MATLAB数学实验A

合集下载

Matlab数学实验

Matlab数学实验

一、求下列方程的根1、5510x x ++=7、42254x dx x+⎰8.0sin 2x e xdx +∞-⎰二、综合题1.求由参数方程arctan x y t⎧⎪=⎨=⎪⎩dy dx 与二阶导数22d y dx 。

2.设函数y =f (x )由方程xy +e y = e 所确定,求y ′(x )。

3. 08x =展开(最高次幂为)4.求变上限函数x x ⎰对变量x 的导数。

5.求点(1,1,4)到直线L :31102x y z --==- 的距离 6、求矩阵211020413A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭的逆矩阵1A - 及特征值和特征向量。

7、求二重极限1y x y →→《Matlab 数学实验》一、求下列方程的根1、5510x x ++=a=solve('x^5+5*x+1',0);a=vpa(a,6)a =1.10447+1.05983*i-1.00450+1.06095*i-.199936-1.00450-1.06095*i1.10447-1.05983*i7、42254x dx x+⎰ >> sym x;>> int(x^4/(25+x^2),x)ans =125*atan(x/5) - 25*x + x^3/38.0sin 2x e xdx +∞-⎰>> syms x;>> y=exp(-x)*sin(2*x);>> int(y,0,inf)ans =2/5二、综合题1求由参数方程arctan x y t ⎧⎪=⎨=⎪⎩dy dx 与二阶导数22d y dx 。

>> syms t>> x=log(sqrt(1+t^2));y=atan(t);>> diff(y,t)/diff(x,t)ans =1/t2.设函数y =f (x )由方程xy +e y = e 所确定,求y ′(x )。

matlab数学实验

matlab数学实验

《管理数学实验》实验报告班级姓名实验1:MATLAB的数值运算【实验目的】(1)掌握MATLAB变量的使用(2)掌握MATLAB数组的创建,(3)掌握MA TLAB数组和矩阵的运算。

(4)熟悉MATLAB多项式的运用【实验原理】矩阵运算和数组运算在MA TLAB中属于两种不同类型的运算,数组的运算是从数组元素出发,针对每个元素进行运算,矩阵的运算是从矩阵的整体出发,依照线性代数的运算规则进行。

【实验步骤】(1)使用冒号生成法和定数线性采样法生成一维数组。

(2)使用MA TLAB提供的库函数reshape,将一维数组转换为二维和三维数组。

(3)使用逐个元素输入法生成给定变量,并对变量进行指定的算术运算、关系运算、逻辑运算。

(4)使用MA TLAB绘制指定函数的曲线图,将所有输入的指令保存为M文件。

【实验内容】(1)在[0,2*pi]上产生50个等距采样数据的一维数组,用两种不同的指令实现。

0:(2*pi-0)/(50-1):2*pi 或linspace(0,2*pi,50)(2)将一维数组A=1:18,转换为2×9数组和2×3×3数组。

reshape(A,2,9)ans =Columns 1 through 71 3 5 7 9 11 132 4 6 8 10 12 14Columns 8 through 915 1716 18reshape(A,2,3,3)ans(:,:,1) =1 3 52 4 6ans(:,:,2) =7 9 118 10 12 ans(:,:,3) =13 15 17 14 16 18(3)A=[0 2 3 4 ;1 3 5 0],B=[1 0 5 3;1 5 0 5],计算数组A 、B 乘积,计算A&B,A|B,~A,A= =B,A>B 。

A.*Bans=0 0 15 121 15 0 0 A&Bans =0 0 1 11 1 0 0 A|Bans =1 1 1 11 1 1 1~Aans =1 0 0 00 0 0 1A==Bans =0 0 0 01 0 0 0A>=Bans =0 1 0 11 0 1 0(4)绘制y= 0.53t e -t*t*sin(t),t=[0,pi]并标注峰值和峰值时间,添加标题y= 0.53t e -t*t*sint ,将所有输入的指令保存为M 文件。

