人教版初三九年级数学《二次函数复习》优秀课件

合集下载

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

人教版九年级数学上册《二次函数y=ax2的图象与性质》二次函数PPT精品课件

课堂检测
巩固练习
对应训练
第二十二章 二次函数
《超越训练》 P34:例2+达标训练
课堂检测
基础巩固题
第二十二章 二次函数
1.函数y=2x2的图象的开口向上 , 对称轴y轴
是 (0,0) ; 在对称轴的左侧,y随x的增大而 减小 ,
,顶点 y
在对称轴的右侧, y随x的增大而 增大 .
O
x
2.函数y=-3x2的图象的开口 向下 ,对称 y轴
2
口大小与a的大小有什么关系?
的图象开
当a<0时,a越小(即a的绝对 值越大),开口越小.
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
知识探究 归纳
y=ax2 图象
位置开 口方向
对称性 顶点最值
增减性
第二十二章 二次函数
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
y y=x2
o
x
知识探究
第二十二章 二次函数
说说二次函数y=-x2的图象有哪些性质,并与同伴交
流.
1.y=-x2的图象是一条 抛物线;
y
o
x
2.图象开口向下;
3.图象关于y轴对称;
画出函数y=-x2的图象.
x … -3 -2 -1 0 1 2 3 …
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
y -4 -2 0 2 4 x
-3
-6 -9

新人教九年级数学上册第二十二章二次函数复习课件

新人教九年级数学上册第二十二章二次函数复习课件

专题七 综合应用—呈抛物线形状实物的几何探究
例7 跳绳时,绳甩到最高处的形状可近似的看为抛物线,如图, 正在甩绳的甲、乙两名同学拿绳的手间距为4米,距地面均为1米, 丙、丁同学分别站在距甲拿绳的手水平距离1米、2.5米处,绳子 甩到最高处,刚好通过他们的头顶,已知丙同学的身高是1.5米. (1)请你算一算丁同学的身高. 丙 (1,1.5)
A.开口向下,顶点坐标(5,3) B.开口向上,顶点坐标(5,3) C.开口向下,顶点坐标(-5,3) D.开口向上,顶点坐标(-5,3)
2.当a>0, b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是
( A ) y y
y
y
O A
x
O B
x
O
C
x
O
x
D
3.将二次函数y=2x2-1的图象沿y轴向上平移2个单位,所得到的图象
(2)由图象可知当-1<x<3时,函数的图象位于x轴的上方, 所以不等式的解集为-1<x<3; (3)由图象可知,在x轴的右侧,y随着x的增大而减小, ∴y随着x的增大而减小的x的取值范围为x>1; (4)要使得有ax2+bx+c=k两个不相等的实数根,即直线x=k与 二次函数图象有两个交点,∴k的取值范围为k<5.
甲 1m
2.5m 4m 1<s<3

课堂小结
二次函数的 定 义
二次函数的概念 及 图 象 特 征 用数形结合 的方法去研 究和运用
二次函数
二次函数的 图象及性质
二次函数的 应 用
建立二次函数模型, 将实际问题数学化, 运用二次函数知识 解 决 实 际 问 题

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

人教版九年级初中数学上册第二十二章二次函数-二次函数与一元二次方程PPT课件

新知探究
二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的
根有什么关系?
抛物线y=ax2+bx+c(a≠0)
一元二次方程ax2+bx+c=0
与x轴的公共点的个数
(a≠0)的根的情况
b2-4ac>0
有两个
有两个不相等的实数根
b2-4ac=0
有一个
有两个相等的实数根
P(2,-2)
重复上述过程,不断缩小根的范围,根所在两端的值就越来越
接近根的值.因而可以作为根的近似值。
尝试求出方程y = 2 − 2 − 2两个根的近似值?
课堂练习
1. 抛物线 = 2 + 2 − 3与轴的交点个数有(
. 0个
. 1个
C.2个
C ).
D.3个
【分析】解二次函数 = 2 + 2 − 3得1 =
第二十二章 二次函数
2 2 . 2 二次函数与一元二次方程
人教版九年级(初中)数学上册
授课老师:XX
前 言
学习目标
1.二次函数与一元二次方程之间的联系。
2.二次函数的图象与x轴交点的三种位置关系。
3.利用二次函数图象求它的实数根。
重点难点
重点:让学生理解二次函数与一元二次方程之间的联系。
难点:让学生理解函数图象交点问题与对应方程间的相互转化,及用图象求方程

