )取到最小值-10.(2018新课标Ⅰ理)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =,求BC .【解析】(1)在ABD △中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos ADB ∠==(2)由题设及(1)知,cos sin 5BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠258255=+-⨯⨯ 25=.所以5BC =.11.(2018北京理)在△ABC 中,a =7,b =8,cos B =–17. (1)求∠A ;(2)求AC 边上的高.【解析】(1)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B .由正弦定理得sin sin a b A B =⇒7sin A ,∴sin A . ∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(2)在△ABC 中,sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7∴AC .12.(2018上海)设常数R a ∈,函数()2sin22cos f x a x x =+.(1)若()f x 为偶函数,求a 的值;(2)若π14f ⎛⎫= ⎪⎝⎭,求方程()1f x =[]ππ-,上的解.【答案】(1)0a =;(2)5π24x =-或19π24x =或13π11π2424x x 或==-.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a 的值,再根据三角形函数的性质即可求出.【详解】(1)∵()2sin22cos f x a x x =+,∴()2sin22cos f x a x x -=-+,∵()f x 为偶函数,∴()()f x f x -=,∴22sin22cos sin22cos a x x a x x -+=+,∴2sin20a x =,∴0a =;(2)∵π14f ⎛⎫= ⎪⎝⎭,∴2ππsin 2cos 1124a a ⎛⎫+=+= ⎪⎝⎭,∴a =∴()2π2cos cos212sin 216f x x x x x x ⎛⎫=+=++=++ ⎪⎝⎭,∵()1f x =∴π2sin 2116x ⎛⎫++= ⎪⎝⎭,∴πsin 262x ⎛⎫+=- ⎪⎝⎭, ∴ππ22π64x k +=-+,或π52π2πZ 64x k k +=+∈,, ∴5ππ24x k =-+,或13ππZ 24x k k =+∈,,∵[]ππx ∈-,, ∴5π24x =-或19π24x =或13π11π2424x x 或==-【点睛】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.13.【2020年高考全国II 卷理数】ABC △中,sin 2A -sin 2B -sin 2C = sin B sin C .(1)求A ;(2)若BC =3,求ABC △周长的最大值.【解析】(1)由正弦定理和已知条件得222BC AC AB AC AB --=⋅,①由余弦定理得2222cos BC AC AB AC AB A =+-⋅,② 由①,②得1cos 2A =-.因为0πA <<,所以2π3A =.(2)由正弦定理及(1)得sin sin sin ACABBCB C A ===从而AC B =,π)3cos AB A B B B =--=-.故π33cos 3)3BC AC AB B B B ++=++=++.又π03B <<,所以当π6B =时,ABC △周长取得最大值3+14.【2020年高考浙江】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,C .已知2sin 0b A =.(Ⅰ)求角B 的大小;(Ⅱ)求cos A +cos B +cos C 的取值范围.【解析】(Ⅰ)由正弦定理得2sin sin B A A =,故sin B =, 由题意得π3B =. (Ⅰ)由πA BC ++=得2π3C A =-, 由ABC △是锐角三角形得ππ(,)62A ∈.由2π1cos cos()cos 32C A A A =-=-+得11π13cos cos cos cos sin()]22622A B C A A A ++++=++∈.故cos cos cos A B C ++的取值范围是3]2. 【点睛】解三角形的基本策略:一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化边”;求最值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是转化为关于某个角的函数,利用函数思想求最值.15.【2020年高考全国Ⅱ卷文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=. (1)求A ;(2)若b c -=,证明:△ABC 是直角三角形. 【解析】(1)由已知得25sin cos 4A A +=,即21cos cos 04A A -+=. 所以21(cos )02A -=,1cos 2A =.由于0A <<π,故3A π=.(2)由正弦定理及已知条件可得sin sin B C A -=.由(1)知23B C π+=,所以2sin sin()33B B ππ--=.即11sin 22B B =,1sin()32B π-=. 由于03B 2π<<,故2B π=.从而ABC △是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.16.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinsin 2A C a b A +=. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.【答案】(1)B =60°;(2)(82. 【解析】(1)由题设及正弦定理得sin sin sin sin 2A C AB A +=. 因为sin A ≠0,所以sin sin 2A CB +=. 由180A BC ︒++=,可得sin cos 22A C B +=,故cos 2sin cos 222B B B =. 因为cos 02B ≠,故1sin 22B =,因此B =60°. (2)由题设及(1)知△ABC的面积4ABC S a =△. 由正弦定理得()sin 120sin 1sin sin 2tan 2C c A a C C C ︒-===+. 由于△ABC 为锐角三角形,故0°<A <90°,0°<C <90°,由(1)知A +C =120°,所以30°<C <90°,故122a <<,ABC S <<△. 因此,△ABC面积的取值范围是82⎛ ⎝⎭.【名师点睛】这道题考查了三角函数的基础知识,以及正弦定理的使用(此题也可以用余弦定理求解),最后考查ABC 是锐角三角形这个条件的利用,考查的很全面,是一道很好的考题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的综合应用专题训练
1.(优质试题·浙江)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a cos B.