高等数学:MATLAB实验

高等数学:MATLAB实验
以上两种格式中的x、y都可以是表达式.plot是绘制二维 曲线的基本函数,但在使用 此函数之前,需先定义曲线上每一 点的x及y的坐标.
MATLAB实验
2.fplot绘图命令 fplot绘图命令专门用于绘制一元函数曲线,格式为:
fplot('fun',[a,b]) 用于绘制区间[a,b]上的函数y=fun的图像.
MATLAB实验 【实验内容】
MATLAB实验
由此可知,函数在点x=3处的二阶导数为6,所以f(3)=3为 极小值;函数在点x= 1处的二阶导数为-6,所以f(1)=7为极大值.
MATLAB实验
例12-10 假设某种商品的需求量q 是单价p(单位:元)的函 数q=12000-80p,商 品的总成本C 是需求量q 的函数 C=25000+50q.每单位商品需要纳税2元,试求使销售 利润达 到最大的商品单价和最大利润额.
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验 实验九 用 MATLAB求解二重积分
【实验目的】 熟悉LAB中的int命令,会用int命令求解简单的二重积分.
MATLAB实验
【实验M步A骤T】 由于二重积分可以化成二次积分来进行计算,因此只要
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
MATLAB实验
实验七 应用 MATLAB绘制三维曲线图
【实验目的】 (1)熟悉 MATLAB软件的绘图功能; (2)熟悉常见空间曲线的作图方法.
【实验要求】 (1)掌握 MATLAB中绘图命令plot3和 mesh的使用; (2)会用plot3和 mesh函数绘制出某区间的三维曲线,线型

MATLAB数学实验

MATLAB数学实验

实验三 圆周率的计算学号: 姓名:XX一、 实验目的1. 本实验涉及概率论、定积分、三角函数等有关知识,要求掌握计算π的三种方法及其原理。

2. 学习和掌握数学软件MATLAB 的使用方法。

二、 实验内容圆周率是一个极其驰名的数。

从有文字记载的历史开始,这个数就引起了外行人和学者们的兴趣。

作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。

仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。

事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代又一代数学家为此献出了自己的智慧和劳动。

回顾历史,人们对π的认识过程,反映了数学和计算技术发展情形的一个侧面。

π的研究,在一定程度上反映这个地区或时代的数学水平。

德国数学家康托说:“历史上一个国家所算的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。

”直到19世纪初,求圆周率的值还是数学中的头号难题。

1. 圆周率的计算方法古人计算圆周率,一般是用割圆法。

即用圆的内接或外切多边形来逼近圆的周长。

Archomedes 用正96边形得到35位精度;刘徽用正3072边形得到5位精度;Ludolph V an Ceulen 用正2^62边形得到了35位精度。

这种基于几何的算法计算量大,速度慢,吃力不讨好。

随着数学的发展,数学家们在进行数学研究时有意无意得发现了许多计算圆周率的公式。

下面挑选一些经典的常用公式加以介绍。

除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。

1) Machin 公式2391a r c t a n451a r c t a n 16-=π ()121...753arctan 121753--++-+-=--n x x x x x x n n 这个公式由英国天文学教授John Machin 于1706年发现。

他利用这个公式计算到100位的圆周率。

Machin 公式每计算一项可以得到1.4位的十进制精度。

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)

MATLAB数学实验答案(全)第⼀次练习教学要求:熟练掌握Matlab 软件的基本命令和操作,会作⼆维、三维⼏何图形,能够⽤Matlab 软件解决微积分、线性代数与解析⼏何中的计算问题。

补充命令vpa(x,n) 显⽰x 的n 位有效数字,教材102页fplot(‘f(x)’,[a,b]) 函数作图命令,画出f(x)在区间[a,b]上的图形在下⾯的题⽬中m 为你的学号的后3位(1-9班)或4位(10班以上) 1.1 计算30sin limx mx mx x →-与3sin lim x mx mxx →∞-syms xlimit((902*x-sin(902*x))/x^3) ans =366935404/3limit((902*x-sin(902*x))/x^3,inf)//inf 的意思 ans = 0 1.2 cos1000xmxy e =,求''y syms xdiff(exp(x)*cos(902*x/1000),2)//diff 及其后的2的意思 ans =(46599*cos((451*x)/500)*exp(x))/250000 - (451*sin((451*x)/500)*exp(x))/250 1.3 计算221100x y edxdy +??dblquad(@(x,y) exp(x.^2+y.^2),0,1,0,1)//双重积分 ans = 2.13941.4 计算4224x dx m x +? syms xint(x^4/(902^2+4*x^2))//不定积分 ans =(91733851*atan(x/451))/4 - (203401*x)/4 + x^3/12 1.5 (10)cos ,x y e mx y =求//⾼阶导数syms xdiff(exp(x)*cos(902*x),10) ans =-356485076957717053044344387763*cos(902*x)*exp(x)-3952323024277642494822005884*sin(902*x)*exp(x)1.6 0x =的泰勒展式(最⾼次幂为4).syms xtaylor(sqrt(902/1000+x),5,x)//泰勒展式 ans =-(9765625*451^(1/2)*500^(1/2)*x^4)/82743933602 +(15625*451^(1/2)*500^(1/2)*x^3)/91733851-(125*451^(1/2)*500^(1/2)*x^2)/406802 + (451^(1/2)*500^(1/2)*x)/902 +(451^(1/2)*500^(1/2))/500 1.7 Fibonacci 数列{}n x 的定义是121,1x x ==12,(3,4,)n n n x x x n --=+=⽤循环语句编程给出该数列的前20项(要求将结果⽤向量的形式给出)。

