吸收塔的相关设计计算

合集下载

吸收塔塔径计算公式

吸收塔塔径计算公式

吸收塔塔径计算公式吸收塔是化工、环保等领域中常见的设备,用于实现气体混合物中某些组分的吸收。

而吸收塔塔径的计算可是个关键环节,这直接关系到吸收塔的性能和工作效率。

要计算吸收塔的塔径,咱们得先弄清楚几个重要的参数和概念。

首先就是气体的流量,这就好比是一条河流的水流量,流量越大,需要的河道就得越宽。

还有气体的流速,它决定了气体在塔内流动的快慢。

另外,吸收塔的操作条件,比如温度、压力,也会对塔径产生影响。

那具体的计算公式是啥呢?一般来说,吸收塔塔径可以通过下面这个公式来计算:D = √(4Q / πv),这里的 D 就是塔径啦,Q 是气体的体积流量,v 是适宜的空塔气速,π 就是大家熟悉的圆周率。

举个例子吧,就说咱们在一家化工厂,要设计一个用于吸收二氧化硫的吸收塔。

经过前期的工艺计算和分析,已知气体的体积流量是1000 立方米每秒,通过实验和经验数据,确定适宜的空塔气速为 2 米每秒。

那咱们就可以这样来算塔径:先把数字代入公式,D = √(4×1000 / 3.14×2),经过计算,得出塔径大约是 31.8 米。

可别以为这就算完事儿了,实际情况可复杂得多。

比如说,气体的性质也得考虑进去。

如果气体中含有一些容易堵塞或者粘结的成分,那咱们在选择塔径的时候就得留有余地,稍微选大一点,免得后期出现堵塞影响生产。

还有啊,不同的吸收工艺对塔径的要求也不一样。

有的工艺需要气体和吸收液充分接触,那塔径就得适当大一些,以增加接触面积和时间。

在实际操作中,计算塔径还得考虑设备的成本、安装和维护的便利性等因素。

就像我之前参与过的一个项目,最初计算出的塔径从理论上来说是没问题的,但考虑到工厂的场地限制和后续的维护难度,我们不得不重新调整计算参数,经过多次的讨论和修改,最终确定了一个既能满足工艺要求,又能适应实际情况的塔径。

总之,吸收塔塔径的计算可不是个简单的数学问题,它需要综合考虑各种因素,还得结合实际经验,才能得出一个既合理又实用的结果。

吸收塔基础设计计算书

吸收塔基础设计计算书
吸收塔基础设计计算书
1.设计基本参
1 吸收塔高度H=
36.52 m
(提资)
2 3 4
吸收塔直径D= 基本风 压恒:总重量
15.3 m Wo= 0.35 kn/㎡
4.1石灰石浆液重量mL 2796760 KG
4.2吸收塔壳体重量
378655 KG
(提资) 风速2/1600(地勘资料)
(提资) (提资)
构造配筋,满足最小配筋率0.15%,基础上下配筋分别为Ψ25@110(p=0.194%)双层双向,经验算满 足要求。
KN
地震第一组
kN m2 m3 2=173.46Kpa≤fEak 1794)/441.1367=277 双层双向,经验算满
(抗规5.2.1-1)
FEK= [h=
2307.69 kN 11.00
M= 25384.55086 kN.m
2.3烟气产生内压推力
进烟道
F
=
233
kN (提资)
h
=
17.75
m
M
=
4135.8 kN.m
出烟道
F
=
106
kN (提资)
h
=
32.01
m
M
=
3383.5 kN.m
2.4浆液管产生内力
C1(循环泵入口)
各段作1.用04 于壳2顶3.各24
1.15 26.66
1.26 33.43
1.38 40.13
1.53 1.61
Fi=D*5.8*βz*μs*μz *Wo
47.81 53.86
∑= 225.13
[h=
18.26 注:基础高度1.8(基础高1.5+0.3)]