x1=x2 =-
x
2
与x轴没有
交点
一元二次方程
ax2+bx+c=0
(a≠0)的根
x
没有实数根
新知探究

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

人教版数学中考复习《二次函数的图象及性质》精品教学课件ppt优秀课件

A(x,y)
B(-x,y)
x
... -2 -1.5 -1 -0.5 0 0.5
1 1.5
2
...
y=x2
...
4 2.25
1 0.25 0
0.25
1
2.25
4
...
y= - x2 ... -4 -2.25 -1 -0.25 0
-0.25
-1
-2.25 -4
...
函数图象画法
注意:列表时自变量 取值要y均 匀 2和对称。
y x2
当当当当xx==xx--==2112时 时时 时,,,,yyyy====--41--14
当a>0时,在对称轴的 左侧,y随着x的增大而
减小。
当a>0时,在对称轴的 右侧,y随着x的增大而
增大。
当当当当xx==xx--==2112时时时时,,,,yyyy====4114
当a<0时,在对称轴的 左侧,y随着x的增大而
3
3
( 3,6)
( 3,6)
谢谢观看
Thank You!
这对对这对条称对这对称条称抛,称条称轴抛,物y轴抛,。轴物y线。轴物y就线轴关就线是关就于是关它于是y它于的轴y它的轴y的轴 对称轴。
对称轴与抛物线的交点
叫做抛物线的顶点。
1、观察右图, 并完成填空。
2、练习2 3、想一想
4、练习4
二次函数y=ax2的性质 1、顶点坐标与对称轴 2、位置与开口方向 3、增减性与极值
4. 点的位置及其坐标特征: ①.各象限内的点: ②.各坐标轴上的点: ③.各象限角平分线上的点: ④.对称于坐标轴的两点: ⑤.对称于原点的两点:
y
Q(b,-b)

人教版九级上册数学优质课件二次函数复习优质课件

人教版九级上册数学优质课件二次函数复习优质课件

人教版九级上册数学优质课件二次函 数复习 优质课 件
思维导图 例题示范
例1
如图,已知二次函数 y 1 x2 bx c 的图象经过A(2,0)、 2
B(0,-6)两点。
(1)求这个二次函数的解析式;
解:(1)将点A(2,0)、B(0,-6)代入得:c226b c 0 ,
解得:bc
4 6
解:(3)存在,点P的坐标为 (0, 2) 。 3
AD长度固定,只需找到点P使AP+PD最小即可,找到点A关于y轴的 对称点A',连接A'D,则A'D与y轴的交点即是点P的位置。
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
人教版九年 级级 上上 册册 数学数优学质课课件件二第次二函十数二复章习 优二质次课函件数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (1)写出月销售利润y与售价x之间的函数关系式。
人教版九年级上册 数学 课件 第二十二章 二次函数 复习课件(共20张PPT)
思维导图 例题示范
例2
某商店销售一种销售成本为40元/千克的水产品,若按50元/ 千克销售,一个月可售出500千克,销售价每涨价1元,月销售量 就减少10千克。 (2)销售单价定为55元时,计算月销售量与销售利润。

人教版数学九年级上册第二十二章《二次函数》课件(共22张)