数学软件MATLAB实验报告 实验一

数学软件MATLAB实验报告 实验一

实验一:了解数学软件MATLAB实验目的与要求:了解MATLAB的基本特点,掌握MATLAB界面上的主要窗口,熟练掌握MATLAB的帮助系统。

实验内容:1启动按钮打开MATLAB主界面以后,单击“Start”按钮,显示一个菜单,利用“START”菜单机器子菜单中的选项,打开MATLAB的有关工具。

2命令窗口命令窗口(Command Window)是用于输入数据,运行MA TLAB函数和脚本并显示结果的主要工具之一。

命令窗口没有打开时,从“Desktop”菜单中选择“Command Window”选项可以打开它。

在命令窗口中键入命令并执行:a=[123;456;789]在上述语句末尾加分号“;”,结果是什么?请与不加分号的情况作比较。

功能。

命令历史窗口(command history)显示命令窗口中最近输入的所有语句。

先关闭历史窗口,再分别用“Desktop”菜单打开它和用command history命令打开它。

(1)将命令历史窗口中的语句复制到命令窗口中;(2)直接双击命令历史窗口中的语句。

4工作空间窗口清空工作空间的命令是:clear清空命令窗口的命令是:clc在命令窗口中键入:t=0:pi/4:2*piy=sin(t)在命令窗口中键入:who,看运行结果;在命令窗口中键入:whos,看运行结果;在命令窗口中键入:whos y,看运行结果。

退出MATLAB时,工作空间中的内容随之清除。

可以将当前空间中的部分或全部变量保存到一个MA T文件中,它是一个二进制文件,扩展名为.mat。

然后可以在以后使用它时载入它,请练习这一操作过程。

5帮助浏览器使用帮助浏览器可以搜索和查询所有Math Works产品的文档和演示。

帮助浏览器是集成到MA TLAB桌面的一个HTML查看器。

请打开帮助浏览器,熟悉它。

分别用Help函数和doc函数获取format函数的帮助,进而说明format函数的功能。

(完整word版)Matlab数学实验报告

Matlab 数学实验报告一、实验目的通过以下四组实验,熟悉MATLAB的编程技巧,学会运用MATLAB的一些主要功能、命令,通过建立数学模型解决理论或实际问题。

了解诸如分岔、混沌等概念、学会建立Malthu模型和Logistic 模型、懂得最小二乘法、线性规划等基本思想。

二、实验内容2.1实验题目一2.1.1实验问题Feigenbaum曾对超越函数y=λsin(πx)(λ为非负实数)进行了分岔与混沌的研究,试进行迭代格式x k+1=λsin(πx k),做出相应的Feigenbaum图2.1.2程序设计clear;clf;axis([0,4,0,4]);hold onfor r=0:0.3:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.5)for i=101:150plot(r,x(i),'k.');endtext(r-0.1,max(x(101:150))+0.05,['\it{r}=',num2str(r)]) end加密迭代后clear;clf;axis([0,4,0,4]);hold onfor r=0:0.005:3.9x=[0.1];for i=2:150x(i)=r*sin(3.14*x(i-1));endpause(0.1)for i=101:150plot(r,x(i),'k.');endend运行后得到Feigenbaum图2.2实验题目二2.2.1实验问题某农夫有一个半径10米的圆形牛栏,长满了草。

他要将一头牛拴在牛栏边界的桩栏上,但只让牛吃到一半草,问拴牛鼻子的绳子应为多长?2.2.2问题分析如图所示,E为圆ABD的圆心,AB为拴牛的绳子,圆ABD为草场,区域ABCD为牛能到达的区域。