吸收塔的相关设计计算

吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

4吸收塔的计算

4吸收塔的计算
Y1
V K Y a
dY 因次,理解为 Y2 Y Ye 中dY与Y - Ye单位相同,故积分值无 填料层高度相当于气相 总传质单元高度的倍数 ,称为 “气相总传质单元数” ,N OG: N OG dY Y2 Y Y e
Y1
Z HOG NOG
同理: Z H OL NOL
( Y1 Ye 2 ) 1 ln[ 1 S S] 1 S Y2 Ye2
式中:S=mV/L-脱吸因数,是平衡线斜率m与操作线 斜率L/V的比值,无量纲。
N OG
Y1 Ye 2 1 ln 1 S S 1 S Y2 Ye 2
Y Y1 A T
B
Ye f ( X )
X1
X
2.3.2 吸收剂消耗量的计算 1、吸收剂单位消耗量 由全塔物料衡算式
V (Y1 Y2 ) L( X1 X 2 )
得:
L Y1 Y2 V X1 X 2
式中Y1、Y2、X2,一般由工艺要求确定 X1,由吸收剂用量确定,是操作参数 L/V,称为吸收剂单位消耗量或液气比
2.3.4 填料层高度的计算
有传质单元数法和等板高度法。 2.3.4.1 传质单元数法 1.基本计算式
Z
吸收负荷(k mol / s ) 物料衡算 填料层体积 总传质面积 塔截面积 传质速率(k mol / m 2 s ) 吸收速率方程
总传质面积 (m 2 ) 填料层体积 1m 3填料提供的有效传质面 积(m 2 / m 3 )
Z H OG NOG 〖说明〗 ①.传质单元高度 若吸收过程所需填料层高度恰等于一个气相总传质单元 高度时,即:Z=NOG,则: Y1 dY N OG 1 Y2 Y Y e