人教版数学九年级上册第二十二章《二次函数》课件(共22张)
解:因为第1档次的产品一天能生产 95 件,每件利润 6 元,每 提高一个档次,每件利润增加 2 元,但一天产量减少 5 件, 所以第 x 档次,提高了(x−1)档,利润增加了 2(x−1)元. 所以 y=[6+2(x−1)][95−5(x−1)], 即 y=−10x2+180x+400(其中 x 是正整数,且1≤x≤10).
2.一个圆柱的高等于底面半径,写出它的表面积 S 与底面半径 r 之间的关系式.
解:由圆柱的表面积=2×圆柱的底面积+圆柱的侧面积, 得 S=2πr2+2πr•r=4πr2.
3.如图,矩形绿地的长、宽各增加 x m,写出扩充后的绿地的面 积 y 与 x 的关系式.
解:由图可得,扩充后的绿地的面积y(m2)与 x(m) 之间的函数关系式是y=(30+x)(20+x)=x2+50x+600, 即 y=x2+50x+600.
这个函数与我们学过的函数不同,其中自变量x的最高次数是2. 这类函数具有哪些性质呢?这就是本章要学习的二次函数.
合作探究
n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数 m 与球队数 n 有什么关系?
分析:每个球队要与其他 (n-1) 个球队各比赛一场,甲队对乙队的比赛与乙
队对甲队的比赛是同一场比赛,所以比赛的场次数为
形如 y=ax²+bx+c (a,b,c是常数,a≠ 0)的函数叫做二次函数.其中 x 是自变量,a,b,c 分别是二次项系数、一次项系数和常数项.
(1)等号左边是变量y,右边是关于自变量x的整式; (2)a,b,c为常数,且a≠ 0; (3)等式的右边最高次数为 2,可以没有一次项和常数项,但 不能没有二次项.

九年级数学上册(人教版)《二次函数》复习参考课件

九年级数学上册(人教版)《二次函数》复习参考课件

c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
1/4/2023
(1)a确定抛物线的开口方向:
a>0
a<0
y
(2)c确定抛物线与y轴的交点位置:
•0 (0,c)
c>0
c=0 c<0
x
(3)a、b确定对称轴
(2)
a>0时,ymin=
4ac-b2 4a
a<0时,ymax=44aca-b2
1/4/2023
一、定义
使用
二、图象的特点 和性质
一般式
解析式
范围
y=ax2+bx+c
已知任意 三个点
三、解析式的求法
已知顶点
四、图象位置与a、顶点式 b、c、 的正负 关系
y=a(x-h)2+k
(h,k)及 另一点
已知与x
3
• •C(0,-2–) • M(-1,-2)
例(5:1)求已抛知物二线次开函口数方y=向—12,x2对+x称-—32轴和顶点M的坐标。
(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,
A,B的坐标。
(3)画出函数图象的示意图。
(4)求ΔMAB的周长及面积。
(5)x为何值时,y随的增大而减小,x为何值时,y有最大
1/4/2023
本章知识结构图
实际问题
归纳 性质
实际问题 的答案
1/4/2023
利用二次函数的图像 和性质求解

人教版九年级上册22.1二次函数的图象和性质 复习课件(共32张PPT)

人教版九年级上册22.1二次函数的图象和性质 复习课件(共32张PPT)

o
2
x
5
10
15
D.(4,3)
4
例 3 ( 2 ) ( 山 东 中 考 ) 抛 物 线 y = a x ²+ b x + c 经 过 点 A ( - 2 , 7 ) , B(6,7)C(3,-8),则该抛物线上纵坐标为-8的另一个点D 的坐标是
例 3 ( 3 ) ( 上 海 中 考 ) 抛 物 线 2 ( x + m ) ²+ n ( m , n 是 常 数 )
y
8
6
4
2
10
5
o
5
x
10
15
2
4
例 3 , 如 图 已 知 抛 物 线 y = x ²+ b x + c 的 对 称 轴 为 x = 2 , 点
A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为
(0,3),则点B的坐标为(