问题要求区域ABCD等于圆ABC的一半,可以设BC等于x,只要求出∠a和∠b就能求出所求面积。

MATLAB数学实验第二版课后练习题含答案

MATLAB数学实验第二版课后练习题含答案课后练习题MATLAB数学实验第二版的课后练习题如下:第一章课后练习题1.编写MATLAB程序,计算并输出下列公式的结果:y = \\frac{1}{\\sqrt{2\\pi\\sigma^2}} e^{-\\frac{(x-\\mu)^2}{2\\sigma^2}}其中,x, $\\mu$, $\\sigma$ 分别由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');mu=input('请输入 mu 的值:');sigma=input('请输入 sigma 的值:');y=1/sqrt(2*pi*sigma^2) *exp(-(x-mu)^2/ (2*sigma^2));fprintf('y = %.2f\', y);2.编写MATLAB程序,求解下列方程的解:4x + y = 11\\\\x + 2y = 7答案如下:A= [4,1;1,2];B= [11;7];X=inv(A) *B;fprintf('x = %.2f, y = %.2f\', X(1), X(2));第二章课后练习题1.编写MATLAB程序,计算下列多项式的值:P(x) = x^4 - 2x^3 + 3x^2 - x + 1其中,x 由用户输入。

要求输出结果精确至小数点后两位。

答案如下:x=input('请输入 x 的值:');y=x^4-2*x^3+3*x^2-x+1;fprintf('P(%.2f) = %.2f\', x, y);2.编写MATLAB程序,绘制下列函数的图像:f(x) = \\begin{cases} x + 1, & x < 0 \\\\ x^2, & 0 \\leq x < 1 \\\\ 2x - 1, & x \\geq 1 \\end{cases}答案如下:x=-2:0.01:2;y1=x+1;y2=x.^2.* ((x>=0) & (x<1));y3=2*x-1;plot(x,y1,x,y2,x,y3);legend('y1 = x + 1','y2 = x^2','y3 = 2x - 1');总结本文提供了《MATLAB数学实验第二版》的部分课后练习题及其答案。

MATLAB数学实验100例题解

一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧。

初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势。

解:程序代码:>〉 x=linspace (0,2*pi,600); t=sin (x)。

/(cos (x )+eps );plot(x ,t);title (’tan (x )');axis ([0,2*pi ,-50,50]); 图象:程序代码: 〉〉 x=linspace (0,2*pi,100); ct=cos (x)。

/(sin(x)+eps ); plot(x,ct );title(’cot(x)');axis ([0,2*pi ,—50,50]); 图象:cot(x)4在区间]1,1[-画出函数xy 1sin =的图形。

解:程序代码:>> x=linspace (-1,1,10000);y=sin(1。

/x ); plot (x,y ); axis ([-1,1,—2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>〉 t=linspace(0,2*pi,100); plot(cos(t ).*cos (5*t ),sin(t )。

*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:〉〉 t=0:0.01:2*pi ; r=exp (t/10);polar(log(t+eps ),log (r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形。