吸收塔 设计计算

吸收塔 设计计算

吸收塔设计计算吸收塔是工业生产中常用的设备,用于气体洗涤、脱硫、脱硝、除尘等工艺过程。

其设计计算是确保设备正常运行的重要步骤之一。

下文将从吸收塔的应用、结构分类、设计参数以及计算方法等方面探讨吸收塔的设计计算。

一、吸收塔的应用吸收塔是工业生产中常用的设备,广泛应用于化工、石化、钢铁、电力、印刷、制药等领域,用于将气体中的污染物分离除去。

具体应用包括:1、脱硫:吸收塔可用于烟气中的二氧化硫的脱除。

2、脱硝:吸收塔可用于烟气中的氮氧化物的脱除。

3、除尘:吸收塔可用于烟气中的粉尘颗粒的分离除去。

4、洗涤:吸收塔可用于气体中的酸气、碱气的洗涤处理。

二、吸收塔的结构分类根据结构形式可将吸收塔分为以下几种类型:1、板式吸收塔板式吸收塔是一种以板作为填料的吸收塔,分为横流型、纵流型和斜流型。

吸收塔内置有很多平行的垂直板,气体垂直流过板间空隙,与液体进行旋转接触混合,实现气体进液接触吸收的目的。

板式吸收塔简单易制,可耐受高浓度废气,且维护简单。

2、喷雾吸收塔喷雾吸收塔又称喷淋吸收塔,主要由塔体、喷头等组成。

塔体内装有填料液槽和底部雾化器。

气体经过填料液槽,液体被填料吸附,接触后管道中的液体被喷头雾化,形成雾滴与废气充分接触,从而达到吸附效果。

喷雾吸收塔结构简单,投资少,可以广泛应用。

3、吸附塔吸附塔是一种以吸附剂为填充物的吸收塔。

分为干法吸收和湿法吸收。

吸附塔可用于汽车尾气和工业废气的处理。

吸附塔结构简单,吸附盘式塔种类多样,能够高效地处理各类废气污染物。

三、吸收塔的设计参数1、气体流量气体流量是吸收塔的基本参数之一。

气体流量决定了吸收塔的尺寸和填料数量,它是吸收塔设计的起点。

2、液体流量液体流量是衡量吸收塔性能的重要指标之一。

液体流量要求经过塔体和填料液槽时能够喷淋到填料和气体中,从而实现吸收的目的。

3、气体温度气体温度是影响吸收塔工作效果的因素之一。

高温会导致液体蒸发速度减慢,吸收效果不佳,因此需要保持适宜的气体温度。

吸收塔的设计选型和计算

吸收塔的设计选型和计算

吸收塔的设计选型和计算吸收塔是一种常见的化工设备,主要用于气体或液体物质的吸收和分离。

设计选型和计算是吸收塔设计过程中的重要环节,本文将对吸收塔的设计选型和计算进行详细介绍。

一、吸收塔的设计选型吸收塔的设计选型是根据工艺要求和操作条件来确定的。

在进行设计选型时,需要考虑以下几个方面:1. 工艺要求:根据需要吸收的物质性质和组成、吸收效率要求等,确定吸收塔的设计参数。

例如,选择适当的填料材料、塔径、塔高等。

2. 流体性质:吸收塔的设计选型还需要考虑流体的性质,包括流体的流量、温度、压力等。

根据流体性质选择适当的吸收剂和溶质。

3. 塔内流体分布:吸收塔内流体的分布对吸收效果有很大影响。

设计时需要考虑塔顶和塔底的液相和气相分布,以及填料层的布置方式。

4. 塔型选择:吸收塔的塔型有很多种,常见的有板式塔、填料塔、喷淋塔等。

选择适当的塔型可以提高吸收效率和操作性能。

二、吸收塔的计算吸收塔的计算是为了确定塔的尺寸和操作参数,以满足设计要求。

吸收塔的计算主要包括以下几个方面:1. 塔径计算:根据流体的流量和操作要求,计算出吸收塔的塔径。

塔径的大小直接影响到液相和气相的接触效果和传质速率。

2. 塔高计算:根据吸收效率、塔径和填料性能等因素,计算出吸收塔的塔高。

塔高的大小决定了流体在塔内停留的时间,对传质效果有重要影响。

3. 填料计算:选择合适的填料材料,并根据填料的性能参数,计算填料层的高度和填料比表面积。

填料的选择和布置对吸收效果有重要影响。

4. 液相和气相流速计算:根据液相和气相的流量和流速要求,计算出液相和气相的流速。

流速的大小会影响到液相和气相的接触程度和传质速率。

5. 塔内压降计算:根据流体的性质和操作要求,计算出吸收塔的压降。

压降的大小对塔的能耗和操作费用有影响。

吸收塔的设计选型和计算是一项复杂而关键的工作,需要综合考虑多个因素。

合理的设计选型和计算可以提高吸收塔的吸收效率和操作性能,降低能耗和成本。

吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)

吸收解吸塔的详细设计计算(做CO2吸收塔和解吸塔的同学不用愁了)

教研室主任签名: 年 月 日
-1-


课程设计的目的及要求……………………………………………… 1 课程设计方案的介绍………………………………………………… 2 吸收塔的基础数据的计算…………………………………………… 3 吸收塔的工艺计算…………………………………………………… 4 吸收塔的主体设备的设计……………………………………………10 吸收塔辅助设备的计算及选型………………………………………10 解吸塔的基础数据的计算……………………………………………11 解吸塔的工艺计算……………………………………………………12 解吸塔的主体设备的设计……………………………………………17 解吸塔辅助设备计算及选型…………………………………………17 吸收塔与解吸塔设计一览表…………………………………………18 设计评述………………………………………………………………19 参考文献………………………………………………………………20
-1-
1 设计方案的介绍
本设计为填料吸收塔,设计中说明吸收剂为洗油,被吸收的气体是含苯的 煤气,且混合气中含苯的摩尔分数为 0.02.除了吸收塔以外,还需其他的辅助设 备构成完整的吸收-脱吸塔。气液采用逆流流动,吸收剂循环再用,所设计的流 程图如 A3 图纸上的图所示。图中左侧为 吸收部分, 混合气由塔底进入吸收塔,其中混合气中的苯被由塔顶淋下的洗油吸 收后,由塔顶送出(风机在图中未画出来) 。富液从富油贮罐由离心泵(J0102)送 往右侧的脱吸部分。 脱吸常用的方法是溶液升温以减小气体溶质的溶解度。故用 换热器使送去的富油和脱吸的贫油相互换热。 换热而升温的富油进入脱吸塔的顶 部,塔底通入过热蒸汽,将富油中的苯逐出,并带出塔顶,一道进入冷凝器,冷 凝后的水和苯在贮罐(F0102)中出现分层现象,然后将其分别引出。回收后的 苯进一步加工。由塔顶到塔底的洗油的含苯量已脱的很低,从脱吸贮罐(F0103) 用离心泵(J0101)打出,经过换热器、冷凝器再进入吸收塔的顶部做吸收用,完成 一个循环。

吸收塔的计算

吸收塔的计算

m,一般取Hb=1.2~1.5m;
Hb
n——填料层分层数
2020/10/22
【填料塔高度的近似计算】
【说明】由于液体再分布器、喷淋装置、支承装置、捕沫器等的结构不同时其高 度不同,当一时无法准确确定时,也可采用下式近似计算塔高:
H=1.2Z+Hd+Hb
Hd——塔顶空间高(不包括封头部分),m; Hb——塔底空间高(不包括封头部分),m。