8y
6 4
x=2
A.(2,3) B.(3,2)
2A
B
C.(3,3)
5
二次函数的解析式(三种形式解析式)
一 般 式 : y = a x ²+ b x + c ( a ≠ ᄋ )
顶 点 式 : y = a ( x - h ) ²+ k ( a8, h , k 为 常 数 , 且 a ≠ ᄋ )
两根式:y=a(x-x1)(x-x2)(a≠ᄋ,x1,x2是抛物线与x轴两交点
解析式为
6
y
4
2
A(-1,0)
B(3,0)
15
10
5
O
x5
10
2
4
∙x 3
2)2 2∙(x +例2) 43:如图,在平面直角坐标系xOy中,抛8 物线C1的顶点为A(-1, -4),且过点B(-3,0)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x(元)130 150 165
y (台) 70 50 35
再见!
新人教实验版数学九年级(下)26.1二次函数
知识回顾
二次函数的概念 二次函数的关系式 二次函数的图象及性质 各种形式的二次函数的关系
习题巩固
二次函数的概念
• 形如y=ax2+bx+c(a,b,c是常数,a≠0) 的函数,叫做二次函数,其中,是自变量, 分别是函数表达式的二次项系数,一次项 系数和常数项。
13.某产品每件的成本价是120元,试销阶段,每件产品 的销售价x(元)与产品的日销售量y(台)之间的函数关系如 下表: x(元)130150165y (台)705035并且日销售量y是每件 售价x的一次函数. (1)求y与x之间的函数关系; (2)为获得最大利润,每件产品的销售价应定为多少元? 此时每日销售的利润是多

.
5.函数y=-2x2+8x-8的顶点坐标为
.
6.函数y=2x2+8x-8的对称轴为
.
7.若所求的二次函数的图象与抛物线y=2x2-4x-1 有相同的顶点,并且在对称轴左侧,y随x的增大而 增大,在对称轴右侧,y随x的增大而减小,则所求 的二次函数的解析式为( )
A.y=-x2+2x-4 B.y=ax2-2ax+a-3(a>0) C.y=-x2-4x-5 D.y=ax2-2ax+a-3(a<0)
a>0向上 y轴 ( 0 , k ) a<0向下
a>0向上 直线x=h ( h , 0 ) a<0向下
a>0向上 a<0向下 直线x=h
(h,k)
二次函数y=ax2+bx+c(a≠0)
a(xb)24acb2 2a 4a
对称轴为:直x线 b , 2a
顶点坐标是:2ba
,
4acb2 4a

各种形式的二次函数的关系
左 y = a( x – h )2 + k 上






y = ax2 + k
y = a(x – h )2
上下平移 y = ax2 左右平移
结论: 一般地,抛物线 y = a(x-h)2+k与 y = ax2形状相同,位置不同。
1.抛物线y=(x-3)2的开口方向 ,对称轴是 ,顶 点坐标为 ,在对称轴左侧,即x 时,y随x增大 而 ;在对称轴右侧,即x 时,y随x增大而 , 当x= 时,y有最 值为 .
2.函数y=5(x-3)2-2的图象可由函数y=5x2的图象沿 x轴向 平移 个单位,再沿y轴向 平移 个单 位得到.
3.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( ). A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
4.将函数y=-x2-2x化为y=a(x-h) 2+k的形式
y
y
y
y
o xAoFra bibliotekox
x
B
C
o
x
D
11.已知二次函数y=(m-2)x2+(m+3)x+m+2的 图象过点(0,5). (1)求m的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、对称轴.
12.某旅社有客房120间,每间客房的月租金为 50元,每天都客满,旅社装修后要提高租金, 经市场调查,如果一间客房的日租金增加5元, 则客房每天出租会减少6间,不考虑其它因素, 旅社将每间客房的日租金提高到多少元时,客房 日租金的总收入最高?比装修前的日租金总收入 增加多少元?
• 二次函数的特殊形式: • y=ax2 • y=ax2+c • y=a(x-h)2+k
函数的图象及性质
抛物线
开口方 对称轴 顶点 最 增

坐标 值 减

y = ax2 y = ax2 + k y = a(x – h )2 y = a(x – h )2 + k
a>0向上 y轴 a<0向下
(0,0)
8.若b<0,则函数y=2x2+bx-5的图象的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.设抛物线y=x2-4x+c的顶点在x轴上,则c为 .
10.二次函数y=ax2+bx+c经过点(3,6)和-1,6) ,则
对称轴为
.
11.如图,在同一坐标系中,函数y=ax+b与 y=ax2+bx(ab≠0)的图象只可能是( )
相关文档
最新文档