matlab数学实验报告

MATLAB数学实验报告指导老师:班级:小组成员:时间:201_/_/_Matlab第二次实验报告小组成员:1题目:实验四;MATLAB选择结构与应用实验目的:掌握if选择结构与程序流程控制;重点掌握break;return;pause语句的应用..问题:问题1:验证“哥德巴赫猜想”;即:任何一个正偶数n>=6均可表示为两个质数的和..要求编制一个函数程序;输入一个正偶数;返回两个质数的和..问题分析:由用户输入一个大于6的偶数;由input语句实现..由if判断语句判断是否输入的数据符合条件..再引用质数判断函数来找出两个质数;再向屏幕输出两个质数即可..编程:function z1;z2=geden;n=input'please input n'if n<6disp'data error';returnendif modn;2==0for i=2:n/2k=0;for j=2:sqrtiif modi;j==0k=k+1;endendfor j=2:sqrtn-iif modn-i;j==0k=k+1;endendif k==0fprintf'two numbers are'fprintf'%.0f;%.0f';i;n-ibreakendendend结果分析:如上图;用户输入了大于6的偶数返回两个质数5和31;通过不断试验;即可验证哥德巴赫猜想..纪录:if判断语句与for循环语句联合嵌套使用可使程序结构更加明晰;更快的解决问题..2题目:实验四;MATLAB选择结构与应用实验目的:用matlab联系生活实际;解决一些生活中常见的实际问题..问题:问题四:在一边长为1的四个顶点上各站有一个人;他们同时开始以等速顺时针沿跑道追逐下一人;在追击过程中;每个人时刻对准目标;试模拟追击路线;并讨论.. (1)四个人能否追到一起(2)若能追到一起;每个人跑过多少路程(3)追到一起所需要的时间设速率为1问题分析:由正方形的几何对称性和四个人运动的对称性可知;只需研究2个人的运动即可解决此问题..编程:hold onaxis0 1 0 1;a=0;0;b=0;1;k=0;dt=0.001;v=1;while k<10000d=norma-b;k=k+1;plota1;a2;'r.';'markersize';15;plotb1;b2;'b.';'markersize';15;fprintf'k=%.0f b%.3f;%.3f a%.3f;%.3f d=%.3f\n';k;b1;b2;a1;a2;da=a+b1-a1/d*dt;b2-a2/d*dt;b=b+b2-a2/d*dt;-b1-a1/d*dt;if d<=0.001breakendendfprintf'每个人所走的路程为:%.3f';k*v*dtfprintf'追到一起所需要的时间为%.3f';k*dt结果分析:上图为2人的模拟运动路线;有对称性可解决所提问题..-上图为运算过程和运算结果..四个人可以追到一起;走过的路程为1.003;时间也为1.003.纪录:此题利用正方形和运动的对称性可以简便运算..3题目:实验八;河流流量估计与数据插值目的:由一些测量数据经过计算处理;解决一些生活实际问题..问题:实验八上机练习题第三题:瑞士地图如图所示;为了算出他的国土面积;做以下测量;由西向东为x轴;由南向北为y轴;从西边界点到东边界点划分为若干区域;测出每个分点的南北边界点y1和y2;得到以下数据mm..已知比例尺1:2222;计算瑞士国土面积;精确值为41288平方公里..测量数据如下:x=7.0 10.5 13.0 17.5 34 40.5 44.5 48 56 61 68.5 76.5 80.5 91 96 101 104 106 111.5 118 123.5 136.5 142 146 150 157 158 ;y1=44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68;y2=44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86 85 68;问题分析:先由题目给定的数据作出瑞士地图的草图;再根据梯形法;使用trapz语句;来估算瑞士国土的面积..编程:x=7.0 10.5 13.0 17.5 34 40.5 44.5 48 56 61 68.5 76.5 80.5 91 96 101 104 106 111.5 118 123.5 136.5 142 146 150 157 158;y1=44 45 47 50 50 38 30 30 34 36 34 41 45 46 43 37 33 28 32 65 55 54 52 50 66 66 68;y2=44 59 70 72 93 100 110 110 110 117 118 116 118 118 121 124 121 121 121 122 116 83 81 82 86 85 68;plotx;y1;'r.';'markersize';15;plotx;y2;'r.';'markersize';15;axis0 160 0 135grid;hold ont=7:158;u1=splinex;y1;t;u2=splinex;y2;t;plott;u1plott;u2s1=trapzt;u1;s2=trapzt;u2;s=s2-s1*2222*22222/10000000;fprintf'S=%.0f';s结果分析:上图为由所给数据绘制出的瑞士地图..