G 1000 273 (1-0.09)=37.85(mol / s)
22.4 293
故吸收用水量为: L=35.5G=35.5×37.85=1343(mol/s)=1.343(kmol/s)
2020/10/22
三、吸收塔填料层高度的计算
1、填料塔的高度
【说明】填料塔的高度 主要决定于填料层高度。
(2) HOG愈小,吸收设备的传质阻力愈小,传质效能愈高,完成一定分离任务所 需填料层高度愈小。
2020/10/22
【体积传质系数( KY a )——参数归并法】
(1)有效比表面积(a)与填料的类型、形状、尺寸、填充情况有关,还随流体 物性、流动状况而变化,其数值不易直接测定; (2)通常将a与传质系数(KY)的乘积合并为一个物理量KY a ( 单位kmol/m3·s), 称为体积传质系数,通过实验测定其数值; (3)在低浓度吸收的情况下,体积传质系数在全塔范围内为常数,或可取平均值。
2020/10/22
【解】已知 y1=0.09 η=95%=0.95

Y1
y1 1 y1
0.09 1 0.09
0.099
Y2=(1-η)Y1=(1-0.95)×0.099=0.00495 据 Y*=31.13X 知: m=31.13
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。

逆流式吸收塔的烟气速度一般在 2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。

湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。

(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。

首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。

二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得 6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。

除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速烟气水平布置),通常为二级除雾器。

除雾器设置冲洗水,间歇冲洗冲洗除雾器。

湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。

① 除雾器的选型折流板除雾器 折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝聚并捕集的,气体通过曲折的挡板,流线多次偏转,液滴则由于惯性而撞击在挡板被捕集下来。

通常,折流板除雾器中两板之间的距离为20-30mm ,对于垂直安置,气体平均流速为2-3m/s ;对于水平放置,气体流速一般为6-10m/s 。

气体流速过高会引起二次夹带。

旋流板除雾器 气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内,达到除雾的目的,除雾率可达90%-99%。

喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。

最下层冲洗喷嘴距最上层喷淋层(3-3.5)m ,距离最上层冲洗喷嘴(3.4-32)m 。

② 除雾器的主要设计指标a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。

冲洗覆盖率一般可以选在100 %~300 %之间。

冲洗覆盖率%=%100*22Atg h n απ 式中 n 为喷嘴数量,20个;α为喷射扩散角,90A 为除雾器有效通流面积 ,15 m 2h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m所以 冲洗覆盖率%=%100*22A tg h n απ= 22200.051100%15π⨯⨯⨯=203% b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。

由于除雾器冲洗期间会导致烟气带水量加大。

所以冲洗不宜过于频繁,但也不能间隔太长,否则易产生结垢现象,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。

c.除雾效率。

指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。

影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。

d.系统压力降。

指烟气通过除雾器通道时所产生的压力损失 ,系统压力降越大 ,能耗就越高。

除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。

当除雾器叶片上结垢严重时系统压力降会明显提高 ,所以通过监测压力降的变化有助把握系统的状行状态 ,及时发现问题 ,并进行处理。

e.烟气流速。

通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行 ,烟气流速过高易造成烟气二次带水,从而降低除雾效率,同时流速高系统阻力大,能耗高。

通过除雾器断面的流速过低,不利于气液分离,同样不利于提高除雾效率。

设计烟气流速应接近于临界流速。

根据不同除雾器叶片结构及布置形式,设计流速一般选定在3.5~5.5m/ s 之间。

本方案的烟气设计流速为6.9m/s 。

f.除雾器叶片间距。

除雾器叶片间距的选取对保证除雾效率 ,维持除雾系统稳定运行至关重要。

叶片间距大 ,除雾效率低 ,烟气带水严重 ,易造成风机故障 ,导致整个系统非正常停运。

叶片间距选取过小,除加大能耗外 ,冲洗的效果也有所下降 ,叶片上易结垢、堵塞 ,最终也会造成系统停运。

叶片间距一般设计在 20~95mm。

目前脱硫系统中最常用的除雾器叶片间距大多在30~50mm。

g.除雾器冲洗水压。

除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器之间的距离等因素确定,喷嘴与除雾器之间距离一般小于1m ,冲洗水压低时,冲洗效果差,冲洗水压过高则易增加烟气带水,同时降低叶片使用寿命。

h.除雾器冲洗水量。

选择除雾器冲水量除了需满足除雾器自身的要求外,还需考虑系统水平衡的要求,有些条件下需采用大水量短时间冲洗,有时则采用小水量长时间冲洗,具体冲水量需由工况条件确定,一般情况下除雾器断面上瞬时冲洗耗水量约为1-4m3/m2.h③除雾器的最终设计参数本设计中设定最下层冲洗喷嘴距最上层喷淋层3m。