(1)证明:A=2B;
(2)若△ABC的面积S=a2
4,求角A的大小.
2.(优质试题·全国Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.
(1)求C;
(2)若c=7,△ABC的面积为33
2,求△ABC的周长.
3.(优质试题·山东)在△ABC中,角A,B,C的对边分别为a,b,
c,已知2(tan A+tan B)=tan A
cos B+
tan B
cos A.
(1)证明:a+b=2c;
(2)求cos C的最小值.
4.(优质试题·北京)在△ABC中,a2+c2=b2+2ac.
(1)求角B的大小;
(2)求2cos A+cos C的最大值.
1.(优质试题·福建)已知函数f(x)的图象是由函数g(x)=cos x的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来
的2倍(横坐标不变),再将所得到的图象向右平移π
2个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β.
①求实数m的取值范围;
②证明:cos(α-β)=2m2
5-1.
2.(优质试题·湖南)如图,在平面四边形ABCD中,AD=1,CD=2,AC=7.
(1)求cos∠CAD的值;
(2)若cos∠BAD=-
7
14,sin∠CBA=
21
6,求BC的长.
3.(优质试题·陕西)△ABC的内角A,B,C所对的边分别为a,b,
c.
(1)若a,b,c成等差数列,证明:sin A+sin C=2sin(A+C);
(2)若a,b,c成等比数列,求cos B的最小值.
1.(优质试题·四川雅安模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若(2a -c )cos B =b cos C .
(1)求角B 的大小;
(2)若a =3,△ABC 的面积为332,求BA →·AC
→的值.
2.(优质试题·东北三省三校模拟)已知△ABC 的面积为2,且满足0<AB →·AC
→≤4,设AB →和AC →的夹角为θ. (1)求θ的取值范围;
(2)求函数f (θ)=2sin
2⎝ ⎛⎭⎪⎫π4+θ-3cos 2θ的取值范围.
3.(优质试题·浙江四校模拟)已知m =(cos ωx +sin ωx ,3cos ωx ),n =(cos ωx -sin ωx ,2sin ωx ),其中ω>0,若函数f (x )=m ·n ,且
f (x )的对称中心到f (x )对称轴的最近距离不小于π4.
(1)求ω的取值范围.
(2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且a =3,b +c =3,当ω取最大值时,f (A )=1,求△ABC 的面积.
4.(优质试题·河南豫南九校联考)如图,在△ABC 中,
点D 在BC 边上,∠CAD =π4,AC =72,cos ∠ADB =-210.
(1)求sin ∠C 的值;
(2)若BD =5,求△ABD 的面积.
5.(优质试题·福建漳州八校联考)在△ABC 中,A ,B ,C 所对的边
分别为a ,b ,c ,函数f (x )=2cos x sin(x -A )+sin A (x ∈R )在x =512
π处取得最大值.
(1)当x ∈⎝ ⎛⎭⎪⎫0,π2时,求函数f (x )的值域;
(2)若a =7且sin B +sin C =13314,求△ABC 的面积.
6.(优质试题·安徽合肥六校联考)已知函数
f (x )=2cos ⎝ ⎛⎭
⎪⎫2x +π3-2cos 2x +1.
(1)试将函数f (x )化为f (x )=A sin(ωx +φ)+B (ω>0)的形式,并求该函数的对称中心;
(2)若锐角△ABC 中角A 、B 、C 所对的边分别为a 、b 、c ,且f (A )
=0,求b c 的取值范围.。

相关文档
最新文档