上图为运算结果;计算出瑞士的国土面积为42472平方公里;与准确值41288较为接近..纪录:使用梯形分割的方法;trapz语句可以方便计算不规则图形面积;但存在一定误差..4题目:实验七:圆周率的计算与数值积分目的:将数值积分最基本的原理应用于matlab之中;解决一些与积分有关的问题..问题:实验七上机练习题第一题:排洪量某河床的横断面如图7.3所示;为了计算最大排洪量;需要计算其断面积;试根据所给数据m用梯形法计算其断面积..问题分析:河床断面可近似分割成若干曲边梯形;近似处理把它们当做梯形来计算面积可使问题得到简化..编程:clc;clear;x=0 4 10 12 15 22 28 34 40;y=0 1 3 6 8 9 5 3 0;y1=10-y;plotx;y1;'k.';'markersize';15;axis0 40 0 10;grid;hold ont=0:40;u=splinex;y1;t;plott;u;s=40*10-trapzt;u;fprintf's=%.2f\n';s结果分析:上图为河床的断面图..上图为计算结果面积约为180.70平方米..纪录:使用梯形法计算不规则图形面积十分简便易行..5题目:实验七:圆周率的计算与数值积分目的:使用matlab计算解决一些有关积分的问题..问题:实验七上机练习题第三题:从地面发射一枚火箭;在最初100秒内记录其加速度如下;试求火箭在100秒时的速度..Ts=0 10 20 30 40 50 60 70 80 90 100;Am/s*s=30.00 31.63 33.44 35.47 37.75 40.33 43.29 46.69 50.67 54.01 57.23;问题分析:加速度为速度的微分;已知微分求积分;类似于面积问题;可使用梯形法来计算..编程:clc;clear;x=0 10 20 30 40 50 60 70 80 90 100;y=30.00 31.63 33.44 35.47 37.75 40.33 43.29 46.69 50.6754.01 57.23;plotx;y;'k.';'markersize';15;axis0 100 20 60;grid;hold ons=0:10:100;z=splinex;y;s;plots;y;v=trapzx;y;fprintf'v=%.2f\n';v结果分析:上图为加速度变化图..上图为计算结果;求得火箭在100秒时速度约为4168.95m/s..纪录:梯形法可以推广解决许多已知微分求积分的其他问题..6题目:实验七:圆周率的计算与数值积分目的:计算曲线弧长闭曲线周长可使用微元法;ds=sqrtdx^2+dy^2;在转化微积分问题;累加即可得到结果..问题:实验七上机练习题第三题:计算椭圆想x^2/4+y^2=1的周长;使结果具有五位有效数字..问题分析:编程:s=0;dx=0.001;for x=0:0.001:1.999dy=1.-x+0.001.^2/4-1.-x.^2/4;ds=sqrtdx.^2+dy.^2;s=s+ds;ends=4*s;fprintf'the length is'fprintf'%.4f';s结果分析:上图为计算结果;给定椭圆的周长约为9.1823五位有效数字纪录:计算不规则曲线弧长;可使用微元法;划分为若干小的看做直角三角形;利用勾股定理解决..7题目:实验九人口预测与数据拟合目的:掌握一些曲线拟合的方法;了解曲线拟合常用函数..问题:用电压U=10v的电池给电容器充电;t时刻的电压Vt=U-U-V0exp-t/τ;其中V0是电容器的初始电压;τ是充电常数;由所给数据确定V0和τ..t=0.5 1 2 3 4 5 7 9;V=3.64 3.52 2.74 1.78 1.34 1.01 0.57 0.37;问题分析:题中已给出函数关系式;为指数函数曲线拟合;将所给函数式整理可得标准的exp形函数曲线;从而便于解决..编程:t=0.5 1 2 3 4 5 7 9;V=3.64 3.52 2.74 1.78 1.34 1.01 0.57 0.37;plott;V;'k.';'markersize';20;axis0 10 0 4;grid;hold onpause0.5n=8;a=sumt1:n;b=sumt1:n.*t1:n;c=sumlogV1:n;d=sumt1:n.