距离最上层冲洗喷嘴3.5m。

1)数量:1套× 1units=套2)类型:V型级数:2级3)作用:除去吸收塔出口烟气中的水滴,以便减少烟囱出烟口灰尘量。

4)选材:外壳:碳钢内衬玻璃鳞片;除雾元件:阻燃聚丙烯材料(PP);冲洗管道:FRP;冲洗喷嘴:PP。

表4 除雾器进出口烟气条件基于锅炉100%BMCR工况进行设计除雾器进口除雾器出口烟气量----------- ------------温度℃50 ------------烟气压力mmAq 113(1.11kPaG) 93(0.91kPaG)雾滴含量mg/m3N(D) ------------ ≤755)雾滴去除率:99.75% 为达到除雾器出口烟气雾滴含量小于75mg/Nm3(干态),除雾器的雾滴去除率需要达到99.75% 以上。

6)除雾器内烟气流速:6.9m/sa.重散布速度大直径的雾滴颗粒可以通过除雾器元件惯性作用产生颗粒间碰撞从而去除雾滴。

(平均颗粒直径大小为100~200μm)。

因此,烟气流速越高,雾滴去除率越高。

但是,被去除的雾滴会重新散布,而降低雾滴去除效率。

这就是雾滴重散布速度的概念。

b.通过除雾器的烟气流速为了使除雾器的雾滴去除率达到99.75% 以上,根据吸收塔出口端(即除雾器入口端)雾滴颗粒直径的实际分布状况,直径大于17μm的雾滴颗粒必须100%完全去除。

综上所述,除雾区的最终高度确定为3.5m ,即h 3=3.5m(5) 喷淋塔浆液池高度设计(设高度为h 2)浆液池容量V 1按照液气比L/G 和浆液停留时间来确定,计算式子如下: 11N L V V t G=⨯⨯ 其中 L/G 为 液气比,12.2L/m 3V N 为烟气标准状态湿态容积,V N =V g =39.40m 3/sT 1=2-6 min [8],取t 1=2.8min=168s由上式可得喷淋塔浆液池体积V !=(L/G) ×V N ×t !=12.20×39.40×168=80.02 m 3选取浆液池内径等于吸收区内径,内径D 2= D i =3.8m而V 1=0.25×3.14×D 2×D 2×h 2=0.25×3.14×3.8×3.8×h 2所以 h 2=7.06m(6) 喷淋塔烟气进口高度设计(设高度为h 4)根据工艺要求,进出口流速(一般为12m/s-30m/s )确定进出口面积,一般希望进气在塔内能够分布均匀,且烟道呈正方形,故高度尺寸取得较小,但宽度不宜过大,否则影响稳定性.因此取进口烟气流速为20m/s ,而烟气流量为36.30 m 3/s ,可得 s m s m m h /30.36/253224=⨯ 所以 h 4=1.20m2×1.20=2.40m(包括进口烟气和净化烟气进出口烟道高度)综上所述,喷淋塔的总高(设为H,单位m )等于喷淋塔的浆液池高度h 2 (单位m)、喷淋塔吸收区高度h (单位m)和喷淋塔的除雾区高度h 3(单位m )相加起来的数值。

此外,还要将喷淋塔烟气进口高度h 4(单位m )计算在内 因此喷淋塔最终的高度为H= h+h 2+h 3+ h 4=18.47+7.06+3.50+2.40=31.43m 取圆整值32m4.1.1.2 喷淋塔的直径设计根据锅炉排放的烟气,计算运行工况下的塔内烟气体积流量,此时要考虑以下几种引起烟气体体积流量变化的情况:塔内操作温度低于进口烟气温度,烟气容积变小;浆液在塔内蒸发水分以及塔下部送入空气的剩余氮气使得烟气体积流量增大。

相关文档
最新文档