*logV1:n;A=n a;a b;B=c;d;p=invA*Bx=0:10;y=expp1+p2*x;plotx;y;'r-';'linewidth';2结果分析:上图为电压与时间关系图..上图为计算结果;即U-V0=1.4766;所以V0=8.5234;-1/τ=-0.2835;所以τ=3.5273纪录:曲线拟合的一个重难点是选择合适的曲线函数;才能提高拟合度..8题目:实验七圆周率的计算与数值积分目的:拓展圆周率的各种计算方法;掌握其他数值的近似计算方法..问题:实验七练习2:计算ln2的近似值精确到10的-5次方(1)利用级数展开的方法来计算(2)利用梯形法计算(3)利用抛物线法问题分析:级数展开;梯形法;抛物线法是常见的近似运算方法..编程:1级数展开的方法clc;clear;n=0;r=1;p=0;k=-1;while r>=0.1e-5n=n+1;k=k*-1;p1=p+k/n;r=absp1-p;fprintf'n=%.0f;p=%.10f\n';n;p1;p=p1;end2梯形法clc;clear;f=inline'1./x';x=1:0.1:2;y=fx;p=trapzx;y;fprintf'p=%.6f\n';p3抛物线法clc;clear;f=inline'1./x';a=1;b=2;n=1;z=quadf;a;b;fprintf'z=%.10f\n';z结果分析:(1)级数展开的方法(2)梯形法3抛物线法纪录:级数展开法;梯形法;抛物线法;计算近似值时应合理利用..梯形法和抛物线法不易提高精确度;级数展开法可以提高精确度..9题目:实验八河流流量估计与数据插值目的:掌握求插值多项式的方法;并利用此计算近似值..问题:已知y=fx的函数表如下x=0.40 0.55 0.65 0.80 0.90 1.05;y=0.41075 0.57815 0.69675 0.88811 1.02652 1.25382;求四次拉格朗日插值多项式;并由此求f0.596问题分析:利用所给函数表可计算拉格朗日插值多项式..编程:function p=lagrangex;yL=lengthx;a=onesL;for j=2:La:;j=a:;j-1.*x';endx=inva*y';for i=1:Lpi=xL-i+1;endx=0.40 0.55 0.65 0.80 0.90 1.05;y=0.41075 0.57815 0.69675 0.88811 1.02652 1.25382; plotx;y;'k.';'markersize';15axis0 2 0 2grid;hold on;p=lagrangex;y;t=0:0.1:1.5;u=polyvalp;t;plott;u;'r-'a=polyvalp;0.596结果分析:上图为所求结果;估算值和插值多项式..纪录:插值多项式是一项十分实用的方法..10题目:求正整数n的阶乘:p=1*2*3*…*n=n;并求出n=20时的结果目的:练习使用循环变量解决数学问题问题:对程序:Clear;clc;n=20;p=1;for i=1:np=p*i;fprintf’i=%.0f;p=%.0f\n’;i;pend进行修改使它:利用input命令对n惊醒赋值问题分析:题中给出程序中“n=20”修改;使用input命令;讲题中的输出命令放出循环之外..编程:clear;clc;n=input'n=';p=1;for i=1:np=p*i;endfprintf'i=%.0f;p=%.0f\n';i;p结果:n=20i=20;p=2432902008176640000>>结果分析:使用input命令可以实现人机对话;使用户自由赋值;输出语句在程序中的位置对输出的结果有很大的影响;在循环内部可以在计算过城中不断输出结果;在循环之外则可以控制只输出最后结果..11题目:对于数列{√2};n=1;2;…;求当其前n项和不超过1000时的n的值及合的大小..目的:运用条件循环解决文帝个项数的循环程序求解;问题:对程序:clear;clc;n=0;s=0;while s<=1000n=n+1;s=s+sqrtn;fprintf’n=%.0f;s=%.4f\n’;n;send问题分析:题中所给程序中的限制变量为上次循环之后的s;导致s超过上限后仍有一次的循环;若把循环变量改为这次的s;则可以避免这种情况的发生..编程:clear;clc;n=0;s=0;while s+sqrtn<=1000n=n+1;s=s+sqrtnfprintf'n=%.0f;s=%.4f\n';n;send结果:……s =970.8891n=128;s=970.8891s =982.2469n=129;s=982.2469s =993.6487n=130;s=993.6487>>结果分析:从结果中可以看出;最后一步为我们需要的答案;从这道题我们可以得出循环变量对一道编程的重要性..。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

clc;
a=1;b=1;
ezplot(sprintf('x^2/%f-y^2/%f',a^2,b^2));
hold on;
ezplot(sprintf('x^2/%f-y^2/%f-1',a^2,b^2));
ezsurf('sin(a)*cos(b)','sin(a)*sin(b)','cos(a)',[0,pi,0,2*pi],60); hold on;
ezsurf('x^2+y^2',[-1,1,-1,1],60);
clear all;
x=-8:0.1:8;
y=-8:0.1:8;
[X,Y]=meshgrid(x,y);
Z=sin(sqrt(X.^2+Y.^2))./sqrt(X.^2+Y.^2+2); [X,Y,Z]=peaks(50);
surf(X,Y,Z)
syms x y;
y=2*x^3-6*x^2-18*x+7; solve(diff(y,x),x)
x=-1;eval(y)
x=3;eval(y)
syms x y;
z='x*y';
dblquad(z,1,4,-1,2)
结果
ans =
11.2500
求函数1+x -exp(2*x)+5的原函数clear all
syms x C;
f=int(1+x -exp(2*x)+5,'x')+C
syms x y;
>> x=0:0.01:1;
>> y=sin(sin(x));
>> trapz(x,y)
x=0:0.05:1;
y=[1.97687 2.17002 2.34158 2.46389 2.71512 3.06045 3.27829 3.51992 3.8215 4.2435 4.55188 4.88753 5.15594 5.698 6.04606 6.42701 7.00342 7.50192 7.89178 8.49315 9.0938]
cftool
解常微分方程y’=-0.9y/(1+2x)的数值解y(0)=1
从0 到0. 1 的数值解,取步长0.02
clear all
x1=0;
x2=0.1;
h=0.02;
y(1,1)=1;
for i=1:(x2-x1)/h
y(i+1,1)=y(i,1)-0.9*h*y(i,1)/(1+2*0.02*(i-1)); end
clear
>> s=0;
>> n=1000000;
>> digits(22);
>> for k=1:n
s=s+(-1)^(k-1)/(2*k-1);
end
>> s=vpa(4*s,20)
clear all
P=((1/16)^0)*((4/(8*0+1))-(2/(8*0+4))-(1/(8*0+5))-(1/(8*0+6))); for n=1:5
P=P+((1/16)^n)*((4/(8*n+1))-(2/(8*n+4))-(1/(8*n+5))-(1/(8*n+6))); end
vpa(P,20)
absolute=abs(P-pi)
结果
ans =
3.1415926532280877836
absolute =
3.6171e-010
判断n^2+n+41所求是否有素数
clear all
n=0:100;
V=power(n,2)+n+41
P=isprime(V')
明显可以给出素数
判断在10000之内,由n^2+n+41算得的素数有多少clear all
n=0:100;
V=power(n,2)+n+41
P=isprime(V')
j=0;
for i=1:101
if(V(1,i)<=10000)
if (P(i,1)==1)
j=j+1;
else
j=j;
end
end
end
j
结果为86
判断在10000之内,由n^2-79*n+1601算得的素数有多少clear all
n=0:100;
V=power(n,2)-79*n+1601;
P=isprime(V');
j=0;
for i=1:101
if(V(1,i)<=10000)
if (P(i,1)==1)
j=j+1;
else
j=j;
end
end
end
j
结果为96
判断在10000之内,由6*n^2+6*n+31算得的素数有多少m文件:
function[d] =sushu(n)
d=0;
for i=0:n
a=0;
b=6*i.^2+6*i+31;
for c=2:b-1
if mod(b,c)==0
a=a+1;
end
end
if(a==0)
d=d+1; end
end
主程序:
>> d=sushu(100)
d =
76
简单迭代法:
a 的m 次方根m a 的迭代格式为:])1[(1111---+-=m n n n a a a m m a 程序:
m 文件:
function[b]=diedai(a,c) b=10;
while b-a>c
b=(2*a+2\(a.^2))\3; end
主程序:
>> a=1.5;
>> c=10.^-6;
>> b=diedai(a,c)
初值为1.5
二分法
x1=1;
x2=2;
e=0.0001;
y=0;
while(abs(y-2)>e)
y1=(x1+x2)/2;
y=y2^3;
if(y>2)
x2=y1;
else
x1=y1;
end
end
y1=vpa(y1,10)
结果为
y1=
1.1259918213
(1)
n=8;
x=cosd([90 210 330]');
y=sind([90 210 330]');
tri=[1 2 3];
tnum=1;dnum=3;
for ii=2:n
tri2=zeros(3*tnum,3);
nn=1;
for jj=1:tnum
xnew=(x(tri(jj,[1 2 3]))+x(tri(jj,[2 3 1])))/2;
ynew=(y(tri(jj,[1 2 3]))+y(tri(jj,[2 3 1])))/2;
x=[x;xnew];
y=[y;ynew];
tri2(nn,:)=[tri(jj,1),dnum+1,dnum+3];
tri2(nn+1,:)=[dnum+1,tri(jj,2),dnum+2];
tri2(nn+2,:)=[dnum+3,dnum+2,tri(jj,3)];
nn=nn+3;
dnum=dnum+3;
end
tri=tri2;
tnum=3*tnum;
end
triplot(tri,x,y);
axis image;
axis off;
(2)
x=[0.5;0.5];
plot(x(1),x(2),'.')
h=[0.75 0.90 0.98 1.00];
b1=[0;1.5];
b2=[0;1.5];
b3=[0;0.4];
A1=[0.75 0.04 ;-0.04 0.75];A2=[0.20 -0.3;0.25 0.23]; A3=[-0.15 0.32;0.26 0.24];A4=[0 0 ;0 0.15];
for i=1:20000
r=rand;
if r<h(1)
x=A1*x+b1;
elseif r<h(2)
x=A2*x+b2;
elseif r<h(3)
x=A3*x+b3;
else
x=A4*x;
end
plot(x(1),x(2),'g'),hold on
end
clear all
a=0.04;
for j=1:(4/0.04)
x(1,j)=0.5;
for i=1:98
x(i+1,j)=a*j*x(i,j)*(1-x(i,j));
end
end
clear i j
for j=1:100
for i=1:50
y(i,j)=x(i+49,j);
end
end
t=0.04:0.04:4;
plot(t,y,'b.')
xlabel('a');ylabel('x');title('图1')。

相关文档
最新文档